
Complex analysis with potential theory

Xu Wang

ABSTRACT. These are the course notes for the course TMA4175 [2024] "Complex Analysis" at
NTNU. It is mainly based on the complex analysis book [A0] of Ahlfors and will be updated after
each lecture.
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1. BASIC COMPLEX ANALYSIS

1.1. Holomorphic functions.
Definition 1. A set U ⊂ C is said to be open if for every z ∈ U ,

Dz(r) := {w ∈ C : |w − z| < r} ⊂ U

for some r > 0.

Example: The unit disk (centered at the origin)

D := {z ∈ C : |z| < 1}
is open. The annulus

Dr,1 := {z ∈ C : r < |z| < 1}, 0 < r < 1,

is also open.

Definition 2. A smooth function f on an open set U ⊂ C is said to be holomorphic ("analytic"
in the Ahlfors book) if it satisfies the Cauchy–Riemann equation

∂f

∂z̄
= 0, on U.

(Our definition is different from page 69, Definition 10 in the Ahlfors book, but in any case, they
are equivalent, see page 122 for smoothness of the Ahlfors analytic functions.)

Remark: Write z = x+ iy ∈ C, then

(1.1) x =
z + z̄

2
, y =

z − z̄

2i
,

∂x

∂z̄
=

1

2
,
∂y

∂z̄
=

−1

2i
=
i

2
,

thus

(1.2)
∂f

∂z̄
=
∂f

∂x

∂x

∂z̄
+
∂f

∂y

∂y

∂z̄
=

1

2

∂f

∂x
+
i

2

∂f

∂y
.
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Exercise 1: For smooth f(x + iy) = u(x + iy) + iv(x + iy) show that the followings are
equivalent:

(1) f is holomorphic;
(2) ux = vy and vx = −uy.

Solution: A direct computation gives

fz̄ =
1

2
(ux − vy) +

i

2
(vx + uy),

hence (1) and (2) are equivalent.

Exercise 2: Let f = u+ iv be holomorphic. Show that uxx + uyy = 0 and vxx + vyy = 0.

Solution: By Exercise 1, we have uxx = vxy and vxx = −uxy, thus uxx + uyy = 0. Similar
proof for vxx + vyy = 0.

Exercise 3: For smooth f(x+ iy) = u(x+ iy) + iv(x+ iy), we define the complex Jacobian
and real Jacobian as

JacC(f) := det

(
fz fz̄
(f̄)z (f̄)z̄

)
, Jac(f) := det

(
ux uy
vx vy

)
.

Show that JacC(f) = Jac(f).

Solution: Note that
JacC(f) = |fz|2 − |fz̄|2.

Input

fz̄ =
1

2
(ux − vy) +

i

2
(vx + uy), fz =

1

2
(ux + vy) +

i

2
(vx − uy),

we obtain
JacC(f) = uxvy − uyvx = Jac(f).

Proposition 1 (See Ahlfors page 22-27). Let f be an holomorphic function on an open set U ⊂
C. Then the complex derivative

(1.3) f ′(z) := lim
h→0

f(z + h)− f(z)

h

exists and satisfies

(1.4) f ′ =
∂f

∂z
=

1

2

∂f

∂x
− i

2

∂f

∂y

on U , moreover, we have

(1.5)
df(g(s))

ds
= f ′(g(s))

dg(s)

ds

for every smooth function g : (a, b) → U , where a < b are real numbers.
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Proof. From the taylor expansion of f with respect to z, z̄

f(z + h) = f(z) + h
∂f

∂z
+ h̄

∂f

∂z̄
+O(|h|2)

and ∂f
∂z̄

= 0, we get

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

h∂f
∂z

+O(|h|2)
h

=
∂f

∂z
,

thus the complex derivative f ′(z) exists and equals ∂f
∂z

. Similar to the proof of (1.2), we have

∂f

∂z
=

1

2

∂f

∂x
− i

2

∂f

∂y

thus (1.4) follows. (1.5) follows from the chain rule

df(g(s))

ds
=
∂f

∂z
|z=g(s)

dg(s)

ds
+
∂f

∂z̄
|z=g(s)

dg(s)

ds
=
∂f

∂z
|z=g(s)

dg(s)

ds
and (1.4). □

1.2. Cauchy integral theorem. Let us think of a piecewise smooth closed curve in C as a piece-
wise smooth 2π-periodic function γ : R → C (i.e. γ is piecewise smooth, γ(t + 2π) = γ(t) for
every t ∈ R and the associated closed curve, as a set, is given by the image of γ). More precisely,
the curve associated to γ is given by the following set

{γ(t) : t ∈ [0, 2π)}
with orientation from 0 to 2π. The fundamental theorem in complex analysis is the following:

Theorem 1 (Cauchy integral theorem). Let f be a holomorphic function on an open set, say U , in
C. Assume that inside U we can deform a piecewise smooth closed curve γ0 piecewise smoothly
to another piecewise smooth closed curve γ1. Then∫

γ0

f(z) dz =

∫
γ1

f(z) dz.

Proof. We shall only prove the smooth case and leave the piecewise smooth case to the readers.
Let {γs}0≤s≤1 be a smooth family in U joining γ0 and γ1. Put

F (s) :=

∫
γs

f(z) dz =

∫ 2π

0

f(γs(t)) d(γs(t)) =

∫ 2π

0

f(γs)γ
′
s dt,

where γ′s denotes the t-derivative of γs. It suffices to show that F does not depend on s, or
equivalently dF (s)/ds = 0 for all s ∈ [0, 1]. Compute (8th Jan)

dF (s)

ds
=

∫ 2π

0

d(f(γs)γ
′
s)

ds
dt =

∫ 2π

0

d(f(γs))

ds
γ′s + f(γs)

d(γ′s)

ds
dt.

By (1.5), we have
d(f(γs))

ds
= f ′(γs)

dγs
ds

,
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thus
dF (s)

ds
=

∫ 2π

0

f ′(γs)γ
′
s

dγs
ds

+ f(γs)
d(γ′s)

ds
dt.

Notice that

f ′(γs)γ
′
s

dγs
ds

+ f(γs)
d(γ′s)

ds
=

d

dt

(
f(γs)

dγs
ds

)
,

hence

dF (s)

ds
=

∫ 2π

0

d

dt

(
f(γs)

dγs
ds

)
dt =

(
f(γs)

dγs
ds

)
|t=2π −

(
f(γs)

dγs
ds

)
|t=0.

Now, since each γs is 2π-periodic in t, we know the right hand side of the above equality vanishes.
The proof is complete. □

Remark: The precise meaning for, {γs}0≤s≤1 is a smooth family in U joining γ0 and γ1, is the
following: there exists a smooth function

γ : (s, t) 7→ γ(s, t) ∈ U,

on a neighborhood of (s, t) ∈ [0, 1]× R such that each

γs : t 7→ γ(s, t)

is 2π-periodic and
γ(0, t) = γ0(t), γ(1, t) = γ1(t).

One may similarly define the piecewise smooth case.

Definition 3. Let U be an open set in C. Two piecewise smooth closed curves in U are said to be
U -homotopic to each other if there exists a piecewise smooth family in U joining them. We write

γ0 ∼U γ1

if γ0 is U -homologous to γ1. In case γ1 is a single point, we shall write γ0 ∼U 0 and say that γ0
is U -homotopic to zero (or U -contractible).

Now one may rephrase the Cauchy integral theorem as follows.

Theorem 2 (Cauchy integral theorem-homotopic version). Let f be a holomorphic function on
an open set, say U , in C. If γ0 ∼U γ1 then∫

γ0

f(z) dz =

∫
γ1

f(z) dz,

in particular, ∫
γ

f(z) dz = 0

if γ ∼U 0.
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1.3. Simply connected domains.
Definition 4. An open set Ω ⊂ C is called a domain (region) if any two points in Ω can be
connected by a piecewise smooth curve in Ω.

Remark: In case Ω is a domain, one may check that ∼Ω in Definition 3 is an equivalence
relation. Our definition of a domain is different from the Ahlfors definition in page 57, Definition
4. But in any case, they are equivalent by the following theorem.

Theorem 3 (Page 56, Theorem 3). Let Ω be a nonempty open set in C. Then the followings are
equivalent:

(1) Ω is a domain;

(2) If Ω = Ω1 ∪ Ω2 with Ω1, Ω2 open and Ω1 ∩ Ω2 = ∅ then either Ω1 or Ω2 is empty;

(3) Any two points in Ω can be connected by a piecewise horizontal/vertical curve in Ω.

Proof. (1) implies (2): Otherwise, both are nonempty, so we can choose p ∈ Ω1, q ∈ Ω2 and
connect p, q with a piecewise smooth curve γ(t) in Ω with γ(0) = p, γ(1) = q. Consider

T := sup{0 ≤ t ≤ 1 : γ(t) ∈ Ω1},

Since γ(1) /∈ Ω1, we know that 0 < T < 1. If γ(T ) ∈ Ω1, then the continuity of γ implies that
γ(T + ε) ∈ Ω1 for some ε > 0, this of course can not happen by the maximum property of T .
So we must have γ(T ) ∈ Ω2, then continuity of γ implies that γ(T − ε, T + ε) ⊂ Ω2, this can
not happen either. So we know that one of Ω1, Ω2 must be empty.

(2) implies (3): If p, q in Ω can not be connected by a piecewise horizontal/vertical curve in
Ω, then one may define Ω1 to be the collection of points in Ω that connects to p by a piecewise
horizontal/vertical curve in Ω. Then the complement, say Ω2, of Ω1 is precisely the collection
of those points that can not be connected to p by a piecewise horizontal/vertical curve in Ω. The
basic observation is that Ω1 and Ω2 are disjoint nonempty open, which contradicts (2).

(3) implies (1): directly from the definition. □

Definition 5. A domain Ω ⊂ C is said to be simply connected if γ ∼Ω 0 for every piecewise
smooth closed curve γ in Ω. (9th Jan)

Remark: Our definition is different from the one given by Ahlfors in page 139, where Ω is said to
be simply connected if its complement with respect to the extended plane C∪ {∞} is connected.

Theorem 4 (See page 141, Corollary 1). If f is holomorphic in a simply connected domain
Ω ⊂ C then ∫

γ

f(z) dz = 0

for every piecewise smooth closed curve γ in Ω.
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Example: Convex open sets are simply connected. The annulus

Dr,1 := {z ∈ C : r < |z| < 1}, 0 < r < 1,

are not simply connected, since ∫
|z|= r+1

2

dz

z
= 2πi ̸= 0.

Theorem 4 also implies the following result.

Corollary 1 (Page 142, Corollary 2 in the Ahlfors book). If f(z) is holomorphic and ̸= 0 in a
simply connected domain Ω ⊂ C then it is possible to define single-valued analytic branches of
log f(z) and (f(z))1/n in Ω.

Proof. Fix z0 ∈ Ω, by Theorem 4, we know that

F (z) :=

∫ z

z0

f ′(w)

f(w)
dw

does not depend on the choice of piecewise smooth curves connecting z0 and z and we have

F ′(z) =
f ′(z)

f(z)
.

Thus f(z)e−F (z) has the derivative zero and is therefore a constant. Choosing one of the infinitely
many values log f(z0), we find that

eF (z)−F (z0)+log f(z0) = f(z),

and consequently we can set

log f(z) = F (z)− F (z0) + log f(z0).

To define (f(z))1/n, we merely write it in the form e(1/n) log f(z). (15th Jan) □

1.4. Cauchy’s integral formula. Let f be a holomorphic function on an open set U ∈ C. Fix
z ∈ U . Assume that inside U \ {z} we can deform a piecewise smooth closed curve γ piecewise
smoothly to γε : t 7→ z + εeit for all sufficient small ε > 0. Then Theorem 1 implies that

(1.6)
1

2πi

∫
γ

f(ζ)

ζ − z
dζ = lim

ε→0+

1

2πi

∫
γε

f(ζ)

ζ − z
dζ = f(z).

In case γ is given by |ζ − a| = r (always with the anti-clockwise orientation), then (1.6) gives:

Theorem 5 (Cauchy’s integral formula). Let f be a holomorphic function on a neighborhood of
the disk |ζ − a| ≤ r. Then

(1.7)
1

2πi

∫
|ζ−a|=r

f(ζ)

ζ − z
dζ = f(z), ∀ z with |z − a| < r.

Corollary 2 (page 122, Ahlfors book). Bounded holomorphic functions on C are constants.
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Proof. Take the derivative of (1.7), we obtain

1

2πi

∫
|ζ−a|=r

f(ζ)

(ζ − z)2
dζ = f ′(z), ∀ z with |z − a| < r.

Assume that |f | ≤M on C. Then the above formula gives

|f ′(a)| =
∣∣ 1

2πi

∫
|ζ−a|=r

f(ζ)

(ζ − a)2
dζ

∣∣ ≤ M

r
.

Let r tend to ∞, we get f ′(a) = 0 for every a ∈ C. Thus f is a constant. □

Liouville’s theorem leads to a proof of the following fundamental theorem of algebra.

Corollary 3 (page 122, Ahlfors book). Polynomials of positive degree in C[z] always have a zero
point in C.

Proof. Let P ∈ C[z] be a polynomial of positive degree. If P has no zero point then P (z)−1

is holomorphic on C and tends to zero for z → ∞. Thus P (z)−1 is bounded and the Liouville
theorem implies that it is a constant, thus P is a constant, we get a contradiction. □

Exercise 1: Use (1.7) to prove the following results for holomorphic function f defined on a
neighborhood of the disk |ζ − a| ≤ r:

(1) For all positive integers k, we have

(1.8)
k!

2πi

∫
|ζ−a|=r

f(ζ)

(ζ − z)k+1
dζ = f (k)(z), ∀ z with |z − a| < r.

Solution: Take z-derivatives of (1.7).
(2) For all z with |z − a| < r, we can write

f(z)− f(a) = (z − a)f1(z),

where f1 is holomorphic on the whole disc |z − a| < r and

f1(z) =
1

2πi

∫
|ζ−a|=r

f(ζ)

(ζ − z)(ζ − a)
dζ

Solution: (1.7) also gives

f(z)− f(a) =
1

2πi

∫
|ζ−a|=r

f(ζ)

ζ − z
− f(ζ)

ζ − a
dζ =

z − a

2πi

∫
|ζ−a|=r

f(ζ)

(ζ − z)(ζ − a)
dζ,

which implies (2).
(3) Show that in case f is a constant, (2) gives

(1.9)
1

2πi

∫
|ζ−a|=r

1

(ζ − z)(ζ − a)
dζ = 0, ∀ a, z ∈ C with |z − a| < r.

Solution: Take f = 1, then 1− 1 = (z − a)f1(z) gives f1 = 0.
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(4) Show that (1.9) implies that for every positive integer k,

(1.10)
1

2πi

∫
|ζ−a|=r

1

(ζ − z)(ζ − a)k
dζ = 0, ∀ a, z ∈ C with |z − a| < r.

Solution: By the Cauchy integral theorem
1

2πi

∫
|ζ−a|=r

1

(ζ − z)(ζ − a)
dζ =

1

2πi

∫
|ζ|=R

1

(ζ − z)(ζ − a)
dζ

for sufficiently big R > 0. Hence (1.9) implies

0 =
1

2πi

∫
|ζ|=R

1

(ζ − z)(ζ − a)
dζ

for R > 0 big enough. Apply the a-derivative of the above formula, we obtain
1

2πi

∫
|ζ|=R

1

(ζ − z)(ζ − a)k
dζ

for every positive integer k. Hence the Cauchy integral theorem gives
1

2πi

∫
|ζ−a|=r

1

(ζ − z)(ζ − a)k
dζ =

1

2πi

∫
|ζ|=R

1

(ζ − z)(ζ − a)k
dζ = 0.

(5) Let us continue the process in (2) and write

f1(z)− f1(a) = (z − a)f2(z),

use (1.10) to show that

(1.11) f2(z) =
1

2πi

∫
|ζ−a|=r

f1(ζ)

(ζ − z)(ζ − a)
dζ =

1

2πi

∫
|ζ−a|=r

f(ζ)

(ζ − z)(ζ − a)2
dζ.

Solution: Since f1(ζ) = (f(ζ)− f(a))/(ζ − a), we have

1

2πi

∫
|ζ−a|=r

f1(ζ)

(ζ − z)(ζ − a)
dζ =

1

2πi

∫
|ζ−a|=r

f(ζ)− f(a)

(ζ − z)(ζ − a)2
dζ,

which equals the right hand side of (1.11) by (1.10).
(6) Let us inductively define fn+1(z) such that fn(z)− fn(a) = (z− a)fn+1(z) show that (see

page 125, Theorem 8 of the Ahlfors book)

(1.12) f(z) = f(a) + f ′(a)(z − a) + · · ·+ f (n)(a)

n!
(z − a)n + fn+1(z)(z − a)n+1,

with

(1.13) fn+1(z) =
1

2πi

∫
|ζ−a|=r

f(ζ)

(ζ − a)n+1(ζ − z)
dζ

and

(1.14) f (n)(a) =
n!

2πi

∫
|ζ−a|=r

f(ζ)

(ζ − a)n+1
dζ.
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Solution: By induction on n, we have

(1.15) f(z) = f(a) + f1(a)(z − a) + · · ·+ fn(a)(z − a)n + fn+1(z)(z − a)n+1.

Take z = a, we know that (1) implies (1.14), (1.13) implies fn(a) =
f (n)(a)

n!
. Hence it suffices to

prove (1.13). Apply (1.7) to f = fn+1, we obtain

(1.16) fn+1(z) =
1

2πi

∫
|ζ−a|=r

fn+1(ζ)

(ζ − z)
dζ.

By (1.15), we have

fn+1(ζ) = f(ζ)(ζ − a)−n−1 − f(a)(ζ − a)−n−1 − f1(a)(ζ − a)−n − · · · − fn(a)(ζ − a)−1.

Input it into (1.16), we know that (4) gives (1.13).
(7) Denote by M the maximum of |f | on the circle |ζ − a| = r, use (1.13) to show that

(1.17) |fn+1(z)(z − a)n+1| ≤ M |z − a|n+1

rn(r − |z − a|)
.

In particular, as n → ∞, fn+1(z)(z − a)n+1 tends to zero uniformly in every smaller disk
|z − a| ≤ δ < r (this is the proof of Theorem 6 below in page 179 of the Ahlfors book).
Solution: Follows from (write ζ − z = ζ − a− (z − a))

|fn+1(z)| ≤
1

2π

∫ 2π

0

M

rn+1(r − |z − a|)
r dθ =

M

rn(r − |z − a|)
.

Exercise 2: Compute the following integrals:
(1)

∫
γ
x dz, where γ is the directed line segment from 0 to 1 + i; Answer: (1 + i)/2.

(2)
∫
|z|=r

x dz; Answer: iπr2.

(3)
∫
|z|=2

dz
z2−1

; Answer: 0.

(4)
∫
|z|=1

|z − 1| · |dz|. Answer: 8.

Exercise 3: Let P (z) be a polynomial in z and C denote the circle |z − a| = R, show that∫
C

P (z) dz̄ = −2πiR2P ′(a).

Solution: Note that on C we have

z̄ − ā =
R2

(z − a)
,

which gives

dz̄ = − R2

(z − a)2
dz

on C. Thus
1

2πi

∫
C

P (z)

(z − a)2
dz = P ′(a)

gives our formula.
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1.5. Taylor and Laurent series. The Cauchy integral formula implies that every holomorphic
function can be locally written as a convergent power series (called Taylor series) of z, in partic-
ular, holomorphic functions are always real analytic. (16th Jan)

Theorem 6. If f is holomorphic on a domain Ω ⊂ C then the representation

(1.18) f(z) = f(a) + f ′(a)(z − a) + · · ·+ f (n)(a)

n!
(z − a)n + · · ·

is valid in the largest open disk of center a contained in Ω. Moreover, the series converges
uniformly in every smaller disk.

More generally, we have the Laurent series of holomorphic functions on an annulus.

Theorem 7. If f is holomorphic in an annulus R1 < |z − a| < R2 then f can be developed in a
Laurent series of the form

(1.19) f(z) =
∞∑

n=−∞

cn(z − a)n, cn =
1

2πi

∫
|z−a|=r

f(z) dz

(z − a)n+1
, ∀ R1 < r < R2,

which converges uniformly on every circle inside the annulus.

Proof. See page 185 of the Ahlfors book for the proof. (22th Jan) □

1.6. Zeros, residues, poles and local description of holomorphic mappings.

1.6.1. Zeros, residues and poles. A direct consequence of the Taylor series expansion, Theorem
6, is the following

Proposition 2 (Page 126, Ahlfors book). Let f be a holomorphic function on a domain Ω ⊂ C.
If for some a ∈ Ω, f(a) = 0 and all derivatives f (ν)(a) vanish, then f is identically zero in Ω.

