
BASIC PROPERTIES OF CONVEX FUNCTIONS

MARKUS GRASMAIR

1. Convex Functions and Sets

Definition 1 (Convex Function). A function f : Rn → R is convex, if for every x,
y ∈ Rn and 0 ≤ λ ≤ 1 the inequality

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)

holds.
The function f is strictly convex, if for every x 6= y ∈ Rn and 0 < λ < 1 the

inequality

f
(
λx+ (1− λ)y

)
< λf(x) + (1− λ)f(y)

holds. That is, the inequality defining the convexity of a function is strict whenever
possible.

More graphically, this means that for each pair of points (x, f(x)) and (y, f(y))
lying on the graph of f , the connecting line segment remains above (or rather: not
below) the graph. It is strictly convex if the connecting line segment stays strictly
above the graph. See Figure 1.

Figure 1. Left: Typical example of a convex (but not strictly
convex) function. Note that no differentiability is assumed. Right:
Typical example of a non-convex function. There exist points on
the graph such that the connecting line segment does not lie com-
pletely above the graph.

Similarly, we can also define convex sets:

Definition 2. A set C ⊂ Rn is convex, if for all points x, y ∈ C and 0 ≤ λ ≤ 1 we
have

λx+ (1− λ)y ∈ C.

That is, a set is convex, if whenever we are given two points x and y in C the
whole line segment connecting these two points is also contained in C.
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Remark 3. There is a very close connection between convex sets and convex
functions: One can show that a function f : Rn → R is convex, if and only if the
so-called epigraph of f , which is the subset of Rn ×R consisting of all points (x, t)
with t ≥ f(x), is a convex set.

It is easy to show the following properties of convex functions:

• If the functions f , g : Rn → R are convex, then so is the function f + g.
• If f : Rn → R is convex and λ ≥ 0, then also the function λf is convex.
• Every linear (or affine) function is convex.
• If both f and −f are convex, then the function f is affine (that is, f(x) =
aTx+ b for some a ∈ Rn and b ∈ R).

• If f and g are convex functions, then the function h defined by h(x) :=
max{f(x), g(x)} is also convex.

2. Differentiable Convex Functions

In the definition of convex functions above, we have not assumed any regularity
of f (apart from f only taking finite values). Indeed, one of the main advantages
of the (rather extensive) theory of convex functions is that it allows to deal with
non-differentiable functions using almost the same methods as we would use for
differentiable functions. In particular, it is possible to introduce generalised notions
of derivatives that in turn can be used for the characterisation and computation
of solutions of optimisation problems. However, we will consider in the following
differentiable convex functions, and we will study what the convexity of a function
implies for its derivative.1

Proposition 4. Assume that the function f : Rn → R is differentiable. Then f is
convex, if and only if for every x, y ∈ Rn the inequality

(1) f(y) ≥ f(x) +∇f(x)T (y − x)

is satisfied.

Proof. Assume first that f is convex and let x 6= y ∈ Rn. The convexity of f implies
that

f
(
(x+ y)/2

)
≤ 1

2
f(x) +

1

2
f(y).

Denote now h := y − x. Then this inequality reads as

f(x+ h/2) ≤ 1

2
f(x) +

1

2
f(x+ h).

Using elementary transformations, this can be rearranged as

f(x+ h)− f(x) ≥ f(x+ h/2)− f(x)

1/2
.

Repeating this line argumentation with x and x + h/2 instead of x and x + h, we
obtain that

f(x+ h)− f(x) ≥ f(x+ h/2)− f(x)

1/2
≥ f(x+ h/4)− f(x)

1/4
,

1 We will not discuss non-continuous convex functions—the main reason being that they do

not exist in the setting used here: It can be shown that every function f : Rn → R is not only
continuous, but actually locally Lipschitz continuous. Moreover, this implies that convex func-

tions are actually almost everywhere differentiable (in the sense that the set of points where the
derivative does not exists has Lebesgue measure zero).

It is possible to construct non-continuous convex functions, but only if one either restricts the
domain of the function to some (non-open) convex subset C of Rn (that is, we have a function

f : C → R), or one allows the function to take the value +∞.
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or, more general,

(2) f(x+ h)− f(x) ≥ f(x+ 2−kh)− f(x)

2−k

for all k ∈ N. Now recall that the directional derivative of the function f at the
point x in direction h is defined as

Df(x;h) := lim
t→0

1

t

(
f(x+ th)− f(x)

)
and satisfies

Df(x;h) = ∇f(x)Th.

Thus taking the limit k →∞ in (2) we see that

f(x+ h)− f(x) ≥ lim sup
k→∞

f(x+ 2−kh)− f(x)

2−k
= Df(x;h) = ∇f(x)Th.

Replacing now h by y − x yields the required inequality.

Assume now that the inequality (1) holds for all x, y ∈ Rn. Let moreover w,
z ∈ Rn and 0 ≤ λ ≤ 1. Denote moreover

x := λw + (1− λ)z.

