1. PROJECT 1. MATH 4175, SPRING SEMESTER 2021

Due Monday February 29, 2021. Email: Berit Stensones, berit.stensones@ntnu.no

Problem 1. Find $\frac{1}{2\pi i} \int_{|z|=4} \frac{\cos(\pi z/2)}{z(z-1)^2} dz$

Problem 2. Find a conformal map from $D = \{z; 0 < |z| < 1\}$ and $0 < \arg(z) < \pi/4\}$ to the upper half plane $\{z; Im \ z > 0\}$.

Problem 3. Prove that if f is analytic in a domain Ω and there exists a point $a \in \Omega$ such that $f^{(n)}(a) = 0$ for all n = 0, 1, 2, ... then f(z) = 0 for all $z \in \Omega$.

Problem 4. (a) Let $\alpha \in \mathbb{C}$, $|\alpha| < 1$, show that the map

$$\phi_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}$$

sends the unit circle $\{|z| = 1\}$ to the unit circle and the unit disc $\{|z| < 1\}$ to the unit disc and α to 0.

(b) Use (a) together with the Schwarz Lemma to show that if $f : \Delta(0,1) \rightarrow \Delta(0,1)$ is analytic and there are $\alpha, \beta \in \Delta(0,1), \alpha \neq \beta$ such that $f(\alpha) = \alpha, f(\beta) = \beta$ then f(z) = z for all $z \in \Delta(0,1)$. (Hint: Do this first when $\alpha = 0$.)

Problem 5. Let $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$. Show that P has n roots in \mathbb{C} counting multiplicities. (Hint: Compare P to z^n on a large circle centered at 0.)