Proof. Let E be the set on which f and all derivatives vanish. We know that Ω \E is open (try!).
Theorem 6 implies that E is also open. Since Ω is a domain, we must have E = Ω. □

Assume that f(z) is not identically zero. Then if f(a) = 0 then there exists a first derivative
f (h)(a) ̸= 0, we say then that a is an order h zero of f . To summarize, we shall introduce the
following definition.

Definition 6. Let f be a holomorphic function on a domain Ω ⊂ C. Assume that f(a) = 0 for
some a ∈ Ω. We say the a is an order h zero of f , h ∈ Z, h > 0, if

f (h)(a) ̸= 0 and f (ν)(a) = 0, ∀ 0 ≤ ν < h.

In this case we shall write h = Ordaf .

Remark: By (1.12), we have

(1.20) f(z) = (z − a)hfh(z), with h = Ordaf, fh(a) ̸= 0.

Since fh is continuous (in fact holomorphic), we know that fh ̸= 0 in a neighborhood of a. Thus
z = a is the only zero of f in this neighborhood. We have proved the following result:
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Proposition 3 (Page 127, Ahlfors book). The zeros of a holomorphic function which does not
vanish identically are isolated. Moreover, let f, g be holomorphic functions on a domain Ω ⊂ C,
if f = g on a set which has an accumulation point then f is identically equal to g in Ω.

We consider now a holomorphic function f in a punctured disk

D0,R := {z ∈ C : 0 < |z − a| < R}, R > 0.

The point a is called an isolated singularity of f . By Theorem 7 about Laurent series expansions
f can be written as

f(z) =
∞∑

n=−∞

cn(z − a)n

in D0,R. We shall follow Berndtsson’s notes on residue calculus [B, Definition 1] and define:

Definition 7. The coefficient c−1 above is called the residue of f at a. We write

c−1 := Resaf.

(One may compare with Definition 3, page 149 in the Ahlfors book).

Theorem 7 (take n = −1 for the cn formula there) also gives the following theorem.

Theorem 8 (Residue theorem, circle case). For f holomorphic in 0 < |z − a| < R we have

1

2πi

∫
|z−a|=r

f(z) dz = Resaf, 0 < r < R.

To generalize the above theorem, it is convenient to introduce (23th Jan):

Definition 8. Let γ be a piecewise smooth closed curve in a domain Ω ⊂ C. Let {aj}1≤j≤N be
N points in Ω, we say that γ encloses {aj}1≤j≤N in Ω if γ can be shrunk to {aj}1≤j≤N in Ω,
more precisely, it means that γ is Ω \ {aj}1≤j≤N -homotopic to

∑N
j=1Cj for some small circle Cj

around aj , see the picture below.
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Apply Theorem 1, Theorem 8 can be generalized to

Theorem 9 (Residue theorem, homotopy version). Let γ be a piecewise smooth closed curve
enclosing {aj}1≤j≤N in a domain Ω ⊂ C. Then

(1.21)
1

2πi

∫
γ

f(z) dz =
N∑
j=1

Resajf.

What we will usually use is the following special case of the above theorem.
Theorem 10 (Residue theorem). Let f be a holomorphic function on Ω \ {aj}1≤j≤N . Assume
that there is a closed disc D in Ω such that all aj lie in the interior of D. Then

(1.22)
1

2πi

∫
∂D

f(z) dz =
N∑
j=1

Resajf,

for f holomorphic in Ω \ {aj}1≤j≤N .

Proof. Use the above theorem and the fact that the curve ∂D encloses {aj}1≤j≤N in Ω. □

Remark: The above result holds true for general D with piecewise smooth boundary. One proof
(optional in this course) is to use the Stokes theorem:

1

2πi

∫
∂D

f dz =
1

2πi

∫
D

d(f dz) =
1

2πi

∫
D

∂f ∧ dz =
N∑
j=1

Resajf,

since

∂

(
1

z − aj

)
∧ dz = 2πi δaj ,
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where δaj denotes the delta measure (function) at aj .

Exercise 1: Compute
∫
|z|=ρ

|dz|
|z−a|2 under the condition |a| ≠ ρ. Hint: make use of the equations

zz̄ = ρ2 and |dz| = −iρdz
z

.
Solution: By the hint, our integral becomes∫

|z|=ρ

−iρdz
z

(z − a)(ρ2/z − ā)
=

∫
|z|=ρ

−iρdz
(z − a)(ρ2 − āz)

.

Let us apply the Cauchy integral theorem, if |a| < ρ, then we have∫
|z|=ρ

−iρdz
(z − a)(ρ2 − āz)

=
2πρ

ρ2 − |a|2
;

if |a| > ρ, we have ∫
|z|=ρ

−iρdz
(z − a)(ρ2 − āz)

=
2πρ

|a|2 − ρ2
.

Hence ∫
|z|=ρ

|dz|
|z − a|2

=
2πρ

||a|2 − ρ2|
.

Exercise 2: Compute (n,m are integers)∫
|z|=1

ezz−n dz,

∫
|z|=2

zn(1− z)m dz.

Solution: By the residue theorem, we have

∫
|z|=1

ezz−n dz =


0 n ≤ 0

2πi n = 1

2πi/(n− 1)! n ≥ 2.

For the second integral, by the Cauchy integral theorem, we know that if n,m ≥ 0, the integral
is zero. If n ≥ 0, m = −1 we have∫

|z|=2

zn(z − a)−1 dz = 2πian

for every |a| < 2, take the a-derivative, we get (for positive k)∫
|z|=2

zn(z − a)−(k+1) dz = 2πi

(
n

k

)
an−k,

where we define
(
n
k

)
= 0 if k > n. Thus∫

|z|=2

zn(1− z)m dz = (−1)m2πi

(
n

−m− 1

)
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for n ≥ 0, m < 0. Similarly, we have∫
|z|=2

zn(1− z)m dz = (−1)n+12πi

(
m

−n− 1

)
for m ≥ 0, n < 0 and ∫

|z|=2

zn(1− z)m dz = 0

for n,m < 0.

Exercise 3: Find the poles and residues of the following functions:
(a) 1

z2+5z+6
; Solution: Res−2f = 1, Res−3f = −1.

(b) 1
(z2−1)2

; Solution: Res1f = 1
4
, Res−1f = 1

4
.

(c) 1
sin z

; Solution: Res2πZf = 1, Resπ+2πZf = −1.
(d) cot z; Solution: ResπZf = 1.
(e) 1

sin2 z
; Solution: ResπZf = 0.

Another notion of singularity is the pole order.

Definition 9. Let f be a holomorphic function on a punctured disk around a. We say the a is an
order h pole of f , h ∈ Z, h > 0, if its Laurent series reduces to

f(z) =
∞∑

n=−h

cn(z − a)n, c−h ̸= 0.

In this case we shall write h = OrdP
a f (P for pole). A function that is holomorphic except for

poles is called a meromorphic function.

Remark: It is clear that a is an order h pole of f if and only if (z − a)hf(z) extends to a
holomorphic function, say g, in a neighborhood of a with g(a) ̸= 0. Hence we know that a
function is meromorphic if and only if it is locally a quotient of two holomorphic functions.

Definition 10. Let f be holomorphic on a punctured disk around a. We say the a is a removable
singularity of f if its Laurent series has no negative terms (cn = 0 for all n < 0). In case its
Laurent series has infinitely many negative terms, we call a an essentially singularity of f .

The following theorem of Weierstrass gives a characterization of the behavior of a function
around an essential singularity.

Theorem 11 (Page 129, Theorem 9, Ahlfors). A holomorphic function comes arbitrarily close to
any value in every neighborhood of an essential singularity.

Proof. Otherwise, we can find a complex number A and δ > 0 such that |f(z)− A| > δ around
a. Then a must be a removable singularity of

g(z) :=
1

f(z)− A
,
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(one may check that for g, all cn = 0, n < 0), thus g is holomorphic around a and

f =
1

g
+ A

is meromorphic near a. Hence a can not be an essential singularity of f . (29th Jan) □

Exercise 1: (a) Prove the following Green’s formula for the unit square:

(1.23)
∫
∂R

p(x, y) dx+ q(x, y) dy =

∫
R

(qx − py) dxdy,

where p, q are smooth function on a neighborhood of

R := {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

Solution: Note that ∫
∂R

p dx =

∫ 1

0

p(x, 0)− p(x, 1) dx.

Hence the Newton-Lebniz formula

p(x, 1)− p(x, 0) =

∫ 1

0

py(x, y) dy

gives ∫
∂R

p dx = −
∫ 1

0

(∫ 1

0

py(x, y) dy

)
dx = −

∫
R

py dxdy.

A similar argument gives
∫
∂R
q dy =

∫
R
qx dxdy. Hence (1.23) follows.

(b) Use (a) to prove that

(1.24)
∫
∂R

f dz = 2i

∫
R

fz̄ dxdy,

where f is smooth on a neighborhood of R.

Solution: Since dz = dx+ idy, we have

f dz = f dx+ if dy.

Apply (1.23) to p = f, q = if , we obtain∫
∂R

f dz =

∫
R

(if)x − fy dxdy = 2i

∫
R

fz̄ dxdy.

Exercise 2: Use the Residue theorem to verify the following integrals:
(a)

∫∞
0

x2 dx
x4+5x2+6

= π
2
(
√
3−

√
2);

Solution: Consider the square, say DR, with vertices (−R, 0), (0, R), (R, iR), (−R, iR) and
observe that∫ ∞

−∞

x2 dx

x4 + 5x2 + 6
= lim

R→∞

∫
∂DR

z2 dz

z4 + 5z2 + 6
= lim

R→∞

∫
∂DR

z2 dz

(z2 + 2)(z2 + 3)
.
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Put

f(z) =
z2

(z2 + 2)(z2 + 3)
.

We know that ∫
∂DR

f(z)dz = 2πi
(
Res√2 if +Res√3 if

)
= (

√
3−

√
2)π

for large R. Thus ∫ ∞

0

x2 dx

x4 + 5x2 + 6
=

1

2

∫ ∞

−∞

x2 dx

x4 + 5x2 + 6
=
π

2
(
√
3−

√
2).

(b)
∫∞
0

x sinx dx
x2+1

= π
2e

;
Solution: Similarly, one may consider

f(z) =
zeiz

z2 + 1

and observe that ∫ ∞

−∞

xeix dx

x2 + 1
= 2πiRes if =

iπ

e
.

Compare the imaginary part, we obtain∫ ∞

−∞

x sinx dx

x2 + 1
=
π

e
.

Thus ∫ ∞

0

x sinx dx

x2 + 1
=

1

2

∫ ∞

−∞

x sinx dx

x2 + 1
=

π

2e
.

(c) (hard)
∫∞
0

x1/3 dx
1+x2 = π√

3
.

Solution: Can be found in this link (3) g.

Exercise 3: Let f be a holomorphic function on a domain Ω ⊂ C. Assume that |f(z)| = 1 for
all z ∈ Ω. Show that f is a constant on Ω.

Solution: If f is not a constant, then the image of f will be an open set by Corollary 4. But a
non-empty open set can never be a subset of the unit circle.

1.6.2. Argument principle.
Theorem 12 (Argument principle, circle version). Let f be meromorphic on a neighborhood of
the disk |z − z0| ≤ r. Then f has finite zeros, say {aj}1≤j≤N and finite poles, say {bk}1≤k≤M in
that disk. Assume that all aj, bk are away from the circle |z − z0| = r, then

(1.25)
1

2πi

∫
|z−z0|=r

f ′(z)

f(z)
dz =

N∑
j=1

Ordajf −
M∑
k=1

OrdP
bk
f.

https://wiki.math.ntnu.no/_media/tma4175/2023v/img_20230227_132844.jpg
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Proof. By Proposition 3, we know that f has only finite zeros and poles in the disk. To prove
(1.25), we shall write

f(z) =
(z − a1)

Orda1f · · · (z − aN)
OrdaN f

(z − b1)
OrdPa1f · · · (z − bM)OrdPbM

f
g,

where g is holomorphic and ̸= 0 in |z − z0| ≤ r. Forming the logarithmic derivative we obtain

f ′(z)

f(z)
=

N∑
j=1

Ordajf

z − aj
−

M∑
k=1

OrdP
bk
f

z − bk
+
g′(z)

g(z)

for z ̸= aj, bk, and particularly on the circle |z − z0| = r, Since g(z) ̸= 0 in the disk, we know
that g′/g is holomorphic around the disk, thus Theorem 2 yields∫

|z−z0|=r

g′(z)

g(z)
dz = 0,

together with ∫
|z−z0|=r

dz

z − aj
=

∫
|z−z0|=r

dz

z − bk
= 2πi,

we obtain (1.25). □

Apply Theorem 1, Theorem 12 can be generalized to

Theorem 13 (Argument principle, homotopy version). Let f be meromorphic on a domain Ω ⊂
C. Let γ be a piecewise smooth closed curve enclosing zeros {aj}1≤j≤N and poles {bk}1≤k≤M

of f in Ω. Assume that f has no zeros and poles on γ. Then

(1.26)
1

2πi

∫
γ

f ′(z)

f(z)
dz =

N∑
j=1

Ordajf −
M∑
k=1

OrdP
bk
f.

Remark: The function w = f(z) maps γ onto a closed curve, say Γ, in the w-plane and we find

(1.27)
∫
γ

f ′(z)

f(z)
dz =

∫
γ

df

f
=

∫
Γ

dw

w
.

If γ is given by a 2π periodic function γ(t), then Γ is defined by f(γ(t)) and∫
γ

f ′(z)

f(z)
dz =

∫
Γ

dw

w
=

∫ 2π

0

d
(
|f(γ(t)|eiθ(f(γ(t))

)
|f(γ(t)|eiθ(f(γ(t))

=

∫ 2π

0

d log |f(γ(t)|+ i

∫ 2π

0

dθ(f(γ(t)).

Note that
∫ 2π

0
d log |f(γ(t)| = 0, hence we have

1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2π

∫ 2π

0

dθ(f(γ(t)).

Thus the left hand side of (1.26) equals the average of change of argument of f(z) ∈ Γ as z
traverses γ, this explains why the above theorem is referred to as the argument principle. The
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right hand side of (1.26) implies this average is always an integer (this integer is called the
winding number of γ with respect to the origin, see page 115 of the Ahlfors book).

1.6.3. Local description of holomorphic mappings. In case f is holomorphic on a neighborhood
of the disk |z − z0| ≤ r, applying Theorem 12 to f − a we obtain:

Proposition 4. If f(z) ̸= a on the circle |z − z0| = r then

(1.28)
1

2πi

∫
|z−z0|=r

f ′(z)

f(z)− a
dz = #{z : f(z) = a, |z − z0| < r},

where # means each root of f(z) = a is counted as many times as the order of f(z)−a indicates.

Remark: Denote the right hand side of (1.28) by N(a), we know that N(a) is an integer valued
holomorphic function on C \ Γ, where Γ is the image of the circle |z − z0| = r under f . In
particular, N(a) is locally a constant. The following theorem on the local correspondence is an
immediate consequence of this result.

Theorem 14 (Page 131, Theorem 19). Support that f is holomorphic near z0, f(z0) = w0, and
that f(z)− w0 has a zero of order n at z0. If ε > 0 is sufficiently small then

n = #{z : f(z) = a, |z − z0| < ε},

for all a in some neighborhood of w0, moreover, if ε is sufficiently small, then the above equality
is also true without counting multiplicity.

Proof. Since the zero of f(z)− w0 is isolated, it suffices to choose ε so that f(z) is defined and
holomorphic on the disk |z − z0| ≤ ε and so that z0 is the only zero of f(z) − w0 in this disk.
For the final statement, it suffices to take ε so that

f ′(z) ̸= 0 for 0 < |z − z0| < ε,

then all zeros of f(z)− a are of order one for a in a small punctured neighborhood of w0. □

Remark: By the above theorem, if z0 is a finite order zero of f(z)−w0 then the f image of every
sufficiently small disk |z − z0| < ε contains a neighborhood of w0. Hence we have

Corollary 4 (Page 132, Corollary 1). A non-constant holomorphic function maps open sets onto
open sets,

Notice that the followings are equivalent in Theorem 14:

(1) n = 1;

(2) f ′(z0) ̸= 0;

(3) f is one to one near z0.
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Corollary 5 (Page 132, Corollary 2). If f is holomorphic near z0 then f ′(z0) ̸= 0 if and only if
f maps a neighborhood of z0 one to one onto a neighborhood of f(z0). The inverse of a one to
one holomorphic mapping is also one to one holomorphic. (30th Jan)

Remark: In fact, there is a very precise formula for the inverse of a one to one holomorphic
mapping. To find that formula we need to generalize (1.28) to

zf ′(z)

f(z)− a
,

which has residue z(a)Ordz(a)(f − a) at a zero z(a) of f(z)− a. If f is one to one then

z(a)Ordz(a)(f − a) = z(a) = f−1(a),

which proves the following theorem.

Theorem 15. Assume that f is one to one holomorphic near |z − z0| ≤ r, then

(1.29) f−1(w) =
1

2πi

∫
|z−z0|=r

zf ′(z)

f(z)− w
dz

holds true for w in a neighborhood of f(z0).

To count the number of zeros for a general holomorphic function, the following Rouché’s
theorem (see the corollary in page 153 of the Ahlfors book for generalizations) is often useful.

Theorem 16 (Rouché’s theorem). Let f, g be holomorphic near |z − z0| ≤ r. Assume that

|f − g| < |f | on |z − z0| = r,

then f, g have the same number (counting multiplicity) of zeros in the open disk |z − z0| < r.

Proof. Notice that F := g/f satisfies

|1− F | < 1

on the circle |z − z0| = r. Denote the F image of the circle |z − z0| = r by Γ. We know that
Γ is a smooth closed curve in the disk |w − 1| < 1. Thus Theorem 4 gives (note that 1/w is
holomorphic in the disk |w − 1| < 1 and the disk is always simply connected)∫

Γ

1

w
dw = 0.

Replace w by F (z), we get ∫
|z−z0|=r

F ′(z)

F (z)
dz = 0,

thus by Theorem 12, F has the same number (counting multiplicity) of zeros and poles in the
open disk |z − z0| < r. Hence the theorem follows. □
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2. CONFORMAL MAPPING AND THE RIEMANN MAPPING THEOREM

2.1. The maximum principle, Schwarz Lemma and conformal mapping.
Theorem 17 (The maximum principle). If f is holomorphic and non-constant in a domain Ω ⊂
C, then its absolute value |f(z)| has no maximum in Ω.

Proof. Use the Cauchy integral formula to prove the submean inequality for |f |, which implies
that the set {|f | = sup |f |} is open (and closed), thus it is either empty or equal to Ω. This is the
second proof given by Ahlfors, page 134-135 (another proof is to use Corollary 4, try!). □

A very useful corollary of the maximum principle is the following:
Theorem 18 (Lemma of Schwarz). If f is holomorphic for |z| < 1 and satisfies the conditions
|f(z)| ≤ 1, f(0) = 0, then |f(z)| ≤ |z| and |f ′(0)| ≤ 1. If |f(z)| = |z| for some z ̸= 0, or if
|f ′(0)| = 1, then f(z) = cz with a constant c of absolute value 1.

Proof. It suffices to apply the maximum principle to f(rz)/z with r < 1 tends to 1, which
implies that |f(z)/z| ≤ 1. Thus |f(z)| ≤ |z| and |f ′(0)| ≤ 1. To prove the second part, it
suffices to apply the maximum principle to

g(z) :=

{
f ′(0) z = 0

f(z)/z 0 < |z| < 1.

□

Exercise 1: This is for the applications of the Schwarz lemma (see [A1, Chapter 1] for more
related results).

(1) Fix positive constants M,R and |w0| < M, |z0| < R. Verify that

S(w) =
M(w − w0)

M2 − w0w

maps |w| < M one to one onto |S(w)| < 1 and

T (z) =
R(z − z0)

R2 − z0z

maps |z| < R one to one onto |T (z)| < 1.
Solution: Note that if |z| = R then

|T (z)| =
∣∣R(z − z0)

zz̄ − z0z

∣∣ = 1.

Thus the maximum principle implies that |T (z)| < 1 for |z| < R. The existence of T−1 in (2)
implies that T is one to one onto |T (z)| < 1.

(2) Show that the inverse of T is given by

T−1(ζ) =
R(Rζ + z0)

R + z0ζ
.
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Solution: One may directly verify that

R(z − z0)

R2 − z0z
= ζ

is equivalent to

z =
R(Rζ + z0)

R + z0ζ
.