Then the inequality (1) implies that

(3)
f(w) ≥ f(x) +∇f(x)T (w − x),

f(z) ≥ f(x) +∇f(x)T (z − x).

Note moreover that

w − x = (1− λ)(w − z) and z − x = λ(z − w).

Thus, if we multiply the first line in (3) with λ, the second line with 1 − λ, and
then add the two inequalities, we obtain

λf(w) + (1− λ)f(z) ≥ f(x) + λ∇f(x)T (1− λ)(w− z) + (1− λ)∇f(x)Tλ(z −w)

= f
(
λw + (1− λ)z

)
.

Since w and z were arbitrary, this proves the convexity of f . �

Remark 5. Following basically the same proof as above and strategically replacing
inequalities by strict inequalities, one can show that a differentiable function f is
strictly convex, if and only if

f(y) > f(x) +∇f(x)T (y − x)

whenever x 6= y ∈ Rn.

As an immediate consequence of Proposition 4 one obtains the result that the
first order necessary condition for a minimiser is, in the case of convex functions,
also a sufficient condition. More precisely, the following holds:

Corollary 6. Assume that f : Rn → R is convex and differentiable. Then x∗ is a
global minimiser of f , if and only if ∇f(x∗) = 0.

Proof. First recall that the condition∇f(x∗) = 0 is, independent of the convexity of
f , a necessary condition for x∗ to be a global (and indeed already local) minimiser.
Thus we only need to show that this condition actually implies that x∗ is a global
minimiser. Assume therefore that ∇f(x∗) = 0 and let y ∈ Rn. Then Proposition 4
implies that

f(y) ≥ f(x∗) +∇f(x∗)T (y − x∗) = f(x∗).

Thus x∗ is a global minimiser. �



4 MARKUS GRASMAIR

3. Hessians of Convex Functions

Proposition 7. A twice differentiable function f : Rn → R is convex, if and only
if the Hessian ∇2f(x) is positive semi-definite for all x ∈ Rn.

Proof. Assume first that f is convex and let x ∈ Rn. Define moreover the function
g : Rn → R setting

g(y) := f(y)−∇f(x)T (y − x).

Since the mapping y 7→ −∇f(x)T (y − x) is affine, it follows that g is convex.
Moreover

∇g(y) = ∇f(y)−∇f(x)

and

∇2g(y) = ∇2f(y)

for all y ∈ Rn. In particular, ∇g(x) = 0. Thus Corollary 6 implies that x is a global
minimiser of g. Now the second order necessary condition for a minimiser implies
that ∇2g(x) is positive semi-definite. Since ∇2g(x) = ∇2f(x) and x was arbitrary,
this proves that the Hessian of f is positive semi-definite for all x ∈ Rn.

Now assume that the Hessian ∇2f(x) of f is positive semi-definite for all x ∈ Rn.
Let moreover x, y ∈ Rn. Then Taylor’s theorem implies that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x+ t(y − x))(y − x)

for some 0 ≤ t ≤ 1. Since ∇2f is everywhere positive semi-definite, the quadratic
term in this equation is always non-negative. Thus we can estimate

f(y) ≥ f(x) +∇f(x)T (y − x).

Proposition 4 proves now the convexity of f . �

Remark 8. There is some relation between the strict convexity of a function f
and the positive definiteness of its Hessian. However, this relation is not completely
straight-forward. It is possible to show (and actually pretty simple to show) that
a function f : Rn → R is strictly convex, if its Hessian ∇2f(x) is positive definite
for all x. However, the converse direction does not hold: The strict convexity of
a function f does not imply that its Hessian is everywhere positive definite. As
an example consider the function f : R → R, f(x) = x4. This function is strictly
convex, but f ′′(0) = 0. Still, it is possible to characterise the strict convexity of
a univariate function f : R → R by the condition that the set of points x ∈ R
with f ′′(x) > 0 is dense. Thus a twice differentiable function f : R → R is strictly
convex, if and only if the set

{
x ∈ R : f ′′(x) > 0

}
is dense in R. To the best

of knowledge, there exists no (simple) generalisation of this characterisation to
multivariate functions.

4. Summary

From the viewpoint of optimisation, the main results concerning convex functions
(that we will need/refer to during this class) are:

• Convexity of a differentiable function can either characterised by the fact
that all secants lie above the graph (Definition 1) or that all tangents lie
below the graph (Proposition 4).
• If a function f : Rn → R is convex and differentiable, then the first or-

der necessary condition for a minimum is actually sufficient. That is, the
minimisation of f is equivalent to the solution of the equation

∇f(x) = 0.
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• A function f is convex, if its Hessian is everywhere positive semi-definite.
This allows us to test whether a given function is convex.
• If the Hessian of a function is everywhere positive definite, then the function

is strictly convex. The converse does not hold.
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