TMA4180

Optimisation I

Spring 2017
Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 Consider the function

$$
f(x, y, z)=2 x^{2}+x y+y^{2}+y z+z^{2}-6 x-7 y-8 z+9 .
$$

a) Using the first order necessary conditions, find a critical point of f.
b) Use the second-order sufficient conditions in order to verify that this point is a local minimum.
c) Prove that this point is a global minimum of f.

2 Assume that f is a continuously differentiable function satisfying

$$
\lim _{\|x\| \rightarrow \infty} \frac{f(x)}{\|x\|}=+\infty .
$$

Show that the equation

$$
\nabla f(x)=u
$$

has a solution for every $u \in \mathbb{R}^{n}$.
Hint: Consider global minima of the function $f_{u}(x):=f(x)-u^{T} x$.

3 Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x, y)=\log \left(e^{x}+e^{y}\right)
$$

is convex.

4 (Arithmetic-Geometric Mean Inequality) Let $\alpha, \beta>0$ be such that $\alpha+\beta=1$. Show that for all $x, y>0$ one has

$$
x^{\alpha} y^{\beta} \leq \alpha x+\beta y
$$

with equality if and only if $x=y$.
Hint: show that the function $-\log x$ is strictly convex on $\mathbb{R}_{>0}$.

5 (See N\&W, Exercise 2.8) Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function. Show that the set of minimisers of f is convex.

6 Show that a strictly convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has at most one global minimiser. In addition, find a strictly convex function that has no global minimiser at all.

7 Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a strictly convex and continuous function that attains a minimiser. Show that f is coercive. ${ }^{1}$

Hint: assuming x^{*} is the minimiser of f, show that $f(x) \geq c\left\|x-x^{*}\right\|$ whenever $\left\|x-x^{*}\right\| \geq 1$, where $c>0$ is the minimum of f on $\left\{x:\left\|x-x^{*}\right\|=1\right\}$.

[^0]
[^0]: ${ }^{1}$ The continuity of f is strictly speaking not a necessary requirement, as it can be shown that every convex function defined on the whole space \mathbb{R}^{n} is necessarily continuous.