(3) Assume that f is holomorphic for |z| < R and satisfies the conditions |f(z)| ≤ M and
f(z0) = w0. Apply the Schwarz lemma to S ◦ f ◦ T−1 and prove that

(2.1)
∣∣M(f(z)− f(z0))

M2 − f(z0)f(z)

∣∣ ≤ ∣∣R(z − z0)

R2 − z0z

∣∣, ∀ z, z0 with |z| < R, |z0| < R.

Solution: The Schwarz lemma implies that

|S ◦ f ◦ T−1(ζ)| ≤ |ζ|

for |ζ| < 1. Take ζ = T (z), we obtain

|S(f(z))| ≤ |T (z)|,

which is equivalent to (2.1).

Exercise 2: Use (2.1) to prove that: if f is holomorphic for |z| < R and satisfies |f(z)| ≤ M ,
then

(2.2) |f ′(z0)| ≤
R(M2 − |f(z0)|2)
M(R2 − |z0|2)

, ∀ |z0| < R.

Solution: Note that (2.1) gives∣∣f(z)− f(z0)

z − z0

∣∣ ≤ ∣∣R(M2 − f(z0)f(z))

M(R2 − z0z)

∣∣,
it suffices to take z → z0.

Exercise 3: Show that a one to one holomorphic mapping f of the unit disk onto itself is given
by

(2.3) f(z) = c
z − z0
1− z0z

for some constant c with |c| = 1 and z0 with |z0| < 1.
Solution: Assume that f is one to one holomorphic from the unit disk onto itself and f(z0) = 0.

Put

T (z) =
z − z0
1− z0z

.

Apply the Schwarz lemma to f ◦ T−1 and T−1 ◦ f , we obtain |f | ≤ |T | and |T | ≤ |f |. Thus the
holomorphic function f/T satisfies that |f/T | = 1 and it suffices to use Exercise 3 in page 17.
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2.2. Riemann mapping theorem.
Definition 11. Let f be a holomorphic function on a domain Ω1 ⊂ C. If f(Ω1) ⊂ Ω2 for some
domain Ω2 ⊂ C then we call

f : Ω1 → Ω2

a holomorphic mapping from Ω1 to Ω2. Assume further that f is one to one and f(Ω1) = Ω2,
then we say that f is a biholomorphic mapping (or conformal mapping) from Ω1 to Ω2.

Remark: By Corollary 5, we know that if f is conformal then f−1 is also conformal.

Theorem 19 (Page 230, Theorem 1). Given any simply connected domain Ω ⊂ C which is not
the whole plane, and a point z0 ∈ Ω, there exists a unique conformal mapping f from Ω onto the
unit disk |w| < 1 normalized by the conditions f(z0) = 0 and f ′(z0) > 0.

Proof. 1. Uniqueness. If f1 and f2 are two such mappings, then S := f1f
−1
2 defines a conformal

mapping of |w| < 1 onto itself with S(0) = 0 and S ′(0) > 0. By Exercise 3 above, we know
that S must be the identity mapping. Hence f1 = f2.

The existence part is divided into the following steps.
2. Define f as the solution of an optimization problem. Consider the following

optimization problem : Find f ∈ F with f ′(z0) = B := sup{g′(z0) : g ∈ F},
where

F :=

{
g : g′(z0) > 0, g(z0) = 0, sup

z∈Ω
|g(z)| ≤ 1 and g : Ω → g(Ω) is conformal

}
.

We shall show that the solution f of this optimization problem exists and fits our needs.
3. F is not empty. We note there exists, by assumption, a point a /∈ Ω. Since Ω is simply

connected, h(z) :=
√
z − a is well defined in Ω by Corollary 1. Note that if h(z1) = ±h(z2)

then (h(z1))
2 = z1 − a = z2 − a = (h(z2))

2 gives z1 = z2. Hence we know that h : Ω → h(Ω)
is conformal and

(2.4) h(Ω) ∩ −h(Ω) = ∅.
By Corollary 4, h(Ω) is open thus covers a disk |w − h(z0)| < ρ, thus (2.4) gives

h(Ω) ∩ {w ∈ C : |w + h(z0)| < ρ} = ∅.
In other words, |h(z) + h(z0)| ≥ ρ for all z ∈ Ω. Then one map verify that the function

g0(z) :=
ρ

4

|h′(z0)|
|h(z0)|2

· h(z0)
h′(z0)

· h(z)− h(z0)

h(z) + h(z0)

belongs to F (see page 230 of the Ahlfors book for details). (5th Feb).
4. Solve the optimization problem. A priori, the constant B in our optimization problem could

be infinite. In any case, one may take gn ∈ F with g′n(z0) → B as n → ∞. By Theorem 23
in section 2.5, {gn} contains a subsequence, say {gnk

} which converges locally uniformly to a
holomorphic function f on Ω. It is clear that |f | ≤ 1 on Ω, f(z0) = 0 and by Theorem 21 in
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section 2.4, f ′(z0) = B (this proves that B < ∞). Lemma 1 in section 2.4 further implies that
f : Ω → f(Ω) is conformal. Hence f ∈ F solves the optimization problem.

5. f(Ω) is the unit disk. Otherwise w0 /∈ f(Ω) for some |w0| < 1. Again since Ω is simply
connected,

F (z) =

√
f(z)− w0

1− w0f(z)

is well defined in Ω by Corollary 1. Similar to h, we know that F : Ω → F (Ω) is conformal and
|F | ≤ 1. To normalize it we form

G(z) :=
|F ′(z0)|
F ′(z0)

· F (z)− F (z0)

1− F (z0)F (z)
,

so that G ∈ F . After brief computation,

G′(z0) =
|F ′(z0)|

1− |F (z0)|2
=

1 + |w0|
2
√

|w0|
B > B.

This is a contradiction, so f(Ω) must be the whole unit disk. □

Remark (Page 231, Ahlfors book). At first glance, it may seem like pure luck that our compu-
tation yields G′(z0) > f ′(z0). This is not quite so, for we can write f = T (G) (try to find T
yourself) for some holomorphic function T which maps |w| < 1 into itself with T (0) = 0. The
Schwarz lemma gives |T ′(0)| < 1, thus

|f ′(z0)| = |T ′(0)G′(z0)| < |G′(z0)|.

Another remark is that: log |f | is usually called the Green function of Ω with a pole at z0,
moreover the constant B in the above proof satisfies

B = f ′(z0) = lim
z→z0

elog(|f(z)|)−log(|z−z0|).

The right hand side is known as the logarithmic capacity of C \Ω with respect to z0, which is the
central concept in the potential theory (see [Ra, Chapter 5]; in case Ω is not simply connected,
B is also an important conformal invariant, see [AB]). Hence the above proof of the Riemann
mapping theorem directly leads us to the potential theory. In fact, the Riemann mapping theorem
is equivalent to the existence of Green’s function on Ω (see Theorem 4.4.11 in [Ra] for a nice
Green’s function proof of the Riemann mapping theorem). In the next few sections, we shall give
a complete proof of the results used in Step 4 of the above proof.

2.3. Elementary point set topology.
Definition 12. A topology on a set X is a collection of subsets of X , called open sets and satis-
fying the following conditions:

(1) The empty set and X itself are open;
(2) The intersection of any finite number of open sets is open;
(3) The union of an arbitrary collection of open sets is open.
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The complement of an open set is called a closed set. A subset K of X is said to be compact if
every open covering of K contains a finite sub-covering.
Remark: One may verify that open sets in Definition 1 defines a topology on C. The precise
meaning of compactness of K is: for every family of open sets {Uj}j∈J with

K ⊂
⋃
j∈J

Uj,

there exists a finite subset, say {j1, · · · , jN}, of J such that

K ⊂ Uj1 ∪ · · · ∪ UjN .

The following Heine-Borel Theorem gives a precise description of compact sets in C.
Theorem 20 (See page 60-61, Ahlfors book for the proof). A subset in C is compact if and only
if it is closed and bounded.

We shall mainly use compactness in the following definition:
Definition 13. Let K be a compact subset of an open set Ω in C. We say that functions fn on Ω
converges uniformly on K to a function f if

sup
z∈K

|fn(z)− f(z)| → 0 as n→ ∞.

We say that fn on Ω converges locally uniformly to a function f on Ω if for every z0 ∈ Ω, there
exists an open neighborhood U of z0 such that

sup
z∈U

|fn(z)− f(z)| → 0 as n→ ∞.

The definition of compactness immediately gives:
Proposition 5. A sequence of functions converges locally uniformly if and only if it converges
uniformly on every compact subset.

We shall use this proposition in the next section.

2.4. The Weierstrass theorem and the Hurwitz theorem.
Theorem 21 (The Weierstrass theorem, page 176). Suppose that a sequence of holomorphic
functions fn converges to f locally uniformly on an open set Ω ⊂ C. Then f is holomorphic on
Ω; moreover, f ′

n converges locally uniformly to f ′ on Ω.

Proof. For every a ∈ Ω, take r such that the disk |z − a| ≤ r lies in Ω. By the Cauchy integral
formula, we have

fn(z) =
1

2πi

∫
|ζ−a|=r

fn(ζ) dζ

ζ − z
,

for every z in the open disk |z − a| < r. Since the circle |ζ − a| = r is compact, Proposition 5
implies that fn converges uniformly to f on that circle. Letting n→ ∞ we obtain

f(z) =
1

2πi

∫
|ζ−a|=r

f(ζ) dζ

ζ − z
.
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Since f , as the uniform limit of continuous functions, is always continuous, the above formula
implies that f is holomorphic in the open disk |z − a| < r. Thus f is holomorphic on Ω.
Moreover, starting from

f ′
n(z) =

1

2πi

∫
|ζ−a|=r

fn(ζ) dζ

(ζ − z)2
,

the same reasoning yields

lim
n→∞

f ′
n(z) =

1

2πi

∫
|ζ−a|=r

f(ζ) dζ

(ζ − z)2
= f ′(z)

and one may verify that the convergence is uniform for |z − a| < r/2. □

A non-trivial consequence of the Weierstrass theorem is the following:

Theorem 22 (The Hurwitz theorem, see page 178, Ahlfors book for the proof). If the functions
fn are holomorphic and have no zeros on a domain Ω ⊂ C, and if fn converges to f locally
uniformly on Ω, then f is either identically zero or never equal to zero in Ω.

Proof. If f is not identically zero then the zeros of f are isolated (of course it includes the case
that f has no zeros at all). Hence for every z0 ∈ Ω, there exists r > 0 such that f(z) ̸= 0 on
0 < |z − z0| ≤ r. Since fn converges locally uniformly to f , Theorem 21 and Proposition 5
imply that fn and f ′

n converge uniformly to f and f ′ on the compact set |z−z0| = r, which gives

lim
n→∞

1

2πi

∫
|z−z0|=r

f ′
n(z)

fn(z)
dz = lim

n→∞

1

2πi

∫
|z−z0|=r

f ′(z)

f(z)
dz,

by Theorem 12, the integrals in the left hand side are all zero, thus the right hand side is also
zero, which gives (by Theorem 12) f(z0) ̸= 0. Since z0 is arbitrary, the theorem follows. □

The above theorem can be used to study one to one holomorphic mappings (also called univa-
lent function in page 230 of the Ahlfors book).

Lemma 1 (The Hurwitz Lemma, page 231). If a sequence of one to one holomorphic mappings
fn converges to f locally uniformly on a domain Ω ⊂ C, then f is either a constant or one to
one holomorphic on Ω.

Proof. It suffices to apply the Hurwitz thorem to fn(z) − fn(z0) and the domain Ω \ {z0} (why
it is still a domain, try!) for an arbitrarily fixed point z0 in Ω. (6th Feb) □

2.5. Normal families.
Definition 14 (Definition 2, page 220). A family F of holomorphic functions on a domain Ω ⊂ C
is said to be normal if every sequence {fn} of functions fn ∈ F contains a subsequence which
converges locally uniformly on Ω.

Theorem 23 (Montel’s theorem). If |f | ≤ 1 for all f ∈ F then F is normal.
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Proof. Let {fn} be a sequence in F . Denote by {wm} the sequence of rational points in Ω.
Since {fn(w1)} is a bounded sequence in C, the Bolzano-Weierstrass theorem gives a convergent
subsequence, say {f1n(w1)}. Similarly, {f1n(w2)} has a convergent subsequence, say {f2n(w2)}.
Continue this process, we obtain a double sequence {fkn} with diagonal fnn satisfying

(2.5) lim
n→∞

fnn(wk) exists for all k ≥ 1.

It suffices to check that fnn converges locally uniformly. Write Br(a) := {z ∈ C : |z − a| < r}.
Assume that B2r(a) ⊂ Ω, then the Cauchy integral formula gives (see (1.13))

(2.6)
fnn(z)− fnn(wk)

z − wk

=
1

2πi

∫
|ζ−a|=r

fnn(ζ)

(ζ − wk)(ζ − z)
dζ,

for all z, wk ∈ Br(a). Hence |fnn| < 1 gives

|fnn(z)− fnn(wk)|
|z − wk|

≤ 4

r
, for all w,wk ∈ Br/2(a).

Since Br/2(a) is compact, for every fixed ε > 0, we can find finite points, say z1, · · · , zM , in
Br/2(a) such that

Br/2(a) ⊂ ∪M
j=1Bεr/32(zj).

Fix a rational wj ∈ Bεr/32(zj)∩Br/2(a) for each 1 ≤ j ≤M . Thus for every z ∈ Br/2(a), there
exists 1 ≤ k ≤M such that z ∈ Bεr/32(zk). Let us apply

|fnn(z)− fmm(z)| ≤ |fnn(z)− fnn(wk)|+ |fnn(wk)− fmm(wk)|+ |fmm(wk)− fmm(z)|

≤ 8|z − wk|
r

+ |fnn(wk)− fmm(wk)|(2.7)

≤ 8|z − wk|
r

+ max
1≤j≤M

|fnn(wj)− fmm(wj)|

Note that z, wk ∈ Bεr/32(zk) gives
8|z − wk|

r
≤ ε

2
.

By (2.5), we can further take N such that

max
1≤j≤M

|fnn(wj)− fmm(wj)| ≤
ε

2
, for all n,m ≥ N.

Hence (2.7) gives

sup
|z−a|<r/2

|fnn(z)− fmm(z)| ≤ ε, for all n,m ≥ N.

Thus we know that {fnn} converges locally uniformly on Ω. (12th Feb) □

Remark. See Theorem 15 in page 224 of the Ahlfors book for an equivalent description of
normal families, see also paper 222-224 there for the related Arzela-Ascoli theorem.
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3. HARMONIC FUNCTIONS

3.1. Definitions and basic properties.
Definition 15. A real valued smooth function u on a domain Ω ⊂ C is said to be harmonic if

uzz̄ = 0, uzz̄ :=
∂2u

∂z∂z̄
.

Remark. If f = u+ iv is holomorphic then

0 = fzz̄ = uzz̄ + ivzz̄,

since both uzz̄ and vzz̄ are real, they must vanish. Hence the real and imaginary parts of a holo-
morphic function are always harmonic. Later we shall prove a partial converse (see Theorem 24
below): a harmonic function is locally the real part of a holomorphic function.

Theorem 24. Let u be a harmonic function on a domain Ω ⊂ C. If Ω is simply connected then
u = Re f for some f holomorphic on Ω. Moreover f is unique up to adding a constant.

Proof. Uniqueness: If u = Re f for some holomorphic function f , say f = u+ iv, then

ux + ivx = fx = f ′ =
fy
i
=
uy + ivy

i

gives ux = vy, uy = −vx and

(3.1) df = du+ i dv = du+ i ⋆ du,

where

(3.2) ⋆du := −uy dx+ ux dy

is called the conjugate differential of du. In particular, (3.1) implies that f is unique up to adding
a constant (since df is fully determined by du).

Existence: (3.1) also suggests to define

f(z) := u(z0) +

∫ z

z0

du+ i ⋆ du,

where z0 is a fixed point Ω and the integral is taken over any piecewise smooth curve γz0,z
connecting z0, z in Ω. Note that (try!)

(3.3) du+ i ⋆ du = (ux − i uy) dz and ux − i uy is holomorphic on Ω.

Since Ω is simply connected, by the Cauchy integral theorem — Theorem 4, we know that f(z)
does not depend on the choice of γz0,z. Hence f is a well defined holomorphic function on Ω and

df = du+ i ⋆ du

gives d(Re f) = du, together with Re f(z0) = u(z0) we know that Re f = u on Ω. Hence f fits
our needs. Remark: The simply-connected-ness of Ω is only used in Theorem 4. □
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Remark [page 163, Ahlfors]. If γ is smooth with equation z = z(t), the direction of the tangent
is determined by the angle α = arg z′(t) (i.e. z′(t) = |z′(t)|eiα) and we can write

dx = |dz| cosα, dy = |dz| sinα.
The normal which points to the right of the tangent has the direction β = α − π/2, and thus
cosα = − sin β, sinα = cos β. The expression

(3.4)
∂u

∂n
= ux cos β + uy sin β

is called the right hand normal derivative of u with respect to the curve γ. We obtain

(3.5) ⋆ du := −uy dx+ ux dy = −uy|dz| cosα + ux|dz| sinα =
∂u

∂n
|dz| on γ.

Thus

(3.6)
∫
γ

⋆ du =

∫
γ

∂u

∂n
|dz|,

see page 164 of the Ahlfors book for more explanations.

Theorem 25 (See Ahlfors, page 164, Theorem 19 for another proof). If u1, u2 are harmonic on
a neighborhood of a piecewise smooth bounded domain Ω ⊂ C then

(3.7)
∫
∂Ω

u1 ⋆ du2 − u2 ⋆ du1 = 0.

Proof. The idea is to use Green’s theorem

(3.8)
∫
∂Ω

p dx+ q dy =

∫
Ω

(qx − py) dxdy.

We may directly verify (try!) that qx − py = 0 in case p dx+ q dy = u1 ⋆ du2 − u2 ⋆ du1. □

Remark. For general smooth functions u, v, (3.8) gives (try!)

(3.9)
∫
∂Ω

u1 ⋆ du2 − u2 ⋆ du1 =

∫
Ω

(u1∆u2 − u2∆u1) dxdy,

where the orientation of ∂Ω is chosen so that Ω lies to the left and

∆u := uxx + uyy

is called the Laplacian of u. By (3.5), one may write (3.9) as

(3.10)
∫
∂Ω

(
u1
∂u2
∂n

− u2
∂u1
∂n

)
|dz| =

∫
Ω

(u1∆u2 − u2∆u1) dxdy,

this is known as Green’s formula. (13th Feb)

Exercise 1: (a) With z = x+ iy, show that for smooth function u we have

uzz̄ =
1

4
(uxx + uyy) .

Verify that all linear functions ax+ by are harmonic.
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Solution: Use fz̄ = 1
2
fx +

i
2
fy and fz̄ = 1

2
fx − i

2
fy.

(b) Check that log |z| is harmonic on C \ {0} and find a holomorphic function f on a simply
connected domain Ω ⊂ C \ {0} such that log |z| = Re f .

Solution: One may just take f(z) = log z by Corollary 1. log |z| must be harmonic since it is
locally the real part of the holomorphic function f .

Exercise 2: Use the following steps to show that

(3.11) ⋆du = rur dθ, on |z| = r,

for every smooth function u defined on a neighborhood of the circle |z| = r.

(a) Check that the normal direction n on |z| = r is given by n = (x,y)
r

and |dz| = r dθ, then
show that

∂u

∂n
|dz| = (xux + yuy) dθ.

Solution: Clearly we have n = (x,y)
r

= (cos θ, sin θ) and |dz| = |iz dθ| = r dθ, thus

∂u

∂n
|dz| = (ux cos θ + uy sin θ) r dθ = (xux + yuy) dθ.

(b) Write x = r cos θ, y = r sin θ, verify that

rur = xux + yuy,

then use ⋆du = ∂u
∂n
|dz| and (a) to prove (3.11).

Solution: It suffices to check that xux + yuy = rur, which following directly from

ur = ux
∂x

∂r
+ uy

∂y

∂r
= ux cos θ + uy sin θ = (xux + yuy)/r.

Exercise 3: Apply (3.7) to the case that

Ω = {z ∈ C : r1 < |z| < r2}, u1(z) = log |z|, u2 = u,

where u is a fixed harmonic function on s < |z| < ρ for some ρ > r2, s < r1.
(a) Show that (3.7) gives

(3.12)
∫
|z|=r2

log |z| ⋆ du− u ⋆ d log |z| =
∫
|z|=r1

log |z| ⋆ du− u ⋆ d log |z|.

Solution: By (3.7) and ∂Ω = {|z| = r2} − {|z| = r1}.
(b) Apply (3.11) to log |z|, show that ⋆ d log |z| = dθ on |z| = r, then use (3.12) to prove that

(3.13)
∫
|z|=r

(rur log r − u) dθ does not depend on s < r < ρ.

