Norwegian University of Science

Department of Mathematical
Sciences

The following problems are concerned with constrained optimisation and with the concepts of tangent cones and linearized feasible directions. Problem 3 is in some sense the "typical" case, where the KKT conditions work perfectly fine for finding the solutions. In contrast, problems 4 and 5 deal with slightly more difficult situations.

1 For the following two examples, sketch the region Ω defined by the constraints and compute for each point in Ω both the tangent cone and the set of linearized fesible directions. For which points is the LICQ satisfied?
a) The region $\Omega \subset \mathbb{R}^{2}$ defined by the inequalities

$$
y \geq x \quad \text { and } \quad y^{4} \leq x^{3}
$$

b) The region $\Omega \subset \mathbb{R}^{2}$ defined by the inequalities

$$
y \geq x^{4} \quad \text { and } \quad y \leq x^{3}
$$

Note that the sets Ω considered in this example occur again in problems 4 and 5 on this exercise sheet.

2 Assume that one wants to solve the optimisation problem

$$
\max _{x} f(x) \quad \text { such that } \quad \begin{cases}c_{i}(x)=0 & \text { for all } i \in \mathcal{E} \\ c_{i}(x) \geq 0 & \text { for all } i \in \mathcal{I}\end{cases}
$$

How do the KKT conditions have to be modified such that one obtains (first order) necessary conditions for this maximisation problem?

3 Consider the constrained optimization problem

$$
x^{2}+y^{2} \rightarrow \min \quad \text { such that } \quad\left\{\begin{aligned}
x+y & \geq 1 \\
y & \leq 2 \\
y^{2} & \geq x
\end{aligned}\right.
$$

a) Formulate the KKT-conditions for this optimization problem.
b) Find all KKT points for this optimization problem.
c) Find all local and global minima for this optimization problem.
(Part b can be very tedious. One strategy is to consider all possible active sets and determine for each active set whether KKT-points exist. It can also be extremely helpful to sketch the feasible set and the function.)

4 Consider the constrained optimization problem

$$
x \rightarrow \text { min } \quad \text { such that } \quad\left\{\begin{array}{l}
y \geq x^{4}, \\
y \leq x^{3} .
\end{array}\right.
$$

Find all KKT points and local minima for this optimization problem.

5 Consider the constrained optimization problem

$$
x y \rightarrow \text { min } \quad \text { such that } \quad\left\{\begin{array}{c}
y \geq x, \\
y^{4} \leq x^{3} .
\end{array}\right.
$$

a) Find all KKT points and local minima for this optimization problem.
b) Compute the critical cone at $(0,0)$ as defined in the lecture and Nocedal \& Wright, and show that there exist directions d contained in the critical cone for which $d^{\top} \nabla^{2} \mathcal{L}\left((0,0) ; \lambda^{*}\right) d<0$.
c) Show that $d^{\top} \nabla^{2} \mathcal{L}\left((0,0) ; \lambda^{*}\right) d \geq 0$ for all vectors d contained in the tangent cone to the feasible set at $(0,0)$.

