1. Project 1. Math 4175, Spring semester 2021

Due Monday February 29, 2021. Email: Berit Stensones, berit.stensones@ntnu.no
Problem 1. Find $\frac{1}{2 \pi i} \int_{|z|=4} \frac{\cos (\pi z / 2)}{z(z-1)^{2}} d z$

Problem 2. Find a conformal map from $D=\{z ; 0<|z|<1\}$ and $0<\arg (z)<\pi / 4\}$ to the upper half plane $\{z ; \operatorname{Im} z>0\}$.

Problem 3. Prove that if f is analytic in a domain Ω and there exists a point $a \in \Omega$ such that $f^{(n)}(a)=0$ for all $n=0,1,2, \ldots$ then $f(z)=0$ for all $z \in \Omega$.

Problem 4. (a) Let $\alpha \in \mathbb{C},|\alpha|<1$, show that the map

$$
\phi_{\alpha}(z)=\frac{z-\alpha}{1-\bar{\alpha} z}
$$

sends the unit circle $\{|z|=1\}$ to the unit circle and the unit disc $\{|z|<1\}$ to the unit disc and α to 0 .
(b) Use (a) together with the Schwarz Lemma to show that if $f: \Delta(0,1) \rightarrow$ $\Delta(0,1)$ is analytic and there are $\alpha, \beta \in \Delta(0,1), \alpha \neq \beta$ such that $f(\alpha)=$ $\alpha, f(\beta)=\beta$ then $f(z)=z$ for all $z \in \Delta(0,1)$. (Hint: Do this first when $\alpha=0$.)

Problem 5. Let $P(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$. Show that P has n roots in \mathbb{C} counting multiplicities. (Hint: Compare P to z^{n} on a large circle centered at 0 .)