Solution: ⋆ d log |z| = r(log r)r dθ = dθ, hence (3.12) implies f(r1) = f(r2) for f(r) :=∫
|z|=r

(rur log r − u) dθ, since r1, r2 are arbitrary, we know that f(r) is a constant.
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(c) Apply (3.7) to the case that u1 = 1, u2 = u, then show that

(3.14)
∫
|z|=r

rur dθ does not depend on s < r < ρ.

Solution: Similar to (b).
(d) Use (b) and (c) to prove that: if u is harmonic function on s < |z| < ρ, then there exist

constants α, β such that
1

2π

∫ 2π

0

u(reiθ) dθ = α log r + β

for every s < r < ρ; moreover we have α = 0 if u is harmonic on |z| < ρ.
Solution: By (b) and (c), we know that

c1 =

∫
|z|=r

(rur log r − u) dθ = c2 log r −
∫
|z|=r

u dθ

for some constants c1 and cr. Thus the first statement follows. In case u is on |z| < ρ then we
have

c2 =

∫
|z|=r

rur dθ =

∫
|z|=r

xux + yuy dθ → 0

as r → 0. Thus
∫
|z|=r

u dθ is a constant, another proof is to apply (3.7) to Ω = {|z| < r}.

3.2. The mean-value property. A nice application of Theorem 24 is the following:

Theorem 26 (Mean-value property). Let u be a function harmonic on an open neighborhood of
the disk |z − z0| ≤ r. Then

(3.15) u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ) dθ.

Proof. By Theorem 24, u is the real part of a holomorphic function f , one may check that (try!)
the Cauchy integral formula for f gives (3.15). □

(3.15) leads directly to the maximum principle for harmonic functions.

Theorem 27 (Maximum Principle). Let u be a harmonic function on a domain Ω ⊂ C.
(1) If u attains a maximum on Ω then u is a constant;
(2) Assume that Ω is bounded. If u extends continuously to Ω and u ≤ 0 on ∂Ω, then u ≤ 0

on Ω.

Proof. The proof of (1) is the same as for Theorem 17. For the proof of (2), as Ω is compact and
h is continuous there, h must attain a maximum at some point z0 ∈ Ω, i.e.

h(z0) = sup
Ω

h.



32 XU WANG

If z0 ∈ ∂Ω, then h(z0) ≤ 0 by assumption, and so h ≤ 0 on Ω. If z0 ∈ Ω then (1) implies that h
is a constant on Ω. Since h is continuous on Ω, we know h must be a constant on Ω. Thus in this
case, our assumption also implies h ≤ 0 on Ω. □

Definition 16 (Maximum principle). We say that a function h : Ω → [−∞,∞) satisfies the
maximum principle on a domain Ω ⊂ C if h has no maximum in Ω unless it is a constant (i.e.
either h is a constant or h(z) < supΩ h, for all z ∈ Ω).

Remark. Later we shall study the class of subharmonic functions, which can be defined directly
using the maximum principle (see Definition 18).

3.3. Poisson’s formula. We shall follow page 166-168 of the Ahlfors book [A0]. The maximum
principle, Theorem 27 has the following consequence:

Corollary 6. If u is continuous on a compact set K in C and harmonic on the interior of K, then
it is uniquely determined by its value on ∂K (see the proof below for the precise meaning).

Proof. Let u1 and u2 be two such functions with the same boundary values. Apply Theorem 27
(2) to h = u1 − u2 and Ω = the interior of K, then ∂Ω ⊂ ∂K and we obtain u1 ≤ u2 on K.
Consider h = u2 − u1 instead, we also get u2 ≤ u1. Thus u1 = u2 on K. □

Remark. The above corollary suggests the following:

Problem: Find such u with given boundary values.

In this section, we shall solve the problem in case that K is a disk. (3.15) determines the value
of u at the center of the disk. But this is all we need, for there exists a linear transformation

(3.16) z = S(ζ) =
R(Rζ + a)

R + āζ
, |a| < R,

which maps |ζ| ≤ 1 onto |z| ≤ R and carries the center ζ = 0 to an arbitrary given point a.
Suppose that u(z) is harmonic on a neighborhood of |z| ≤ R, then u(S(ζ)) is harmonic around
|ζ| < 1. By (3.15), we obtain

(3.17) u(a) = u(S(0)) =
1

2π

∫
|ζ|=1

u(S(ζ)) d argζ.

From

ζ =
R(z − a)

R2 − āz
,

we compute

d argζ = −idζ
ζ

= −i
(

1

z − a
+

ā

R2 − āz

)
dz =

(
z

z − a
+

āz

R2 − āz

)
dθ.

Since |ζ| = 1 corresponds to |z| = R, i.e zz̄ = R2, we have
āz

R2 − āz
=

āz

zz̄ − āz
=

ā

z̄ − ā
.
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Thus

(3.18) d argζ =

(
z

z − a
+

ā

z̄ − ā

)
dθ,

hence (3.17) gives:

Theorem 28 (Poisson’s formula). If u(z) is harmonic on |z| < R, continuous for |z| ≤ R. Then

(3.19) u(a) =
1

2π

∫
|z|=R

R2 − |a|2

|z − a|2
u(z) dθ =

1

2π

∫
|z|=R

(
Re

z + a

z − a

)
u(z) dθ,

for all |a| < R. In particular, we have u = Re f , where

(3.20) f(a) :=
1

2π

∫
|z|=R

z + a

z − a
u(z) dθ

is holomorphic on |a| < R.

Proof. Replacing u by u(rz) if necessary, it suffices to prove the case that u is harmonic on a
neighborhood of |z| ≤ R. Now (3.17) applies, by (3.18), we know that (3.19) follows from

(3.21)
z

z − a
+

ā

z̄ − ā
=
R2 − |a|2

|z − a|2
= Re

z + a

z − a
.

(3.20) follows from dθ = dz
iz

on |z| = R. □

Remark. In case u = 1, (3.19) gives

(3.22) 1 =
1

2π

∫
|z|=R

R2 − |a|2

|z − a|2
dθ,

hence 1
2π

R2−|a|2
|z−a|2 dθ defines a probability measure on the circle |z| = R (19th Feb).

Exercise 1: Let Ω be a smoothly bounded domain in C. Assume that z0 ∈ Ω and there exist a
smooth function G on a neighborhood of Ω̄\{z0} such that G = 0 on ∂Ω and G(z)− log |z−z0|
extends to a harmonic function in z ∈ Ω. Apply Green’s formula (3.10) to

Ωε := Ω \ {|z − z0| ≤ ε},
u1 = G, u2 = u and let ε→ 0. Show that

(3.23) u(z0) =
1

2π

∫
Ω

G∆u dxdy +
1

2π

∫
∂Ω

u
∂G

∂n
|dz|,

for every function u smooth on a neighborhood of Ω̄.

Exercise 2: Apply Exercise 1 to Ω = {|z − z0| < r} and G = log |(z − z0)/r|, show that
(3.23) implies Theorem 26.

Exercise 3: Apply Exercise 1 to Ω = {|z| < R} and

G(z) = log
∣∣R(z − a)

R2 − āz

∣∣,
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show that (3.23) implies Theorem 28.

The solution is here:

3.4. Schwarz’s theorem. Theorem 28 serves to express a given function through its values on
a circle. But the right hand side of (3.19) has a meaning as soon as u is defined on |z| = R,
provided it is sufficiently regular, for instance piecewise continuous. The questions is, does it
have the boundary values u(z) on |z| = R?
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There is reason to clarify the notations. Choosing R = 1, we shall introduce the following:
Definition 17. Let v be a piecewise continuous function on ∂D, where D := {|z − z0| < r}. We
call

(3.24) Pv(z) :=
1

2π

∫ 2π

0

Re
eiθ + z−z0

r

eiθ − z−z0
r

v(z0 + reiθ) dθ

the Poisson integral of v with respect to the disk D.
Remark. Pv is linear in v:

Pau+bv = aPu + bPv.

Moreover, u ≥ 0 implies Pu(z) ≥ 0; because of this, we call Pu a positive linear functional. We
deduce from (3.22) that Pc = c for constant c. From this property, we know that any inequality
m ≤ u ≤ M implies m ≤ Pu ≤ M . The question of boundary values is settled by the following
fundamental theorem that was first proved by H. A. Schwarz.
Theorem 29 (Schwarz’s theorem). The function Pv is harmonic on D and satisfies

(3.25) lim
z→ζ

Pv(z) = v(ζ)

provided that v is continuous at ζ ∈ ∂D.

Proof. Note that Pv is the real part of a holomorphic function, we know that Pv is harmonic on
D. In proving (3.25) we may assume that v(ζ) = 0, for if this is not the case we only need to
replace v by v− v(ζ). By a change of variable, one may assume that z0 = 0 and r = 1 so that D
is the unit disk. Write ζ = eiθ0 , we have

Pv(z) =
1

2π

∫
|θ−θ0|<ε

Re
eiθ + z

eiθ − z
v(eiθ) dθ +

1

2π

∫
|θ−θ0|≥ε

Re
eiθ + z

eiθ − z
v(eiθ) dθ

By (3.22), the first integral is no bigger than sup|θ−θ0|<ε v(e
iθ) which tends to v(eiθ0) = v(ζ) = 0

as v is assumed to be continuous at ζ . For the second integral, recall that

Re
eiθ + z

eiθ − z
=

1− |z|2

|eiθ − z|2
→ 0 uniformly for all |θ − θ0| > ε as z → eiθ0 ,

(note that |z| → 1 and |eiθ − z| → |eiθ − eθ0| > C > 0 as |θ − θ0| > ε), so the second integral
also tends to zero as z → eiθ0 . It follows that Pv(z) → 0 = v(ζ) as z → ζ = eiθ0 . □

3.5. Functions with the mean value property. A nice application of Schwarz’s theorem is the
following:
Theorem 30 (Ahlfors, page 242). A continuous function f on a domain U ⊂ C is harmonic if
and only if it satisfies the mean value property

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ) dθ

for all disk |z − z0| ≤ r contained in Ω.
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Proof. It suffices to show that u is harmonic on all disk D with D̄ ⊂ Ω. Denote by v the
restriction of u to ∂D. By Theorem 29, we know that Pv is harmonic on D, continuous on D̄
and Pv = v = u on ∂D. In particular, we know that Pv satisfies the mean value property for all
disks contained in D. Thus Pv − u satisfies the mean value property for all disks contained in D
by our assumption, hence we know that the maximum principle applies to Pv − u and u − Pv,
which gives that Pv = u on D. Thus u is harmonic on D. □

3.6. Harnack’s principle. Another application of the Poisson formula is the following Har-
nack’s inequality for positive harmonic functions.

Theorem 31 (Harnack’s inequality). If u is non-negative harmonic on the disk |z| < ρ then

(3.26)
ρ− r

ρ+ r
u(0) ≤ u(z) ≤ ρ+ r

ρ− r
u(0)

for all z with |z| = r < ρ.

Proof. Choose s with r < s < ρ. By the Poisson formula (3.19), we have

u(z) =
1

2π

∫ 2π

0

s2 − r2

|seiθ − z|2
u(seiθ) dθ.

Note that, s− r ≤ |seiθ − z| ≤ s+ r when |z| = r, hence

s− r

s+ r
=

s2 − r2

(s+ r)2
≤ s2 − r2

|seiθ − z|2
≤ s2 − r2

(s− r)2
=
s+ r

s− r

gives
s− r

s+ r
· 1

2π

∫ 2π

0

u(seiθ) dθ ≤ h(reiθ) ≤ s+ r

s− r
· 1

2π

∫ 2π

0

u(seiθ) dθ.

By the mean value property, we have 1
2π

∫ 2π

0
u(seiθ) dθ = u(0). Letting s→ ρ, we know that the

above inequality gives (3.26). □

One crucial application of the Harnack inequality is the following Harnack’s principle.

Theorem 32 (Harnack’s principle). Let u1 ≤ u2 ≤ · · · be harmonic functions on a domain
Ω ⊂ C. Then either un → ∞ locally uniformly or un → u harmonic on Ω locally uniformly.

Proof. Since Ω is connected, it suffices to show that the sets on which limun(z) is, respectively,
finite or infinite are both open. In fact, if un(z0) → ∞ as n→ ∞ for some z0 ∈ Ω, then one may
apply the left hand inequality (3.26) to un − um, n ≥ m on the disc |z − z0| < ρ contained in Ω:

un(z0)− um(z0)

3
=
ρ− ρ

2

ρ+ ρ
2

(un(z0)− um(z0)) ≤ un(z)− um(z), for all |z − z0| ≤
ρ

2
.

It follows that un(z) → ∞ uniformly on |z − z0| ≤ ρ/2. Similarly, if if limun(z0) is finite, then
the right hand inequality (3.26) gives, for n ≥ m

0 ≤ un(z)− um(z) ≤ 3(un(z0)− um(z0)), for all |z − z0| ≤
ρ

2
,
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which implies that un converges uniformly on |z − z0| ≤ ρ/2. Thus the limit function, say u,
is also continuous and satisfies the mean value property, hence u is harmonic by Theorem 30.
(20th Feb) □

4. THE DIRICHLET PROBLEM

The Dirichlet problem: Find a harmonic function with given boundary values. In this section,
we shall use the Perron family of subharmonic functions to solve the Dirichlet problem and use
the reflection principle to show that the solution is harmonic near the boundary if all given data
are real analytic.

4.1. Subharmonic functions.
Definition 18. Let v be a continuous function on a domain Ω ⊂ C. v is said to be subharmonicif
for every z0 ∈ Ω, there exists r0 > 0 with |z − z0| < r0 contained in Ω such that the following

(4.1) submean inequality: v(z0) ≤
1

2π

∫ 2π

0

v(z0 + reiθ) dθ

holds for every 0 < r < r0.

Theorem 33 (Maximum principle). Let v be subharmonic on a bounded domain Ω ⊂ C. If

lim sup
Ω∋z→ζ

v(z) ≤ 0 for all ζ ∈ ∂Ω,

then v ≤ 0 on Ω.

Proof. Since v is bounded near the boundary, we know that

M := sup
Ω
v

is bounded. The submean inequality implies that {v = M} is both closed and open in Ω, hence
it is either empty or equal to Ω. If M > 0 then our assumption implies that v(z0) =M for some
z0 ∈ Ω, hence {v =M} = Ω and M ≤ 0, we get a contradiction. □

Proposition 6. If v1, v2 are subharmonic, then

c1v1 + c2v2, max{v1, v2},

are also subharmonic, where c1 ≥ 0, c2 ≥ 0 are constants.

Proposition 7 (page 247, Ahlfors). Let v be a subharmonic function on a domain Ω ⊂ C. Let D
be an open disk with D ⊂ Ω. Then there exists a unique subharmonic function vD on Ω such that

(4.2) vD is harmonic on D and vD = v on Ω \D.

(We call vD the Poisson Modification of v on D).
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Proof. By Schwarz’s theorem, there is an unique continuous function, say Pv, on D̄ such that
Pv = v on ∂D and Pv is harmonic function on D. Hence it suffices to check that

(4.3) vD =

{
Pv on D
v outside D

is subharmonic. Note that v − vD = 0 on ∂D, Theorem 33 implies that v ≤ vD on D. Hence
v ≤ vD on Ω. Now we have

vD(z0) = v(z0) ≤
1

2π

∫ 2π

0

v(z0 + reiθ) dθ ≤ 1

2π

∫ 2π

0

vD(z0 + reiθ) dθ

for every z0 ∈ ∂D and small r > 0. Since vD obviously satisfies the submean inequality for
small discs outside ∂D, we know that vD is subharmonic everywhere on Ω. □

Remark: Assume that D is given by |z − a| < r in the above theorem, then we have

v(a) ≤ vD(a) =
1

2π

∫ 2π

0

vD(a+ reiθ) dθ =
1

2π

∫ 2π

0

v(a+ reiθ) dθ.

Hence we get:

Theorem 34 (Global submean inequality). Let v be subharmonic on a domain Ω ⊂ C. Then

(4.4) v(a) ≤ 1

2π

∫ 2π

0

v(a+ reiθ) dθ.

for every disk |z − a| ≤ r in Ω.

4.1.1. Test Exam 1.

Exercise 1: Compute the following integrals∫
|z|=3

1

z2 − 2z
dz,

∫
|z|=1

(Im z)2 dz,

∫ ∞

−∞

dx

x4 + 1
.

Solution: By the residue theorem, we have∫
|z|=3

1

z2 − 2z
dz = 2πi

(
Res2

1

z2 − 2z
+Res0

1

z2 − 2z

)
= 2πi

(
1

2
− 1

2

)
= 0.

From the definition, we have∫
|z|=1

(Im z)2 dz =

∫
|z|=1

z2 − 2|z|2 + z̄2

−4
dz =

∫
|z|=1

z2 − 2 + z−2

−4
dz = 0.

By the residue theorem, we have∫ ∞

−∞

dx

x4 + 1
= 2πi

(
Reseπi/4

1

z4 + 1
+ Rese3πi/4

1

z4 + 1

)
=

π√
2
.

Exercise 2: Show that

D := {z ∈ C : |z| < 2} \ {z ∈ C : Re z = 0, |Im z| < 1}
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is not simply connected.

Solution: Otherwise, by the Cauchy integral theorem, we should have∫
|z|=3/2

1

z
dz = 0,

but obviously the above integral is equal to 2πi.

Exercise 3: Let D be a bounded domain in C. Let f be a holomorphic function on a neighbor-
hood of D̄. Assume that |f | ≤ 1 on ∂D. Show that

|f ′(z0)| ≤
1

r
,

for every disk |z − z0| ≤ r in D.

Solution: By the maximum principle, we have |f | ≤ 1 on D, thus

|f ′(z0)| =
∣∣ 1

2πi

∫
|z−z0|=r

f(z) dz

(z − z0)2
∣∣ ≤ 1

2π

∫ 2π

0

1

r
dθ =

1

r
.

Exercise 4: Put H = {z ∈ C : Im z > 0}. Show that

f(z) =
i(z − i)

z + i

defines a conformal mapping from H to the unit disk with f(i) = 0 and f ′(i) > 0. Prove further
that f is the unique conformal mapping from H to the unit disk with f(i) = 0 and f ′(i) > 0.

Solution: One may verify that the given holomorphic mapping f is one to one and surjective
(try to add details yourself!) with f(i) = 0 and f ′(i) = 1

2
> 0. The second part follows from the

uniqueness part of the Riemann mapping theorem. In fact, if g is another function satisfies these
properties, then

f ◦ g−1, g ◦ f−1

would be holomorphic mappings from the unit disk to itself, which send the origin back to itself,
thus the Schwarz lemma gives

|f ◦ g−1(z)| ≤ |z|, |g ◦ f−1(w)| ≤ |w|.
Thus we have |f | = |g|. Hence the maximum principle implies that f/g is a constant, i.e. f = cg
for some constant c with |c| = 1, thus f ′(0), g′(0) > 0 gives c = 1.

Exercise 5: Show that log |100 + z + z7| is harmonic on a neighborhood of |z| ≤ 1 and then
compute

1

2π

∫ 2π

0

log |100 + eiθ + e7iθ| dθ.

Solution: Note that 100+z+z7 has no zero on a neighborhood of |z| ≤ 1, thus log |100+z+z7|
is harmonic there. By the mean value property, we have

1

2π

∫ 2π

0

log |100 + eiθ + e7iθ| dθ = log 100.
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Exercise 6: Put H = {z ∈ C : Im z > 0}. Let f be a bounded holomorphic function on a
neighborhood of H. Use the Cauchy integral formula to show that

f(x+ iy) =
1

π

∫ ∞

−∞

yf(ξ) dξ

(ξ − x)2 + y2

for all x+ iy ∈ H.

Solution: By the Residue theorem, we have∫ ∞

−∞

f(ξ) dξ

(ξ − x)2 + y2
= 2πiResx+iy

f(z)

(z − x− iy)(z − x+ iy)
=
πf(x+ iy)

y
,

which gives our formula.

Exercise 7: Put H = {z ∈ C : Im z > 0}. Let v be a bounded continuous function on ∂H.
Show that

Pv(x+ iy) :=
1

π

∫ ∞

−∞

yv(ξ) dξ

(ξ − x)2 + y2

defines a harmonic function in x+ iy ∈ H and

lim
x→x0,y→0

Pv(x+ iy) = v(x0)

for all x0 ∈ R.

