Norwegian University of Science
and Technology
Exercise set 5
Department of Mathematical
Sciences

The first three of the following exercises are concerned with Quasi-Newton methods. The first exercise asks for an implementation of the method; here it can be interesting to compare the results with those obtained with Newton's method and with a gradient descent method. The second exercise is concerned with the one-dimensional case; here it turns out that Quasi-Newton methods are nothing else than the well-known secant method. The third exercise shows that Quasi-Newton methods and CG methods are closely related. Finally, the fourth exercise deals with non-linear least squares methods and, in particular, the Gauß-Newton method for their solution.

1 Implement the BFGS method for the minimization of the Rosenbrock function. (Note that you will require a Wolfe line search in order to ensure that the matrices stay positive definite.)

2 The secant method for the solution of one-dimensional optimization problems is given by the iteration

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k-1}}{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)} f^{\prime}\left(x_{k}\right)
$$

Show that this method coincides with both the BFGS and the DFP Quasi-Newton methods without line search.

3 One possibility for lowering the memory requirements of the BFGS-method is to reset the matrix B_{k} to the identity matrix after each j-th step for some fixed number $j{ }^{1}$ For $j=1$ this leads (with the notation of the lecture and Nocedal \& Wright, Chapter 6) to the update

$$
H_{k+1}=\left(\operatorname{Id}-\frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}\right)\left(\operatorname{Id}-\frac{y_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}\right)+\frac{s_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}
$$

Assume now that this method is implemented with an exact line search. Show that this yields a non-linear CG-method, where the search directions are defined by

$$
p_{k+1}=-\nabla f_{k+1}+\beta_{k+1} p_{k}
$$

with

$$
\beta_{k+1}=\frac{\nabla f_{k+1}^{T}\left(\nabla f_{k+1}-\nabla f_{k}\right)}{\left(\nabla f_{k+1}-\nabla f_{k}\right)^{T} p_{k}}
$$

[^0](the Hestenes-Stiefel method, cf. Nocedal \& Wright, p. 123).
(Hint: You may need to show in a first step that an exact line search implies that $\left.\nabla f_{k+1}^{T} p_{k}=0=\nabla f_{k+1}^{T} s_{k}.\right)$

4 Consider the non-linear least squares problem

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|r(x)\|^{2}
$$

with $r=\left(r_{1}, r_{2}, \ldots, r_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ continuously differentiable. Assume that x^{*} is the minimizer of this problem and that the Jacobian $J\left(x^{*}\right)$ of the residual function r at x^{*} has full rank.
a) Show that in a neighbourhood of x^{*} the Gauß-Newton method for the solution of this problem is well-defined and yields descent directions.
b) Assume in addition that r is twice continuously differentiable and that $r\left(x^{*}\right)=$ 0 . Show that in this case the Gauß-Newton method without line search converges locally superlinearly to x^{*}.
(Hint: You might want to use Theorem 3.7 in Nocedal \mathcal{E} Wright.)

[^0]: ${ }^{1}$ More sophisticated methods are described in Nocedal \& Wright, Chapter 7.2.