Solution: By the Harnack principle (replace v by v + C, it suffices to assume that v > 0, then
{PN

v } is an increasing family), it suffices to verify that for each N > 0,

PN
v (x+ iy) :=

1

π

∫ N

−N

yv(ξ) dξ

(ξ − x)2 + y2

is harmonic. Thus, it is enough to show for each ξ, y
(ξ−x)2+y2

is harmonic in z = x + iy. Note
that

y

(ξ − x)2 + y2
= Im

ξ − x+ iy

(ξ − x+ iy)(ξ − x− iy)
= Im

1

ξ − z

is the imaginary part of a holomorphic function, thus it must be harmonic. To prove the second
part, by Exercise 6, we have Pc = c for constant c, thus

Pv(x+ iy)− v(x0) = Pv(x+iy)−v(x0) =
1

π

∫ ∞

−∞

y(v(ξ)− v(x0)) dξ

(ξ − x)2 + y2
.

For each ε > 0, let us choose δε > 0 such that

sup
|ξ−x0|<δε

|v(ξ)− v(x0)| < ε.

Take M = sup |2v|, we know that∣∣ ∫ ∞

−∞

y(v(ξ)− v(x0)) dξ

(ξ − x)2 + y2
∣∣ ≤ ∫

|ξ−x0|<δε

εy dξ

(ξ − x)2 + y2
+

∫
|ξ−x0|≥δε

My dξ

(ξ − x)2 + y2
.
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By Exercise 6, we have∫
|ξ−x0|<δε

εy dξ

(ξ − x)2 + y2
≤

∫
R

εy dξ

(ξ − x)2 + y2
= πε.

By a change of variable ξ = x+ ty, we also have∫
|ξ−x0|≥δε

My dξ

(ξ − x)2 + y2
=

∫
|x−x0+ty|≥δε

M dt

t2 + 1
≤

∫
|t|≥ δε−(x−x0)

y

M dt

t2 + 1
→ 0

as x→ x0 and y → 0. Hence

lim sup
x→x0,y→0

|Pv(x+ iy)− v(x0)| ≤
πε

π
+ 0 = ε

for every ε > 0. Letting ε→ 0, the proof is complete.

Exercise 8 (Extra): With the notations in Exercise 7, let v be a harmonic function on H.
Assume that v is continuous on H. Show that if v is bounded then

(⋆) v(x+ iy) =
1

π

∫ ∞

−∞

yv(ξ) dξ

(ξ − x)2 + y2

for all x+ iy ∈ H and find a unbounded v such that (⋆) does not hold. Hint: apply the maximum
principle to v − Pv − εIm (

√
iz) and let ε→ 0.

Solution: An example of such unbounded harmonic v is v(x+ iy) = y. Consider

DR := {|z| < R, Im z > 0}.

By Exercise 7, we know that for each ε > 0, v − Pv − εIm (
√
iz) ≤ 0 on ∂DR for all large

R, thus the maximum principle implies that v − Pv − εIm (
√
iz) ≤ 0 on DR for all large R.

Hence v − Pv − εIm (
√
iz) ≤ 0 on H for all ε > 0. Letting ε → 0, we get v ≤ Pv. Consider

Pv − v − εIm (
√
iz) instead, we also get Pv ≤ v. Thus v = Pv.

4.2. Solution of the Dirichlet problem.
Definition 19 (Dirichlet problem). Let Ω be a bounded domain in C. We say that the Dirichlet
problem is solvable on Ω if every continuous function on ∂Ω extends to a continuous function on
Ω̄ that is harmonic on Ω.

Definition 20 (Perron envelope). Let Ω be a bounded domain in C and let ϕ be a continuous
function on ∂Ω. We call

uϕ := sup{v : v is subharmonic on Ω with v∗ ≤ ϕ on ∂Ω}

the Perron envelope of ϕ on Ω, where v∗ is the function on the closure Ω defined by

v∗(ζ) = lim sup
Ω∋z→ζ

v(z), ζ ∈ Ω.

Theorem 35. uϕ is harmonic on Ω.
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Proof. Step 1: uϕ is bounded. Denoe by Bϕ the collection of all subharmonic v with v∗ ≤ ϕ on
∂Ω. Since the constant function v = m := min∂Ω ϕ lies in Bϕ we know that uϕ ≥ m. On the
other hand, Theorem 33 gives

v ≤M := max
∂Ω

ϕ

on Ω for all v ∈ Bϕ. Hence we know that m ≤ uϕ ≤M is bounded.

Step 2: Use the Poisson modification and the Harnack principle. Consider an open disk D
with D̄ ⊂ Ω. Fix z0 ∈ D. Then one may take a sequence of function vn ∈ Bϕ such that

lim
n→∞

vn(z0) = uϕ(z0).

Set
V n = max{v1, v2, · · · , vn}.

then V n form a non-decreasing sequence in Bϕ. By Proposition 7, we know that the Poisson
modifications V n

D also lie in Bϕ and form a non-decreasing sequence. Note that

vn(z0) ≤ V n(z0) ≤ V n
D(z0) ≤ uϕ(z0)

implies that limn→∞ V n
D(z0) = uϕ(z0). Since uϕ(z0) is finite (by Step 1), the Harnack principle

implies that V n
D converges to a harmonic functionU onD satisfyingU ≤ uϕ andU(z0) = uϕ(z0).

Step 3: U = uϕ on D. Let us do Step 2 for another point z1 ∈ Ω and select wn ∈ Bϕ with
limn→∞wn(z1) = uϕ(z1). But this time, we set

W n := max{w1, v1, · · · , wn, vn}.
Then W n

D converge to U1, harmonic on D, with

U ≤ U1 ≤ uϕ, U1(z1) = uϕ(z1).

Hence we know that U − U1 has the maximum zero at z0. Therefore U = U1 on D by the
maximum principle. Thus uϕ(z1) = U(z1) for arbitrary z1 ∈ D. It follow that uϕ = U on D and
uϕ is harmonic on any disk D and, consequently, on all of Ω. (26th Feb) □

Definition 21. Let Ω be a bounded domain in C and let ζ0 ∈ ∂Ω. A barrier at ζ0 is a continuous
function ω on Ω, harmonic on Ω, such that

ω(ζ0) = 0 and ω > 0 on Ω \ {ζ0}.
Ω is said to be regular if every boundary point of Ω possesses a barrier.

Theorem 36 (See Ahlfors, page 250). Let Ω be a bounded domain in C. The Dirichlet problem
is solvable for Ω ⇐⇒ Ω is regular.

Proof. Proof of ⇒. If the Dirichlet problem is solvable for Ω then for every ζ0 ∈ ∂Ω, the function
ϕ defined by

ϕ(ζ) := |ζ − ζ0|2, ζ ∈ ∂Ω,

extends to a continuous function, say ω on Ω̄, harmonic on Ω. The maximum principle, Theorem
27, for −ω implies that ω is positive on Ω. Thus ω is a barrier at ζ0. Since ζ0 is arbitrary, we
know that Ω is regular.
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Proof of ⇐. Assume that Ω is regular, it suffices to show that for every continuous function ϕ
on ∂Ω, the Perron envelope uϕ satisfies that

(4.5) lim
z→ζ0

uϕ(z) = ϕ(ζ0),

for every ζ0 ∈ ∂Ω. Since Ω is bounded, we know that ϕ is bounded, so we can take M > 0 such
that |ϕ| ≤M on ∂Ω. For every ε > 0, there exists a small disk D around ζ0 such that

|ϕ(ζ)− ϕ(ζ0)| < ε,

for ζ ∈ D ∩ Ω̄. Let ω be a barrier at ζ0, we have

ω0 := inf
Ω̄\D

ω > 0.

Consider

W (z) := ϕ(ζ0) + ε+
ω(z)

ω0

(M − ϕ(ζ0)).

For ζ ∈ D ∩ ∂Ω, we have W (ζ) ≥ ϕ(ζ0) + ε > ϕ(ζ); for ζ ∈ ∂Ω \D we obtain

W (ζ) ≥ ϕ(ζ0) + ε+M − ϕ(ζ0) =M + ε > ϕ(ζ).

By the maximum principle any function v ∈ Bϕ must hence satisfy v < W . Hence uϕ ≤ W and
we have

(4.6) lim sup
z→ζ0

uϕ(z) ≤ W (ζ0) = ϕ(ζ0) + ε.

For the lower limit, we consider

V (z) := ϕ(ζ0)− ε− ω(z)

ω0

(M + ϕ(ζ0)).

One may verify that V ∈ Bϕ, hence uϕ ≥ V gives

(4.7) lim inf
z→ζ0

uϕ(z) ≥ V (ζ0) = ϕ(ζ0)− ε.

Since ε is arbitrary, (4.6) and (4.7) together give (4.5). □

It remains to formulate geometry conditions which imply the existence of a barrier. To begin
with the simplest case, suppose that Ω̄ is contained in the half space Im z > 0, except for the
ζ0 = 0 which lies in ∂Ω. Then w(z) := Im z is a barrier at ζ0. More generally, suppose that ζ0
is the end point of a line segment, say [ζ0, ζ1], all of whose point, except ζ0, lie in C \ Ω̄. By a
linear change of coordinate, let us assume that ζ0 = 0, ζ1 = 1, we know that there is a conformal
mapping (see the picture below (should be z

1−z
= ζ))

η(z) :=

√
z

1− z
,
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which maps C \ [0, 1] onto {Im η > 0} \ {i}. Hence

ω(z) := Im η(z) = Im

√
z

1− z

defines a barrier at ζ0. To summarize, we have:

Theorem 37. The Dirichlet problem can be solved for any bounded domain Ω ⊂ C such that
each boundary point is the end point of a line segment whose other points lie in C \ Ω̄. In
particular, any bounded domain with continuous boundary (i.e. the boundary is locally the
graph of a continuous function) is regular.

For simply connected domains, we have the following result (see Theorem 4.2.1 in [Ra] for
the proof).

Theorem 38. Every simply connected bounded domain Ω ⊂ C is regular. (27th Feb)

4.3. The reflection principle. The proof of Theorem 30 implies that (try!)

(⋆) A continue function is harmonic if and only if it satisfies the mean value property locally.

This fact implies the following reflection principle of Schwarz.

Theorem 39 (Reflection principle). Let D := {z ∈ C : |z| < 1} and write

D+ := {z ∈ D : Im z > 0}, σ := {z ∈ D : Im z = 0}.
Suppose that v is continuous on D+ ∪ σ, harmonic on D+ and v = 0 on σ. Then v extends to a
harmonic function (still denoted by v) on D satisfying v(z̄) = −v(z) for z ∈ D.

Proof. One may directly the following continuous function

ṽ(z) :=


v(z) z ∈ D+

0 z ∈ σ

−v(z̄) z̄ ∈ D+

satisfies the mean value property locally, thus (⋆) above implies that ṽ is harmonic. □
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4.4. Use of the reflection principle. The reflection principle can be used to study regularity
property of the solution of the Dirichlet problem:

(4.8) ∆u = 0 on Ω with u|∂Ω = ϕ (u|∂Ω means the restriction of u to ∂Ω).

We say that u is a solution of (4.8), if u is harmonic on Ω, continuous on Ω with u|∂Ω = ϕ.
Theorem 27 implies that the solution, if it exists, must be unique. The following theorem is a
deep result in PDE theory:

Theorem 40 (See Theorem 9.9 in [A]). If Ω is smoothly bounded and ϕ is smooth then the
solution of (4.8) is unique and smooth up to the boundary (i.e. it extends to a smooth function
on a neighborhood of Ω).

We are not able to prove the above result using theories covered in this course. But in case
Ω and ϕ are real analytic, we shall show that the reflection principle gives (in fact, a stronger
version of) the above result.

Definition 22. We say that Ω and ϕ are real analytic if for every ζ ∈ ∂Ω, there exists a conformal
mapping f from D onto an open neighborhood, say Vζ , of ζ such that

f(D+) = Ω ∩ Vζ , f(σ) = ∂Ω ∩ Vζ ,
and ϕ(f) = Reh on σ for some holomorphic function h on D.

Theorem 41. Assume that u is a solution of (4.8). If Ω and ϕ are real analytic then u extends to
a harmonic function on a neighborhood of Ω.

Proof. By Definition 22, we know that ϕ(f) = Reh, hence the harmonic function u(f) − Reh
on D+ vanishes on σ. By Theorem 39, u(f)− Reh extends to a harmonic function on D. Thus
u extends to a harmonic function on Vζ . Since harmonic functions are real analytic, we know
that the extensions to overlapping Vζ , ζ ∈ ∂Ω, must coincide and define a harmonic function on
a neighborhood of Ω. □

Exercise 1: Show that the punctured disk 0 < |z| < 1 is not regular. Hint: apply Exercise 3
(d) in page 31.

Solution: If it is regular then it has a barrier, say ω, at 0. We know that ω is harmonic on
0 < |z| < 1, continuous on |z| ≤ 1, ω(0) = 0 and ω(z) > 0 for all 0 < |z| ≤ 1. By Exercise 3
(d) in page 31, we know that

1

2π

∫ 2π

0

ω(reiθ) dθ = α log r + β, ∀ 0 < r < 1.

Since ω is bounded near 0, we know that α = 0 and β = ω(0) (try!). Thus the proof of Theorem
30 implies that ω is harmonic on |z| < 1 (try!). Note that 0 is the maximum point of the harmonic
function −ω, by the maximum principle, we know that ω = 0 everywhere on |z| ≤ 1, which
contradicts with the fact that ω(z) > 0 for 0 < |z| ≤ 1.

Exercise 2: Prove the following result by reading page 173 in [A0].
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Corollary 7. With the notation in Theorem 39. Let v be the imaginary (resp. real) part of an
holomorphic function f on D+. Assume that

lim
z→z0

v(z) = 0 for all z0 ∈ σ.

Then f extends to a holomorphic function (still denoted by f ) on D satisfying f(z) = f(z̄) (resp.
f(z) = −f(z̄)) for z ∈ D.

Proof. We only prove the v = Im f case and leave the v = Re f case to the readers. By the
reflection principle, we know that v extends to a harmonic function ṽ such that ṽ(z̄) = −ṽ(z)
for z ∈ D. Since D is simply connected, we know that ṽ = Im f̃ for some holomorphic function
f̃ on D. Now f̃ and f has the same imaginary part, hence we know that (try!) f̃ − f is equal
to a real constant, say c on D+. Hence F := f̃ − c is a holomorphic extension of f . Since
ṽ(z̄) = −ṽ(z), we know that the holomorphic function G(z) := F (z̄) has the same imaginary
part as F and they are equal on σ, thus F (z) = G(z) = F (z̄). □

Exercise 3: Use Corollary 7 to prove the following result (see Theorem 3, 4 in [A0] for related
results).

Theorem 42. Let Ω be a bounded simply connected domain with real analytic boundary in C.
Then the Riemann mapping function f which maps Ω onto the unit disk extends to a holomorphic
function on a neighborhood of Ω.

Proof. Note that |f(z)| → 1 when z → ∂Ω, hence log f , which is well defined on Ω∩Vζ (choose
a smaller Vζ if necessary, one may assume that f has no zero in Ω ∩ Vζ), satisfies that

Re log f(z) = log |f(z)| → 0, as z → ∂Ω ∩ Vζ .
Thus by Corollary 7, log f extends holomorphically to Vζ . Thus f extends to Vζ (hence to Ω). □

5. POTENTIAL THEORY IN THE COMPLEX PLANE

5.1. Green’s functions as envelopes.

5.1.1. Green’s functions for regular bounded domains. Let Ω be a bounded domain in C. Fix
w ∈ Ω, assume that Ω is regular, then by Theorem 36, there exists a

(5.1) harmonic function u(z) on Ω, continuous on Ω̄ and u(ζ) = − log |ζ − w| for z ∈ ∂Ω.

Definition 23 (Definition of Green’s function for regular bounded domains). We call

GΩ(z, w) := u(z) + log |z − w|, z ∈ Ω̄, w ∈ Ω,

the Green function with a pole at w ∈ Ω.

The maximum principle implies the following result:

Proposition 8. Let Ω be a bounded regular domain in C. Then z 7→ GΩ(z, w) is the unique
function on Ω such that GΩ(z, w) = 0 for z ∈ ∂Ω, GΩ(z, w)− log |z −w| (as a function of z) is
harmonic on Ω and continuous on Ω̄.
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5.1.2. Green’s function as an envelope. By the proof of Theorem 36, we know that the function
u in (5.1) satisfies that

u = sup{v : v is subharmonic on Ω with v∗(ζ) ≤ − log |ζ − w| for ζ ∈ ∂Ω}
hence we get the following result.

Proposition 9. Let Ω be a bounded regular domain in C. Then

(5.2) GΩ(·, w) = sup{ψ ≤ 0 : ψ(z)− log |z − w| is subharmonic for z ∈ Ω},
for every fixed w ∈ Ω.

Note that the envelope (5.2) is also well defined (and harmonic on Ω by Theorem 36) for
non-regular Ω. Hence, one can use it to define Green’s function for general (bounded) domains.

Definition 24 (Definition of Green’s function for general domains, see Definition 10.1 in page
141 in [A1] for the background). Let Ω be a domain in C. Fix w ∈ Ω, we call Ω a hyperbolic
domain if there exists ψ ≤ 0 on Ω such that ψ(z) − log |z − w| is subharmonic for z ∈ Ω. If no
such ψ exists, we say that Ω is parabolic. For hyperbolic Ω, we define its Green’s function (with
a pole at w ∈ Ω) as

GΩ(·, w) = sup{ψ ≤ 0 : ψ(z)− log |z − w| is subharmonic for z ∈ Ω}.
In case Ω is parabolic, we define GΩ(·, w) ≡ −∞. (4th Mar)

Remark. The definition of hyperbolicity and parabolicity does not depend on the choice of
w ∈ Ω. In fact, for w1, w2 ∈ Ω, if there exists ψ1 ≤ 0 on Ω such that ψ1(z) − log |z −
w1| is subharmonic for z ∈ Ω. Assume that Then one may check that

C := sup
z∈Ω

{ψ1(z)− log |z − w1|+ log |z − w2|} <∞.

In fact, assume that w2 ̸= w1, then both ψ1(z) − log |z − w1| and log |z − w2| are continuous
(thus bounded) near w1. But outside a small neighborhood of w1, say for |z − w1| ≥ ε, we must
have

ψ1(z)− log |z − w1|+ log |z − w2| ≤ log |z − w2

z − w1

| ≤ |w1 − w2

z − w1

| ≤ |w1 − w2|
ε

.

Thus C must be bounded and it suffices to take

ψ2(z) := ψ1(z)− log |z − w1|+ log |z − w2| − C.

We know that ψ2 ≤ 0 and ψ2(z)− log |z − w2| is subharmonic.

One may easily verify that every bounded domain is hyperbolic. The Exercise 1 in the end
of section 5.3 implies that C is parabolic. We shall show that the Riemann mapping theorem
Theorem (19) implies:

Proposition 10. Let Ω be a simply connected domain in C. Assume that Ω ̸= C, then Ω is
hyperbolic and GΩ(z, w) = log |fw(z)|, where fw is the Riemann mapping from Ω to the unit
disk such that fw(w) = 0 and f ′

w(w) > 0.
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Proof. The existence of fw is just the Riemann mapping theorem. Put

ψ := log |fw(z)|,
we know that ψ < 0 and

ψ(z)− log |z − w| = log
∣∣fw(z)− fw(w)

z − w

∣∣
is harmonic in z ∈ Ω. Thus we know that Ω is hyperbolic and GΩ(z, w) ≥ log |fw(z)|. The fact
that GΩ(z, w) ≤ log |fw(z)| follows from the maximal principle (try!). □

This proposition suggests a Green function proof of the Riemann mapping theorem, see the
proof of Theorem 4.4.11 in [Ra] for details. In case Ω is the unit disk D, we know that (try, use
(2.3))

fw(z) =
z − w

1− w̄z
,

hence we get

(5.3) GD(z, w) = log
∣∣ z − w

1− w̄z

∣∣.
5.2. Poisson kernels and harmonic measures. Assume that Ω has real analytic boundary, then
the reflection principle (see Theorem 41) implies that the Green function GΩ(·, w) extends to a
harmonic function on a neighborhood of Ω̄ \ {w}. Thus similar to the proof of (5.6), Green’s
formula applies and implies the following theorem.

Theorem 43 (See Theorem 4.5.1 in [Ra] for generalizations). Let Ω be a bounded domain in C
with real analytic boundary. Then

(5.4) u(w) =
1

2π

∫
Ω

GΩ(z, w)∆u(z) dxdy +
1

2π

∫
∂Ω

∂GΩ(z, w)

∂nz

u(z) |dz|, w ∈ Ω,

for all function u smooth on a neighborhood of Ω̄, where nz denotes the outward unit normal
vector at z ∈ ∂Ω; in particular, if u is harmonic on Ω then

(5.5) u(w) =
1

2π

∫
∂Ω

∂GΩ(z, w)

∂nz

u(z) |dz|, w ∈ Ω.

Proof. Put Ωε := Ω\{|z−w| ≤ ε}. SinceGΩ(z, w) is harmonic for z ∈ Ωε, the Green’s formula
(3.10) gives

(5.6)
∫
∂Ωε

(
GΩ(z, w)

∂u

∂nz

− u
∂GΩ(z, w)

∂nz

)
|dz| =

∫
Ωε

GΩ(z, w)∆u(z) dxdy,

Since GΩ(z, w) = 0 for z ∈ ∂Ω and ∂Ωε = ∂Ω − {|z − w| = ε}, we have (see the proof of
(3.23) for details)

(5.7) lim
ε→0

∫
∂Ωε

(
GΩ(z, w)

∂u

∂n
− u

∂GΩ(z, w)

∂n

)
|dz| = 2πu(w)−

∫
∂Ω

∂GΩ(z, w)

∂nz

u(z) |dz|.

Hence (5.4) follows by letting ε→ 0. □
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Remark. By the maximum principle, if u ≥ 0 on ∂Ω and harmonic on Ω then u ≥ 0 on Ω, thus
(5.5) implies that p(z, w)|dz|, with

(5.8) p(z, w) :=
1

2π

∂GΩ(z, w)

∂nz

,

defines a probability measure on ∂Ω. Since its integral (5.5) gives the value of harmonic func-
tions, we call p(z, w)|dz| the harmonic measure on ∂Ω with respect to w ∈ Ω.

Definition 25. Let Ω be a bounded domain in C with real analytic boundary. We call p(z, w),
z ∈ ∂Ω, w ∈ Ω, defined in (5.8) the Poisson kernel of Ω. The corresponding probability measure
p(z, w)|dz| is called the harmonic measure on ∂Ω with respect to w ∈ Ω. (5th Mar)

5.3. Equilibrium measure and logarithmic capacity. The complement of 1 ≤ |z| ≤ 2 in C
contains two parts, |z| > 2 and |z| < 1; both are connected open sets, we call them connected
components of C \ {1 ≤ |z| ≤ 2}. In general, let K be a compact set in C, we can write

C \K = U0 ∪ U1 ∪ · · ·
as a disjoint union, each domain Uj is called a connected component. We shall write the unique
unbounded one, say U0, as ΩK . We call ΩK the unbounded connected component of C \K.
Proposition 11. Let K be a compact set in C. Denote by ΩK the unbounded connected compo-
nent of C \K. Assume that ΩK has real analytic boundary. Then there is a unique function GΩK

on ΩK such that
(1) GΩK

≤ 0 on Ω;
(2) GΩK

extends to a harmonic function near ΩK and GΩK
(ζ) = 0 for ζ ∈ ∂ΩK;

(3) GΩK
(z−1)− log |z| extends to a harmonic function near z = 0.

Proof. The uniqueness follows from the maximum principle (try!). To prove the existence, take
z0 ∈ C \ ΩK and consider

D := {0} ∪ {z ∈ C \ {0} : z−1 + z0 ∈ ΩK}.
We know that D is a bounded domain in C with analytic boundary and 0 ∈ D. One may check
that

GΩK
(ξ) := GD

(
1

ξ − z0
, 0

)
satisfies (1), (2) and (3). (11th Mar) □

Definition 26. Let K be a compact set in C. Assume that ΩK has real analytic boundary. Then
we call GΩK

in Proposition 11 the Green function of ΩK with a pole at ∞. The following limit

(5.9) γ := lim
z→0

(
GΩK

(z−1)− log |z|
)

is called the Robin constant of K.

We shall use the following result in the next subsection.
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Lemma 2. Let K be a compact set in C. Assume that ΩK has real analytic boundary. Put

(5.10) p(ζ,∞) :=
1

2π

∂GΩK
(ζ)

∂nζ

,

where nζ denotes the outward unit normal vector at ζ ∈ ∂ΩK . Then

(5.11) dµK(ζ) := p(ζ,∞)|dζ|, ζ ∈ ∂ΩK ,

defines a probability measure µK on K supported on ∂ΩK satisfying

(5.12) pµK
(z) :=

∫
K

log |z − ζ| dµK(ζ) =

{
γ −GΩK

(z) z ∈ ΩK

γ z ∈ C \ ΩK .

Proof. Similar to (5.4), we have

(5.13) u(∞) =
1

2π

∫
ΩK

GΩK
(ζ)∆u(ζ) dxdy +

1

2π

∫
|∂ΩK |

∂GΩK
(ζ)

∂nζ

u(ζ) |dζ|, w ∈ Ω,

where |∂ΩK | denotes the set ∂ΩK with positive orientation (anticlockwise), for all function u
smooth on a neighborhood of Ω̄K such that u(1/z) extends to a smooth function near z = 0, here
u(∞) := limz→0 u(1/z). Thus we know that µK is a probability measure supported on ∂ΩK in
K. Hence it suffices to prove (5.12). Since log |z − ζ| is harmonic outside ζ , we know that

pµK
(z) =

1

2π

∫
∂ΩK

log |z − ζ| ∂GΩK
(ζ)

∂nζ

|dζ|

is harmonic outside ∂ΩK . For fixed z ∈ C \ ΩK , apply (5.13) to

u(ζ) := log |z − ζ|+GΩK
(ζ),

we get
pµK

(z) = u(∞) = γ.

Since ∂ΩK is analytic and GΩK
is harmonic near ∂ΩK , we know that pµK

is continuous near
∂ΩK (see Exercise 4 below), thus pµK

(z) = γ also for z ∈ ∂ΩK . Now it remains to show that
pµK

= γ −GΩK
on ΩK , we already know that they are harmonic on ΩK , equal on ∂ΩK and

lim
z→∞

(pµK
(z)− log |z|) = 0 = lim

z→∞
(γ −GΩK

(z)− log |z|),

so they must equal on ΩK by the maximum principle. □

Definition 27. Let K be a compact set in C. Assume that ΩK has real analytic boundary. Then
we call µK defined in (5.11) the equilibrium measure on K. We also call the function pµK

in
(5.12) the equilibrium potential of K.

Definition 28. The (logarithmic) capacity of a compact set K ⊂ C is defined by

c(K) := inf
n≥1, a1,··· ,an∈C

sup
z∈K

|zn + a1z
n−1 + · · ·+ an|1/n.
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In section 7, we shall follow [A1, section 2.2] to study the extremal properties of µK and prove
that eγ = c(K) (recall that γ denotes the Robin constant of K).

Exercise 1: Show that if S is a finite set (means it has finite elements, can be empty) in C.
Then C \ S is parabolic.

Solution: Otherwise C\S is hyperbolic and we know that there exists a subharmonic function
ψ ≤ 0 on C\S with a simple pole at some w ∈ C\S (here we use Definition 32 for subharmonic
functions, in particular log |z − w| is subharmonic also for z near w). Since ψ ≤ 0, we know
that ψ extends (try!, see the proof of Theorem 3.6.1 in [Ra, page 67]) to a subharmonic function
(still denoted by ψ) on C ∪∞. Then the maximal principle implies that ψ is a constant, which
contradicts to the fact that ψ has a simple pole.

Exercise 2: Compute the Robin constant of the circle |z − a| = r and prove the following
formula

1

2π

∫ 2π

0

log |z − a− reiθ| dθ = max{log r, log |z − a|}

for the equilibrium potential of the circle |z − a| = r.

Solution: Denote by K the circle |z − a| = r, we know that

GΩK
(ζ) = log | r

ζ − a
|.

Hence the Robin constant γ of the circle |z − a| = r is

γ = lim
z→0

{log | r

1/z − a
| − log |z|} = log r.

By Exercise 2 in page 30, the equilibrium measure of |z − a| = r is

dµK =
1

2π

∂GΩK
(ζ)

∂nζ

|dζ| = 1

2π
dθ.

Thus

pµK
(z) =

∫
|w−a|=r

log |z − w| 1

2π
dθ =

1

2π

∫ 2π

0

log |z − a− reiθ| dθ.

Hence (5.12) gives
pµK

(z) = max{log r, log |z − a|}.

Exercise 3: Prove (5.13). Hint: Note that |∂ΩK | = −∂ΩK . Apply Green’s formula to DR :=
ΩK ∩ {|z| < R} and let R → ∞.

Solution: By Green’s formula, we have∫
DR

GΩK
(ζ)∆u(ζ)− u(ζ)∆GΩK

(ζ) dxdy =

∫
∂DR

GΩK
(ζ)

∂u(ζ)

∂nζ

− ∂GΩK
(ζ)

∂nζ

u(ζ) |dζ|

where DR := ΩK ∩ {|z| < R}. Note that ∂DR = {|ζ| = R} ∪ ∂ΩK , hence∫
∂DR

GΩK
(ζ)

∂u(ζ)

∂nζ

|dζ| =
∫
|ζ|=R

GΩK
(ζ)

∂u(ζ)

∂nζ

|dζ| =
∫ 2π

0

GΩK
(Reiθ)Rur(Re

iθ)dθ.
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Recall that g(z) = u(1/z) is smooth near z = 0, hence

g(r−1e−iθ) = u(reiθ)

gives

ur = gx
cos θ

−r2
+ gy

sin θ

r2
.

Thus |ur(Reiθ)| ≤ CR−2 and we have

lim
R→∞

∫
∂DR

GΩK
(ζ)

∂u(ζ)

∂nζ

|dζ| = lim
R→∞

R−1 logR = 0.

Hence Green’s formula reduces to∫
ΩK

GΩK
(ζ)∆u(ζ) dxdy = − lim

R→∞

∫
|z|=R

∂GΩK
(ζ)

∂nζ

u(ζ) |dζ| −
∫
|∂ΩK |

∂GΩK
(ζ)

∂nζ

u(ζ) |dζ|,

where nζ denotes the outer normal vector for DR. It suffices to check

(5.14) − lim
R→∞

∫
|z|=R

∂GΩK
(ζ)

∂nζ

u(ζ) |dζ| = 2πu(∞).

Put
ψ(ζ) = GΩK

(ζ) + log |ζ|,
we know that ψ is smooth at ∞, thus

− lim
R→∞

∫
|z|=R

∂GΩK
(ζ)

∂nζ

u(ζ) |dζ| = lim
R→∞

∫
|z|=R

∂ log |ζ|
∂nζ

u(ζ) |dζ| = lim
R→∞

∫
|z|=R

u(ζ) dθ

gives (5.14).

Exercise 4: Show that PµK
defined in (5.12) is continuous near ∂ΩK . Hint: recall that we

assume that ΩK has analytic boundary. Then it is enough to show that

(5.15) lim
z→0, z∈C

∫ 1

−1

(log |ζ − z|) f(ζ) dζ =
∫ 1

−1

(log |ζ|) f(ζ) dζ

is continuous, where f is a smooth function on R.

Solution: Note that for every small ε > 0, we have

(5.16) lim
z→0, z∈C

∫
ε<|ζ|<1

(log |ζ − z|) f(ζ) dζ =
∫
ε<|ζ|<1

(log |ζ|) f(ζ) dζ.

On the other hand, for C := sup|ζ|<1 |f |, we have

|
∫
|ζ|≤ε

(log |ζ − z|) f(ζ) dζ| ≤ C

∫
|ζ|≤ε

− log(ζ − Re z) dζ ≤ C

∫
|ζ|≤ε+|z|

− log ζ dζ,

which gives

(5.17) lim sup
z→0

|
∫
|ζ|≤ε

(log |ζ − z|) f(ζ) dζ| ≤ C

∫
|ζ|≤ε

− log ζ dζ = 2Cε(1− log ε).

Letting ε→ 0, we know that (5.15) follows from (5.16) and (5.17).
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6. A SHORT COURSE ON BOREL MEASURES

6.1. Riesz representation theorem. We shall mainly follow the Ransford book [Ra] in this part.
Let X be a topological space. A function ϕ : X → R is said to be continuous if

ϕ−1(a, b) := {x ∈ X : a < ϕ(x) < b}
is open for all a, b in R. The support of ϕ is defined as

suppϕ := {x ∈ X : ϕ(x) ̸= 0}.
The space of all continuous functions with compact support in X is denoted by Cc(X). The
fundamental theorem in the Borel measure theory is the following metric space version of the
Riesz representation theorem. Recall that (X, d) is called a metric space if d is a non-negative
function on X ×X such that

d(x, y) = d(y, x), d(x, y) + d(y, z) ≥ d(x, z),

for all x, y, z in X and d(x, y) > 0 for all x ̸= y. A set U in (X, d) is said to be open if for every
x ∈ U we have

Br(x) := {y ∈ X : d(x, y) < r} ⊂ U

for some r > 0. These open sets give a natural topology on X . Thus the notion of compact set is
well defined on (X, d). We say that X has compact exhaustion if

X = ∪n≥1Kn,

where each Kn is compact in X and Kn ⊂ K◦
n+1, where K◦

n+1 denotes the interior of Kn+1 (i.e.
the largest open set in Kn+1). A typical example is C with the euclidean metric. (12th Mar)

Theorem 44. Let (X, d) be a metric space with compact exhaustion. Let

Λ : Cc(X) → R
be an R-linear mapping. If Λ is positive (i.e. Λ(ϕ) ≥ 0 for all ϕ ≥ 0) then there exists a unique
Borel measure µ on X such that µ(K) <∞ for all compact K ⊂ X and

Λ(ϕ) =

∫
X

ϕ dµ, ∀ ϕ ∈ Cc(X).

(notions related to the Borel measure will be given in the proof).

Proof. Notion: We write compact K ≺ ϕ if

ϕ ∈ Cc(X), 0 ≤ ϕ ≤ 1, ϕ = 1 onK;

we write ϕ ≺ U open if

ϕ ∈ Cc(X), 0 ≤ ϕ ≤ 1, suppϕ ⊂ U.

Definition: For U open, we define

µ∗(U) := sup{Λ(ϕ) : ϕ ≺ U}.
For an arbitrary subset E of X , we define

µ∗(E) := inf{µ∗(U) : openU ⊃ E},
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Step 1: Check that µ∗ : 2X → [0,∞] (2X denotes the collection of all subsets ofX) is an outer
measure (see page 213 in [Ra] for details), i.e.

(1) µ∗(∅) = 0; (ϕ ≺ ∅ means ϕ = 0)

(2) µ∗(E1) ≤ µ∗(E2) for all E1 ⊂ E2 ⊂ X; (obvious)

(3) µ∗(∪nEn) ≤
∑

n µ
∗(En) for allEn ⊂ X , n = 1, 2, · · · . Proof: takeUn such that µ∗(En) ≥

µ∗(Un)− 2−nε, observe that µ∗(∪nEn) ≤ µ∗(∪nUn). If ϕ ≺ ∪nUn then compactness of suppϕ
gives ϕ ≺ U1 ∪ · · ·UN for some N and there exists open Vn with compact Vn ⊂ Un such that
ϕ ≺ V1 ∪ · · ·VN (here we use the fact that X has a compact exhaustion). Then

ϕ =
N∑

n=1

ϕn, ϕn(x) =
ϕ(x) d(x, V c

n )

d(x, suppϕ) +
∑N

n=1 d(x, V
c
n )

gives Λ(ϕ) ≤
∑N

n=1 Λ(ϕn) ≤
∑

n µ
∗(Un) ≤

∑
n µ

∗(En) + ε. Thus (3) follows.

Definition: We say that A ⊂ X is µ∗-measurable if

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) for all E ⊂ X,

where Ac denotes the complement of A.

Carathéodory’s Lemma:

(1) The collection, say M, of all µ∗-measurable sets forms a σ-algebra (i.e. ∅ ∈ M; A ∈ M
implies Ac ∈ M and Aj ∈ M, j ≥ 1, implies both ∩∞

j=1Aj ∈ M and ∪∞
j=1Aj ∈ M).

(2) The restriction
µ∗ : M → [0,∞]

of µ∗ to M defines a measure (we call it the generalized Lebesgue measure) on (X,M) (i.e.
µ∗(∅) = 0 and µ∗(∪∞

j=1Aj) =
∑∞

j=1 µ
∗(Aj) for all Aj ∈ M with Aj ∩ Ak = ∅ for j ̸= k).

Proof of Carathéodory’s Lemma. The first two properties in (1) are trivial. For A,B ∈ M and
E ⊂ X , we have µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) since A ∈ M. Now B ∈ M further gives

µ∗(E) = µ∗(E ∩ A ∩B) + µ∗(E ∩ A ∩Bc) + µ∗(E ∩ Ac ∩B) + µ∗(E ∩ Ac ∩Bc).

Now A ∈ M also gives µ∗(E ∩ (A ∩B)c) = µ∗(E ∩ (A ∩B)c ∩A) + µ∗(E ∩ (A ∩B)c ∩Ac),
hence we have

µ∗(E ∩ (A ∩B)c) = µ∗(E ∩ A ∩Bc) + µ∗(E ∩ Ac).

Since B ∈ M, we further have

µ∗(E ∩ Ac) = µ∗(E ∩ Ac ∩B) + µ∗(E ∩ Ac ∩Bc).

Thus we obtain µ∗(E) = µ∗(E ∩A∩B)+µ∗(E ∩ (A∩B)c) and A∩B ∈ M. Hence any finite
union and any finite intersection of measurable sets is measurable. For the remaining part of the
proof, see [LL, Page 29-31]. (18th Mar) □
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Step 2: Check that every open set U ∈ M (see [Ra, Page 214]). Hence the Borel σ-algebra
(i.e. the minimal σ-algebra that contains all open sets) B ⊂ M. We shall denote the restriction
of µ∗ to B by µ

µ : B → [0,∞]

A 7→ µ∗(A).

Thus µ is a Borel measure (i.e. a measure on the Borel σ-algebra).

Step 3: Check that (see [Ra, Page 214 and Lemma A.3.4 in Page 213] for the proof) for every
compact K ⊂ X (thus K ∈ B)

µ(K) = inf{Λ(ϕ) : K ≺ ϕ},
in particular µ(K) <∞.

Definition 29. A function f : X → [−∞,∞] is said to be Borel measurable (or simply, Borel) if

f−1(−∞, a) := {x ∈ X : f(x) < a} ∈ B, ∀ a ∈ R.

One may check that (see Exercise 18 in page 39 of [LL]) if f, g are Borel then af + bg, fg,
f/g are Borel for all a, b ∈ R. Moreover, if fk are Borel then supk≥1 fk, lim infk→∞ fk are Borel.

Example: Simple functions

s :=
N∑
j=1

aj 1Aj
, Aj ∈ B, aj ≥ 0, 1 ≤ j ≤ N,

are Borel, where 1Aj
= 1 on Aj and equals zero elsewhere. We define the integral of s as∫

X

s dµ :=
N∑
j=1

aj µ(Aj) (aj ≥ 0 to make sure that the sum is well defined).

For a general function f with f ≥ 0 on X , for some c ∈ R, we define its integral as

(6.1)
∫
X

f dµ = sup

{∫
X

s dµ : simple s ≤ f

}
.

For a general function f on X , we say that the integral of f is well defined if
∫
X
|f | dµ < ∞, in

which case, we define∫
X

f dµ :=

∫
X

max{f, 0} dµ−
∫
X

max{−f, 0} dµ.

We observe that
∫
X
ϕ dµ is always well defined for ϕ ∈ Cc(X).

Step 4: Check that Λ(ϕ) =
∫
X
ϕ dµ and µ is unique (see [Ra, Page 212, 215]). □

Remark: By [Ra, Lemma A.3.3], we also have

µ(A) = sup{µ(K) : compact K ⊂ A}, ∀ A ∈ B.
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A standard example of Λ is: X = C with

Λ(ϕ) :=

∫
C
ϕ(x+ iy) dxdy,

in this case, M defined in the Carathéodory lemma is usually called the Lebesgue σ-algebra (so
A ∈ M is said to be Lebesgue measurable). Hence µ is the restriction to B of the Lebesgue
measure. A second example is X = C with

Λ(ϕ) :=

∫ 2π

0

ϕ(eiθ) dθ.

In this case, the corresponding Borel measure µ is supported on the unit circle |z| = 1, where
the support of µ is defined by

(6.2) suppµ := ∩{F : F ⊂ X is closed with µ(X \ F ) = 0}.

6.2. Integral of a Borel function with respect to a Borel measure. The integral in (6.1) is not
so easy to compute/use, but it is known (see [LL, Page 32, 33]) that if f ≥ 0 is Borel then (see
[LL, Page 34] for the proof of a stronger version in case the right hand side is finite)

(6.3)
∫
X

f dµ =

∫ ∞

0

µ{f(x) > t} dt.

The right hand side is the Riemann integral of a decreasing (thus continuous outside a countable
set) function on [0,∞).

Theorem 45 (Fatou’s lemma). If fj ≥ 0 are Borel then (see [LL, Page 18] for the proof)

lim inf
j→∞

∫
X

fj dµ ≥
∫
X

lim inf
j→∞

fj dµ.

Definition 30. A complex function f : X → C is said to be Borel if both its real and imaginary
parts are Borel. A complex Borel function f is said to be integrable if∫

X

|f | dµ <∞.

The Lp space, 1 ≤ p <∞, is defined by (see [Ax, Chapter 7])

Lp(X,µ) :=

{
complex Borel f :

∫
X

|f |p dµ <∞
}
/ ∼,

where ∼ means we identify functions which are equal outside a µ-measure zero set.

Remark: It is known that each Lp(X,µ) is a complex Banach space (i.e. complete complex
normed space, see [Ru, page 67] and [LL, page 52]) and Cc(X) is dense in Lp(X,µ) (see [Ru,
Page 69]). People often identify f with its equivalent class in Lp(X,µ). In this way, f = g means
they are equal outside a µ-measure zero set, and fj → f pointwise on X means fj(x) → f(x)
for all x outside a µ-measure zero set. (19th Mar)
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Theorem 46 (Monotone convergence). If fj ∈ L1(X,µ) are real and f1 ≤ f2 ≤ · · · , then

lim
j→∞

∫
X

fj dµ =

∫
X

lim
j→∞

fj dµ,

see [LL, page 17] for the proof.

Theorem 47 (Dominated convergence). If fj ∈ L1(X,µ) pointwise converge to f and there
exists Gj, G ∈ L1(X,µ) with |fj| ≤ Gj for all j and

lim
j→∞

∫
X

|Gj −G| dµ = 0,

then f ∈ L1(X,µ) and

lim
j→∞

∫
X

fj dµ =

∫
X

lim
j→∞

fj dµ,

see [LL, page 19, 20] for the proof.

6.3. Complex Borel measures.
Definition 31. A complex Borel measure is a function

µ : B → C

such that µ(∅) = 0 and
∞∑
j=1

|µ(Aj)| <∞,
∞∑
j=1

µ(Aj) = µ(∪∞
j=1Aj)

for all disjoint set Aj ∈ B.

Remark: If µ is a complex measure, then its variation |µ| defined by

|µ|(A) := sup
∑
j

|µ(Aj)|,

where the supremum runs over all sequences of disjoint Borel setsAj whose union isA, is a Borel
measure. We also know that its total variation ||µ|| := |µ|(X) <∞. We have the following Riesz
Representation theorem for complex Borel measures (see Theorem 6.19 in page 130 in [Ru] for
the statement and the proof, we do not need "regular" because all finite Borel measures on a
metric space is regular, see Theorem A.2.2 in [Ra].)

Theorem 48. Let X be a metric space with compact exhaustion. Let

Λ : Cc(X,C) → C

be a C-linear mapping. If

||Λ|| := sup

{
|Λ(ϕ)| : ϕ ∈ Cc(X,C), sup

X
|ϕ| = 1

}
<∞,
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then there exists a unique complex Borel measure µ on X such that

Λ(ϕ) =

∫
X

ϕ dµ, ∀ ϕ ∈ Cc(X).

Moreover, we have ||µ|| = ||Λ||.

6.4. Fubini theorem. Let X1, X2 be metric spaces with compact exhaustion. Let µj be Borel
measures on Xj such that µj(Kj) < ∞ for every compact Kj ⊂ Xj , j = 1, 2. The Borel σ-
algebra BX1×X2 on X1 ×X2 equals the smallest σ-algebra, say BX1 × BX2 , containing A1 × A2

for all A1 ∈ BX1 and A2 ∈ BX2 . It is known that (see page 11 in [LL] for the uniqueness and
page 23 in [LL] for the existence) there exists a unique measure µ on BX1×X2 such that

µ(A1 × A2) = µ1(A1)× µ2(A2), ∀ A1 ∈ BX1 , A2 ∈ BX2 .

We write µ := µ1 × µ2. We have the following Fubini’s theorem (see [LL, page 25]).

Theorem 49. With the notation above, if f ≥ 0 is Borel on X1 ×X2 then

(6.4)
∫
X1×X2

f d(µ1 × µ2) =

∫
X1

(∫
X2

f dµ2

)
dµ1 =

∫
X2

(∫
X1

f dµ1

)
dµ2.

If f is complex valued then (6.4) holds if one assumes in addition that∫
X1×X2

|f | d(µ1 × µ2) <∞,

(see [LL, page 25] for the proof and generalizations).

Reading task 1: Read [LL, page 29-31] for Carathéodory’s Lemma used in Step 1 of the proof
of the Riesz representation theorem and read page 213-214 in [Ra] to complete the proof in Step
2 and Step 3.

Reading task 2: Read [LL, page 12-19, 32-34] for (6.3), Fatou’s lemma, Monotone conver-
gence theorem and Dominated convergence theorem.

Reading task 3: Read [LL, page 25] for the Fubini theorem.

Reading task 4: Read [Ru, page 130] for Theorem 48.

Exercise 1: Let X be a topological space. A function ϕ : X → [−∞,∞) is said to be upper
semicontinuous (usc) if {x ∈ X : ϕ(z) < c} is open for every c ∈ R.

(a) Assume that ϕ is usc on X . Let K be a compact set. Show that there exists z0 ∈ K such
that

ϕ(z0) = sup
z∈K

ϕ(z).

Solution: Otherwise, put C := supz∈K ϕ(z), we would have ϕ(z) < C for every z ∈ K, thus

K ⊂ ∪n≥1Un, Un := {z ∈ X : ϕ(z) < C − 1/n}.
Since ϕ is usc, we know that each Un is open. Thus the compactness of K implies that there
exists N such that

K ⊂ ∪N≥n≥1Un = UN ,
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which implies C ≤ C − 1/N , a contradiction.
(b) Show that usc functions are Borel measurable.
Solution: Follows from the definition, since every open set is Borel.
(c) Let v be usc on a domain Ω ⊂ C. Let |z − z0| = r be a circle inside Ω. Put

v+ := max{v, 0}, v− := max{−v, 0}.

Use (b) to prove that ∫ 2π

0

v+(z0 + reiθ) dθ <∞.

—in this way, the integral of v over the circle can be defined as∫ 2π

0

v(z0 + reiθ) dθ :=

∫ 2π

0

v+(z0 + reiθ) dθ −
∫ 2π

0

v−(z0 + reiθ) dθ ∈ [−∞,∞).

Solution: One may check that v+ is usc, thus by (b), we know that v+ is Borel measurable,
hence the integral of v+ over the circle |z − z0| = r is well defined. Since the circle is compact,
we know that v+ ≤ C for some C on |z − z0| = r, which gives∫ 2π

0

v+(z0 + reiθ) dθ ≤ 2πC <∞.

Exercise 2: With the definition of usc on Exercise 1.
(a) Assume that v1, v2 are usc, show that c1v1 + c2v2 and max{v1, v2} are usc, where c1, c2 are

positive constants.
Solution: Since c1, c2 > 0, we have (try!)

{c1v1 + c2v2 < a} = ∪b∈R{v1 < b} ∩ {v2 < (a− c1b)/c2}

is open for every a ∈ R, thus c1v1 + c2v2 is usc. Similarly,

{max{v1, v2} < a} = {v1 < a} ∩ {v2 < a}

is also open and we know that max{v1, v2} is usc.
(b) Let Ω be a domain in C. Show that v is usc on Ω if and only if

lim sup
z→z0

v(z) ≤ v(z0)

for every z0 ∈ Ω.
Solution: If v is usc, then for every ε > 0

{v < v(z0) + ε}

is a neighborhood of z0, thus lim supz→z0 v(z) ≤ v(z0) + ε for for every ε > 0. Letting ε → 0,
we obtain lim supz→z0 v(z) ≤ v(z0). On the other hand, assume the condition in (b), we need to
check that

Uc := {v < c}
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is open for every c ∈ R. Assume that z0 ∈ Uc, then we know that v(z0) < c, take ε :=
(c − v(z0))/2, we know that v(z0) < c − ε, and the condition in (b) implies that v(z) < c for
|z − z0| < r, where r is sufficiently small. Thus Uc is open.

(c) Show that log |h| is usc for every holomorphic function h on Ω and (with respect to the
definition in Exercise 1 (c))

log |f(z0)| ≤
1

2π

∫ 2π

0

log |f(z0 + reiθ)| dθ,

where f is holomorphic on a neighborhood of |z − z0| ≤ r.
Solution: Continuity of |h| implies that {log |h| < c} = {|h| < ec} is open for every c ∈ R,

thus log |h| is usc. To verify the submean inequality, one may check that

vε :=
1

2
log(|f |2 + ε)

is a smooth subharmonic function for every ε ≥ 0 (try to show that (vε)zz̄ ≥ 0). Each vε satisfies
the submean inequality, thus letting ε→ 0, we know that (try!) log |f | also satisfies the submean
inequality.

Exercise 3: Let µ be a Borel probability measure on a compact set K ⊂ C. Put

pµ(z) :=

∫
K

log |z − w| dµ(w).

(a) Use Fatou’s lemma to show that pµ is usc on C and continuous on C \ suppµ;
Solution: Step 1: pµ is usc. By Exercise 2 (b), we need to show that

(⋆1) lim sup
z→z0

pµ(z) ≤ pµ(z0).

By a dilation transform, one may assume that both z0 and K lie in {|z| < 1/2}, then we know
that − log |z − w| > 0 for z close to z0 and w ∈ K. Thus Fatou’s lemma implies that

lim inf
z→z0

∫
K

− log |z − w| dµ(w) ≥
∫
K

lim inf
z→z0

− log |z − w| dµ(w) = −pµ(z0),

hence (⋆1) follows.
Step 2: pµ is continuous on C \ suppµ. We need to show that

(⋆2) lim inf
z→z0

pµ(z) ≥ pµ(z0),

for every z0 ∈ C \ suppµ. By a dilation transform, one may assume that the distance from z0 to
suppµ is > 1. Then log |z − w| > 0 for z close to z0 and w ∈ K. Thus Fatou’s lemma implies
that

lim inf
z→z0

∫
K

log |z − w| dµ(w) ≥
∫
K

lim inf
z→z0

log |z − w| dµ(w) = pµ(z0),

hence (⋆2) follows.
(b) Use the Fubini theorem to show that pµ satisfies the submean inequality on C and mean

value property on C \ suppµ.
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Solution: By Exercise 2 (c), we know that for every w ∈ C, z 7→ log |z − w| satisfies the
submean inequality, i.e.

log |z0 − w| ≤ 1

2π

∫ 2π

0

log |z0 + reiθ − w| dθ,

hence we have
1

2π

∫ 2π

0

pµ(z0 + reiθ) dθ =

∫
K

(
1

2π

∫ 2π

0

log |z0 + reiθ − w| dθ
)
dµ(w) ≥ pµ(z0).

Thus pµ satisfies the submean inequality on C. Similarly, for every w ∈ suppµ, z 7→ log |z−w|
satisfies the mean-value property on C \ suppµ, which implies that pµ satisfies the mean value
property on C \ suppµ.

7. EXTREMAL PROPERTY OF THE EQUILIBRIUM MEASURE

7.1. General subharmonic functions.
Definition 32. Let Ω be a domain in C. We say that a function

v : Ω → [−∞,∞)

is upper semicontinuous (usc) if

lim sup
z→z0

v(z) ≤ v(z0)

for every z0 ∈ Ω. An usc function v on Ω is said to be subharmonic if it satisfies the local
submean inequality, i.e. for every z0 ∈ Ω, there exists r0 > 0 with |z − z0| < r0 contained in Ω
such that the following

(7.1) v(z0) ≤
1

2π

∫ 2π

0

v(z0 + reiθ) dθ

holds for every 0 < r < r0.

Remark 1. Note thet v is usc if and only if {v < c} is open for every c ∈ R, hence subharmonic
functions are always Borel (see Definition 29). Thus the integral in (7.1) is well defined.

Remark 2. An interesting class of non-continuous subharmonic functions is log |f | (see Theorem
[Ra, Theorem 2.2]), where f is holomorphic.

Remark 3. One may check that Theorem 33, Proposition 7, Proposition 6 and Theorem 34 also
apply to non-continuous subharmonic functions.

7.2. Potential of a Borel measure. In potential theory, we shall study a class of subharmonic
functions called "potentials" (generalization of (5.12)).

Definition 33. Let µ be a Borel probability measure on a compact set K ⊂ C. Its potential is the
function pµ : C → [−∞,∞) defined by

(7.2) pµ(z) :=

∫
K

log |z − w| dµ(w).
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Remark. The potential pµ is a natural generalization of 1
n
log |Pn|, where Pn is a monic degree

n polynomial with zeros lie in K. In fact, if we write

Pn(z) = (z − z1) · · · (z − zn), zj ∈ K, 1 ≤ j ≤ n,

then
1

n
log |Pn| = pµ, for µ :=

δz1 + · · ·+ δzn
n

,

where µ is the Borel measure associated to the functional ϕ 7→
∑n

j=1 ϕ(zj)/n (see the Riesz
representation theorem in Theorem 44.

Proposition 12. Let µ be a Borel probability measure on a compact set K ⊂ C. Then pµ is
subharmonic on C, harmonic on C \ suppµ,

(7.3) lim
z→0

pµ(z
−1) + log |z| = 0

and pµ(z−1) + log |z| extends to a harmonic function near z = 0.

Proof. Exercise 3 in page 60 implies that pµ is subharmonic on C, harmonic on C \ suppµ. The
remaining part follows from

pµ(z
−1) + log |z| =

∫
K

log |1− zw| dµ(w).

(Try! Note that z 7→ log |1− zw| is harmonic for z near 0 and w ∈ K). □

7.3. Energy of a Borel measure and extremal properties.
Definition 34. Let µ, ν be a Borel probability measures on a compact setK ⊂ C. We shall define

(7.4) Vµ := inf
z∈C

pµ(z), Wµ := sup
z∈K

pµ(z), I(µ, ν) :=

∫
K

pµ dν.

We call I(µ) := I(µ, µ) the energy of µ.

Remark. Since pµ is harmonic on C \ K and pµ(z) → ∞ as z → ∞, one may apply the
maximum principle to conclude that Vµ = infz∈K pµ(z).

The main theorem in this section is the following extremal property of µK in (5.11).

Theorem 50. Let K be a compact set in C. Assume that C \K has real analytic boundary. Then

(7.5) γ = VµK
= WµK

= I(µK) = sup
µ
I(µ) = sup

µ
Vµ = inf

µ
Wµ,

where the supremum and infimum are taken over all Borel probability measures on K.

Proof. γ = VµK
= WµK

= I(µK) follows directly from pµK
= γ on K by (5.12). It remains to

do the following two steps.
Step 1: γ = supµ Vµ = infµWµ. By Fubini’s theorem and (5.12), we have

(7.6)
∫
K×K

log |z − w| dµ(z)dµK(w) =

∫
K

pµ dµK =

∫
K

pµK
dµ = γ,
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for any Borel probability measure µ on K. Hence

Vµ ≤
∫
K

pµ dµK = γ ≤ Wµ

together with γ = VµK
= WµK

, we obtain γ = supµ Vµ = infµWµ.

Step 2: γ = supµ I(µ). It suffices to show I(µ) ≤ γ for any Borel probability measure µ on
K. Note that (5.12) gives

I(µ, µK) =

∫
K

pµK
dµ = γ = I(µK),

hence
I(µ) = I(µ− µK)− I(µK) + 2I(µ, µK) = γ + I(µ− µK),

and step 2 follows from the lemma below. Remark (optional). A simple proof of I(µ− µK) ≤ 0
using the language of currents: write u = pµ − pµK

note that ddc(pµ) = ddc(log |z| ⋆ dµ) = dµ
(where we choose dc such that ddc log |z| = δ0) implies that

I(µ− µK) =

∫
C
u ddcu = lim

R→∞

(∫
|z|=R

u dcu−
∫
|z|<R

du ∧ dcu
)
.

Since u(z−1) is harmonic near z = 0 and vanishes at z = 0, we know∫
|z|=R

u(z) dcu(z) =

∫
|z|=R−1

u(z−1) dcu(z−1) → 0

as R → ∞. Hence

(7.7) I(µ− µK) = −
∫
C
du ∧ dcu ≤ 0.

This proof also implies that I(µ− µK) = 0 if and only if µ = µK . □

Lemma 3. I(µ− µK) ≤ 0. (15th Apr)

Proof. We claim that (the proof is given later)

(7.8)
1

2π

∫
|z|<R

dxdy

|z − z1||z − z2|
= logR− log |z1 − z2|+ C + ε(z1, z2, R),

where C is a constant and ε(z1, z2, R) → 0 for R → ∞, uniformly when z1, z2 are on a compact
set. Integrating (7.8) with respect to µ− µK yields

lim
R→∞

∫
|z|<R

(∫
K

dµ(ζ)− dµK(ζ)

|z − ζ|

)2

dxdy = −I(µ− µK),

which yields I(µ− µK) ≤ 0. □
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Proof of (7.8). Write z − z1 = reiθ, a = z2 − z1, we have∫
|z−z1|<R

dxdy

|z − z1||z − z2|
=

∫ R

0

∫ 2π

0

drdθ

|reiθ − a|
.

Replace θ by θ + α, where α := arg a, and use r = |a|s, we get∫ R

0

∫ 2π

0

drdθ

|reiθ − a|
=

∫ R

0

∫ 2π

0

drdθ

|reiθ − |a||
=

∫ R/|a|

0

∫ 2π

0

dsdθ

|seiθ − 1|
=

∫ R/|a|

0

∫ 2π

0

dsdθ

|s− eiθ|
.

Put

F (s) :=

∫ 2π

0

dθ

|s− eiθ|
=

∫ 2π

0

dθ√
s2 − 2s cos θ + 1

.

By Exercise 3 below, we have

(7.9) lim
1>s→1

F (s)

− log(1− s)
= 2.

In particular, we know that F (s) is integrable for s near 1. Thus∫ T

0

∫ 2π

0

dsdθ

|s− eiθ|
−

∫ T

1

∫ 2π

0

dsdθ

s
converges to a constant C as T → ∞.

Hence
∫ T

1

∫ 2π

0
dsdθ
s

= 2π log T gives∫ R/|a|

0

∫ 2π

0

dsdθ

|s− eiθ|
= 2π log

R

|a|
+ C + δ(R/|a|),

where δ(t) → 0 as t→ ∞. Now it suffices to show that

J(z1, z2, R) :=

∫
|z|<R

dxdy

|z − z1||z − z2|
−
∫
|z−z1|<R

dxdy

|z − z1||z − z2|
goes to zero for for R → ∞, uniformly when z1, z2 are on a compact set. But this follows
directly from (Hint: compare with the integral of 1/s)

|J(z1, z2, R)| ≤
∫
R−|z1|<|z−z1|<R+|z1|

dxdy

|z − z1||z − z2|
=

∫ R+|z1|
|z1−z2|

R−|z1|
|z1−z2|

∫ 2π

0

dsdθ

|s− eiθ|
.

The proof of (7.8) is now complete. □

Proposition 13. In case K = {|z − z0| = r} or

K = {|z − z0| ≤ r} \ U, r > 0,

where U is an open set in |z − z0| ≤ r, we have

(7.10) γ = log r, pµK
(z) = max{log r, log |z|},

and µK = |dz|
2πr

(we call it the normalized Haar measure the circle |z − z0| = r).
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Proof. Follows directly from

GΩK
(z) = G{|z−z0|>r}(z) = − log |z − z0

r
|

and Lemma 2. □

Reading task: Ransford book (subharmoic functions and potentials)

Exercise 1: Show that a bounded subharmonic function on C is a constant. Hint: let v be a
bounded subharmonic function on C and put

u(z) =

{
v(1/z) z ̸= 0

supC v z = 0.

Show that u is the upper semi-continuous regularization of limε→0+ uε, where

uε(z) := u(z) + ε log |z|.
Verify that u is subharmonic on C with u(0) = supC u and show it follows that u is a constant.

Solution: Recall that the upper semi-continuous regularization (uscr) of a function f is defined
by

f ∗(z0) := lim sup
z→z0

f(z).

It is clear that

lim
ε→0+

uε =

{
u(z) z ̸= 0

−∞ z = 0.

To show that its uscr equals u, it suffices to verify that

sup
C
v = lim sup

z→0
u(z),

i.e.
sup
C
v = lim sup

z→∞
v(z),

which follows directly from the maximal principle

sup
|z|=R

v = sup
|z|≤R

v, R > 0,

for subharmonic function v. It is easy to see that u(0) = supC u. Thus it suffices to show that u is
subharmonic (then the maximum principle would imply that u is a constant). Since u is already
usc and subharmonic outside 0, it suffices to check that u satisfies the submean inequality around
0. It is clear that each uε is subharmonic, thus its increasing limit, say

f := lim
ε→0+

uε,

also satisfies the submean inequality. Consider f + C instead, one may assume that f ≥ 0, then
the Fatou theorem gives

lim inf
z→0

1

2π

∫ 2π

0

−f(z + reiθ) dθ ≥ 1

2π

∫ 2π

0

lim inf
z→0

{−f(z + reiθ)} dθ,
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which implies

u(0) = lim sup
z→0

f(z) ≤ lim sup
z→0

1

2π

∫ 2π

0

f(z + reiθ) dθ ≤ 1

2π

∫ 2π

0

u(z + reiθ) dθ.

Thus u satisfies the submean inequality around 0. The proof is complete. The above proof
actually only assume that supC v <∞. Hence we obtain

Theorem 51. Let v ve a subharmonic function on C. If supC v <∞ then v is a constant.

Exercise 2: Verify the following envelope formula of the equilibrium potential pµK
:

pµK
= GK + γ,

where γ = limz→∞ log |z| −GK(z) is the Robin constant and

GK := sup{v : v is subharmonic on C, v ≤ 0 on K and lim sup
z→∞

v(z)− log |z| <∞}.

Solution: Notice that bothGK and pµK
−γ are zero on ∂ΩK , harmonic on ΩK and satisfies that

the difference to log |z| is bounded at ∞. Thus the maximum principle (try!) givesGK = pµK
−γ

on ΩK . On the other hand, since pµK
− γ is a candidate for GK , we also have pµK

− γ ≤ GK .
but the maximum principle directly gives GK ≤ 0 = pµK

− γ on C \ ΩK , thus we must have
pµK

− γ = GK on C \ ΩK . The proof is complete.

Exercise 3: Prove (7.9). Hint: use the taylor expansion of cos θ around θ = 0.
Solution: To see this, one may use that cos θ = 1− θ2/2 + o(|θ|2) near θ = 0 and check that

lim
s→1

∫ 1

0
dθ√

s2−2s(1−θ2/2)+1

− log(1− s)
= 1.

In fact, by a change of variable θ = t(1− s)/
√
s, we have∫ 1

0

dθ√
s2 − 2s(1− θ2/2) + 1

=
1√
s

∫ √
s

1−s

0

dt√
t2 + 1

,

which can be compared with
∫ 1

1−s

1
dt
t
= − log(1− s) as s→ 1−.

7.4. Robin constant, capacity and transfinite diameter. We shall follow page 23-24 in [A1]
and page 153-154 (Fekete–Szegö theorem) in [Ra] to prove that γ = log c(K).

Definition 35. Let K be a compact set in C. The order n diameter (n ≥ 2) of K is defines as

dn := sup

{ ∏
1≤j<k≤n

|zj − zk|
2

n(n−1) : z1, · · · , zn ∈ K

}
.

An n-tuple z1, · · · , zn ∈ K where the supremum is attained is called a Fekete n-tuple for K.

It is easy to see that d2 is the diameter of K.

Lemma 4. dn+1 ≤ dn for all n ≥ 2.
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Proof. Note that for for each 1 ≤ l ≤ n+ 1, we have∏
1≤j<k≤n+1; j,k ̸=l

|zj − zk|
2

n(n−1) ≤ dn.

When l goes through 1, · · · , n+ 1, each |zj − zk| occurs n− 1 times, hence∏
1≤j<k≤n+1

|zj − zk|
2
n =

∏
1≤l≤n

∏
1≤j<k≤n+1; j,k ̸=l

|zj − zk|
2

n(n−1) ≤ dn+1
n

gives dn+1 ≤ dn. □

Definition 36. We call
d∞ := lim

n→∞
d∞

the transfinite diameter of K.

Theorem 52 (Fekete-Szegö theorem). Let K be a compact set in C. Assume that C \K has real
analytic boundary. Then

(7.11) γ = log d∞.

Proof. Step 1: γ ≤ log d∞. Let z1, · · · , zn ∈ K be the Fekete n-tuple, then the Fekete polyno-
mial Fn defined by

Fn(z) := (z − z1) · · · (z − zn)

satisfies
pµ =

1

n
log |Fn|, µ :=

δz1 + · · ·+ δzn
n

.

Note that if z ∈ K then
n∏

i=1

|z − zj|
∏
j<k

|zj − zk| ≤ (δn+1)
n(n+1)

2

gives

|Fn(z)| ≤
(δn+1)

n(n+1)
2

(δn)
n(n−1)

2

≤ (δn)
n(n+1)

2

(δn)
n(n−1)

2

= (δn)
n,

i.e.
γ ≤ sup

K
pµ ≤ log δn.

Hence it suffices to let n→ ∞.

Step 2: γ ≥ log d∞. Still let z1, · · · , zn ∈ K be the Fekete n-tuple so that∏
j<k

|zj − zk| = (δn)
n(n−1)

2 .

For each 1 ≤ j ≤ n, let µj be the normalized Haar measure on the circle |z − zj| = ε, and put

µ =
µ1 + · · ·+ µn

n
,
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we have

I(µ) =
1

n2

n∑
j=1

I(µj) +
2

n2

∑
j<k

I(µj, µk).

Recall that I(µj) = log ε by Proposition 13 and the submean inequality gives

I(µj, µk) =

∫
|w−zk|=ε

pµj
(w)dµk(w) ≥ pµj

(zk) =

∫
|z−zj |=ε

log |z − zk|dµj(z) ≥ log |zj − zk|.

Hence

I(µ) ≥ log ε

n
+
n− 1

n
log δn.

Since µ is supported on
Kε := {z ∈ C : dist (z,K) ≤ ε, }

let n → ∞, we know that the Robin constant γε of Kε satisfies γε ≥ log d∞. Let ε → 0, we
finally get (try!) γ ≥ log d∞. □

Remark. (7.11) is true for general compact set K ⊂ C, see [Ra, page 153-154] for the proof.

Theorem 53. Let K be a compact set in C. Then

(7.12) c(K) = d∞,

where c(K) is the capacity of K defined in Definition 28.

Proof. Put
ρn = inf

a1,··· ,an∈C
max
z∈K

|zn + a1z
n−1 + · · ·+ an|1/n.

We know that infn≥1 ρn = c(K). The proof consists of three steps.
Step 1: ρn ≤ dn. Since K is compact, we can choose z1, · · · , zn ∈ K such that

dn =
∏

1≤j<k≤n

|zj − zk|
2

n(n−1) .

Consider
V (zn+1) :=

∏
1≤j<k≤n+1

|zj − zk| ≤ (dn+1)
n(n+1)

2 ≤ (dn)
n(n+1)

2 .

Write zn+1 = z and think of V as a polynomial of z ∈ K. The leading coefficient an of V
satisfies

|an| = (dn)
n(n−1)

2 .

Thus

ρn ≤
(
sup
K

∣∣ V
an

∣∣) 1
n

≤ (dn)
n+1
2

(dn)
n−1
2

= dn.

as a function of z By the definition of dn+1, we have
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Step 2: lim supn→∞ ρn ≤ c(K) ≤ lim infn→∞ ρn. Since K is compact, there exists (try!) a
degree n monic polynomial Tn such that supK |Tn| = ρnn. Note that (by the extremal property of
Tmk+h)

sup
K

|Tmk+h| ≤ sup
K

|T k
mTh| ≤

(
sup
K

|Tm|
)k

sup
k

|Th|

gives
(ρmk+h)

mk+h ≤ (ρm)
mk (ρh)

h,

i.e.
log ρmk+h ≤ mk

mk + h
log ρm +

h

mk + h
log ρh.

Fix m ≥ 1, let h run through 0, · · · ,m− 1 and k → ∞, the above inequality gives

lim sup
n→∞

log ρn ≤ ρm.

Thus step 2 follows.
Step 3: d∞ ≤ c(K). Recall the following identity for the Vandermonde matrix

∏
1≤j<k≤n

(zj − zk) = detV, V := det


zn−1
1 zn−2

1 · · · z1 1
zn−1
2 zn−2

2 · · · z2 1
...

...
...

...
...

zn−1
n zn−2

n · · · zn 1.


Let Pn be arbitrary degree n monic polynomials, apply the column transform, we have

∏
1≤j<k≤n

(zj − zk) = detV = det


Pn−1(z1) Pn−2(z1) · · · P1(z1) 1
Pn−1(z2) Pn−2(z2) · · · P1(z2) 1

...
...

...
...

...
Pn−1(zn) Pn−2(zn) · · · P1(zn) 1

 ,

which implies that

(dn)
n(n−1)

2 ≤ n!
n−1∏
j=1

sup
K

|Pj|.

Take the infimum over all Pj , we get

(dn)
n(n−1)

2 ≤ n!
n−1∏
j=1

(ρj)
j,

i.e.

log dn ≤ log ρ1 + · · ·+ (n− 1) log ρn−1

1 + · · ·+ (n− 1)
.

Let n→ ∞ (limn→∞ log ρn = log c(K) by step 2), we get

log d∞ ≤ log c(K).

Thus step 3 follows. Together with step 1, we get c(K) = d∞. (16th Apr) □
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7.4.1. A short summary.

1. The first main result is the Cauchy integral theorem (see Theorem 1), which implies Theo-
rem 4, Theorem 9 and Theorem 13, etc.

For example, Theorem 1) directly gives (try!)∫
|z|=π

z20 + sin z dz = 0

and can be used to prove Corollary 1, which is used in the proof of the Riemann mapping the-
orem. Theorem 9 can be used to compute integrals (see page 154-161 in the Ahlfors book,
especially the exercise in page 161)∫ 2π

0

dt

a+ b cos t
=

2π√
a2 − b2

, a > b ≥ 0;

∫ ∞

−∞

e−ix dx

1 + x2
=
π

e

and ∫
|z|=1

|dz|
|z − 3|2

=
π

4
.

Theorem 13 can be used to prove that

z + e−z = λ, λ > 1 is a constant,

has exactly one solution in the right half plane and prove Corollary 4, Corollary 5, Theorem 15
and Theorem 16 etc.

2. The second main result is the Riemann mapping theorem, Theorem 19. We know that the
Riemann mapping function is directly related to the Green function of a simply connected domain
(see Proposition 8). In order to study the regularity property of the Riemann mapping function
(see Theorem 42), we introduce the theory of harmonic functions. We prove the mean value
property, Theorem 26, for harmonic functions, and obtain the Poisson formula, Theorem 28,
using the mean value property and the Mobius transform. Then we prove the crucial Schwarz’s
theroem, Theorem 29, for the Poisson integral and the Harnack inequality, Theorem 31, for
positive harmonic functions. Applications include the Harnack principle — Theorem 32 (which
is used in the proof of Theorem 35) and the reflection principle —Theorem 39 (which implies
Theorem 42 — the regularity property of the Riemann mapping function).

3. The third main result is the solution of the Dirichlet Problem, Theorem 36, which is used to
define the crucial Green’s function for a regular domain. We use the reflection principle to prove
Theorem 41 — the regularity property of Dirichlet Problem. Then we use Green’s function
to define the Poisson kernel, harmonic measure, Robin constant, equilibrium measure and the
equilibrium potential.

4. The final part is on the potential theory. The main result is the extremal property, Theorem
50, of equilibrium measure, which is a direct consequence of a Green type formula — (5.12).
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7.4.2. Test exam 2 (NOT a normal exam, just a collection of related exercises).

Exercise 1. Show that ∫ 2π

0

log |eiθ + 3| dθ = 2π log 3

and
log 2 ≤ 1

2πi

∫
|z|=20

log |z9 + 8z7 + 2| dz
z
.

Answer: Note that |z + 3| > 0 on the disk |z| ≤ 1, we know that the holomorphic function
z + 3 has no zero in |z| ≤ 1, thus log |z + 8| is harmonic on |z| ≤ 1 and the first identity follows
from the mean-value property. The second inequality follows from the submean inequality for
the subharmonic function log |z9 + 8z7 + 2| (note also that dz/z = iθ for z = 20eiθ).

Exercise 2. Let u be a positive subharmonic function on a domain Ω ⊂ C. Assume that the
disk |z| ≤ ρ lies in Ω. Show that

u(z) ≤ 1

2π

ρ+ r

ρ− r

∫ 2π

0

u(ρeiθ) dθ

for all z with |z| = r < ρ. You might use the maximum principle, Schwarz’s theorem and the
proof of the Harnack inequality.

Answer: Since subharmonic function is the decreasing limit of smooth subharmonic function
(see Exercise 4 below), one may assume that u is continuous. By Schwartz’s theorem, one can
take a harmonic function v on the disk |z| < ρ such that v is continuous on |z| ≤ ρ and v = u on
|z| = ρ, then the maximum principle for the subharmonic function u − v implies that u ≤ v on
|z| ≤ ρ, thus Poisson’s formula (3.19) gives

u(z) ≤ v(z) =
1

2π

∫ 2π

0

ρ2 − |z|2

|ρeiθ − z|2
v(ρeiθ) dθ =

1

2π

∫ 2π

0

ρ2 − |z|2

|ρeiθ − z|2
u(ρeiθ) dθ

for all z with |z| < ρ. If |z| = r < ρ, then

ρ2 − |z|2

|ρeiθ − z|2
≤ ρ2 − r2

(ρ− r)2
=
ρ+ r

ρ− r

gives the estimate that we need. The second proof is to use (assume that u is smooth)

u(z) =
1

2π

∫
|w|<ρ

log |ρ(z − w)

ρ2 − zw̄
|∆u(w) dxdy + 1

2π

∫ 2π

0

ρ2 − |z|2

|ρeiθ − z|2
u(ρeiθ) dθ.

Then ∆u ≥ 0 and log |ρ(z−w)
ρ2−zw̄

| ≤ 0 gives

u(z) ≤ 1

2π

∫ 2π

0

ρ2 − |z|2

|ρeiθ − z|2
u(ρeiθ) dθ,

the remaining steps are the same.

Exercise 3(optional). Show that the domain

Ω1 := {x+ iy ∈ C : x2 + y2 < 1, y > |x|}
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is regular, but Ω2 := Ω1 \ {i/2} is not regular.

Answer: One may check that every boundary point of Ω1 possesses a barrier, for example,
ω(x + iy) = y defines a barrier of Ω1 at the origin (or we can directly use the fact that every
bounded domain with continuous boundary is regular). One the other hand, Ω2 is not regular
since it does not possess a barrier at i/2 (otherwise we would have a positive harmonic function
u on Ω2 such that u extends to a continuous function on the closure of Ω2 with u(i/2) = 0. Then
(see Exercise 1 in page 45) we know that u is in fact harmonic on Ω1 with minimum point at i/2,
which contradicts with the maximum principle.

Exercise 3. Let −∞ ≤ a < b ≤ ∞, let u : Ω → (a, b) be a harmonic function on an open set
Ω ⊂ C, and let χ : (a, b) → R be a convex function. Show that χ ◦ u is subharmonic on Ω.

Answer: By taking a convolution with an even function, we know that χ is the decreasing limit
of smooth convex functions. Thus we can assume that χ is smooth and convex. Then we have

χ(u)z = χ′(u)uz, χ(u)zz̄ = χ′′(u)|uz|2 + χ′(u)uzz̄.

Since u is harmonic we have uzz̄ = 0, thus

χ(u)zz̄ = χ′′(u)|uz|2 ≥ 0,

(note that convexity of χ gives χ′′ ≥ 0) gives ∆χ ◦ u ≥ 0. Now we can just use the fact that a
smooth function v is subharmonic if and only if ∆v ≥ 0 — follows from Green’s formula (try)

v(a) =
1

2π

∫
|z−a|<r

log |(z − a)/r|∆v dxdy + 1

2π

∫ 2π

0

v(a+ reiθ) dθ

for v and G(z) := log |(z − a)/r| on the disk |z − a| < r.

Exercise 4. Let u be a subharmonic function on an open set Ω in C. Let χ : C → [0,∞) be
a smooth function with χ(w) = 0 for all |w| > 1, χ(w) = χ(|w|) and

∫
C χ(w)dλw = 1, where

dλw denotes the Lebesgue measure. For ε > 0, put

χε(w) =
1

ε2
χ(w/ε),

and define the following convolution

uε(z) :=

∫
|w|<ε

u(z − w)χε(w)dλw

for
z ∈ Ωε := {z ∈ Ω : |z − w| > ε, ∀w ∈ ∂Ω}.

Show that:
a) uε is smooth subharmonic on Ωε;
b) uε decreases to u as ε→ 0;
c) uε = u if u is harmonic.

Answer: (a) follows from

uε(z) =

∫
C
u(z − w)χε(w)dλw =

∫
C
u(w)χε(z − w)dλw
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and the fact that χε is smooth. (b) follows from

(7.13)
∫
|w|<1

u(z − εw)χ(w)dλw =

∫ 1

0

∫ 2π

0

u(z − εreiθ)χ(r) rdrdθ

(since
∫ 2π

0
u(z − εreiθ)dθ decreases to 2πu(z) as ε→ 0, in fact, put

v(w) =

∫ 2π

0

u(z − weiθ)dθ,

the Fubini theorem implies that v is subharmonic with v(w) = v(|w|) thus the maximum princi-
ple implies that

v(t) = sup
|w|≤t

v(w)

is increasing with respect to t). (c) follows from (7.13) and the mean value property∫ 2π

0

u(z − εreiθ)dθ = 2πu(z)

for harmonic u.

Exercise 5. Let u be a smooth subharmonic function C. Put

Cu(z) :=
1

2π

∫ 2π

0

u(ezeiθ) dθ,

show that
(a) Cu is smooth subharmonic and depends only on Re z in C;
(b) Cu(t) is convex increasing with respect to t ∈ R;
(c) Assume further that supC u <∞, show that Cu is a constant.

Answer: (a) follows from the Fubini theorem and a change of variable θ′ := θ + Im z. (b)
write z = t+ is, since Cu depends only on t = Re z we have

0 ≤ ∆Cu = (Cu)tt,

which implies that Cu is convex and bounded at −∞, thus Cu is also increasing. To prove (c),
note that if supC u < ∞ then Cu is also bounded at ∞, thus Cu is also decreasing, hence Cu

must be a constant.

Exercise 6.
(a) Compute the equilibrium potential of circle |z − a| = r;
(b) Show that f(z) := z + z−1 is conformal from |z| > 1 onto C \ [−2, 2] and compute the

Green function of C \ [−2, 2] with a pole at ∞;
(c) Use (b) to compute the Robin constant and capacity of [−2, 2] (Hint: observe that they are

equal to the Robin constant and capacity of the unit disk);
(d) Show that the capacity of [c1, c2] is (c2 − c1)/4.
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Answer: (a): recall that the equilibrium measure for |z − a| = r is equal to dθ/(2π), thus its
equilibrium potential is given by∫ 2π

0

log |z − (a+ reiθ)| dθ
2π

= max{log |z − a|, log r}.

(b) To see that f(z) := z + z−1 is conformal on |z| > 1, we need to show that it is injective, i.e.
if f(z) = f(w) then

z + z−1 = w + w−1

gives z = w. In fact, if z ̸= w then the above equality gives 1 = 1/zw, which contradicts with
|z|, |w| > 1. To show that it is surjective, one may observe that it maps |z| = r > 1 to a ellipse
around [−2, 2]. Now we know that G(w) := − log |f−1(w)| is the Green function of C \ [−2, 2]
with a pole at ∞. For (c), we know that the Robin constant of [-2,2] is given by

lim
w→∞

− log |f−1(w)|+ log |w| = lim
z→∞

− log |z|+ log |z + z−1| = 0.

Thus the capacity of [-2,2] is 1. For (d), we know from the definition of the capacity that c(aK+
b) = |a|c(K) for constant a, b. Thus (d) follows from (c).

Exercise 7. Let f be a conformal mapping from a bounded simply connected domain Ω onto
the unit disk such that f(a) = 0 for some a ∈ Ω.

a) Find Green’s function of Ω with a pole at a;
b) Show that the Robin constant of C \ Ω′ is log |f ′(a)|, where

Ω′ := {(z − a)−1 : z ∈ Ω \ {a}}.

Answer: (a): log |f(z)| (b) write ζ = 1/(z−a), we get z = 1/ζ+a. Thus the Green’s function
for Ω′ with a pole at ∞ is given by − log |f(1/ζ + a)|. Hence its Robin constant is given by

lim
ζ→∞

log |f(1/ζ + a)|+ log |ζ| = log |f ′(a)|.

Exercise 8. Let µ be a Borel probability measure on a compact set K ⊂ C. Assume that pµ is
a constant c on K. Show that

c = sup
ν

inf
z∈C

pν(z) = inf
ν
sup
z∈K

pν(z),

where ν is taken over the space of Borel probability measure on K.

Answer: see Step 1 in the proof of Theorem 50.
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