COMPLEX ANALYSIS: SOLUTIONS 4

1. (i) Use Cauchy's integral formula for derivatives to compute

$$
\frac{1}{2 \pi i} \int_{|z|=r} \frac{e^{z}}{z^{n+1}} d z, \quad r>0
$$

(ii) Use part (i) along with Cauchy's estimate to prove that $n!\geqslant n^{n} e^{-n}$.

Solution: (i) From Cauchy's integral formula we have

$$
\frac{1}{2 \pi i} \int_{|z|=r} \frac{e^{z}}{z^{n+1}} d z=\left.\frac{1}{n!} \frac{d^{n}}{d z^{n}}\left(e^{z}\right)\right|_{z=0}=\frac{1}{n!}
$$

(ii) By Cauchy's estimate

$$
\frac{1}{n!} \leqslant \frac{1}{r^{n}} \max _{|z|=r}\left|e^{z}\right|=\frac{e^{r}}{r^{n}}
$$

for $r>0$. Now, to make this inequality as sharp as possible we seek to minimise the right hand side. By calculus, the function e^{r} / r^{n} has a minimum at $r=n$ where it attains the value $e^{n} n^{-n}$. Thus,

$$
\frac{1}{n!} \leqslant e^{n} n^{-n}
$$

Rearranging things gives the desired inequality.
2. (i) Let $m \geqslant n$. Use Cauchy's integral formula for derivatives to compute

$$
\frac{1}{2 \pi i} \int_{|z-1|=r} \frac{z^{m}}{(z-1)^{n+1}} d z, \quad r>0
$$

(ii) Prove that $\binom{m}{n} \leqslant m^{m} n^{-n} /(m-n)^{m-n}$.
(iii) Give a complex anlytic proof of the identity $\sum_{n=0}^{m}\binom{m}{n}^{2}=\binom{2 m}{m}$.

Solution: (i) We have

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{|z-1|=r} \frac{z^{m}}{(z-1)^{n+1}} d z & =\left.\frac{1}{n!} \frac{d^{n}}{d z^{n}}\left(z^{m}\right)\right|_{z=1} \\
& =\frac{1}{n!} m(m-1) \cdots(m-n+1) \\
& =\frac{1}{n!} \frac{m!}{(m-n)!} \\
& =\binom{m}{n}
\end{aligned}
$$

(ii) By Cauchy's estimate we have

$$
\binom{m}{n} \leqslant \frac{1}{r^{n}} \max _{|z-1|=r}\left|z^{m}\right|=\frac{(r+1)^{m}}{r^{n}}
$$

Now,

$$
\frac{d}{d r} \frac{(r+1)^{m}}{r^{n}}=m(r+1)^{m-1} r^{-n}-n r^{-n-1}(r+1)^{m}=0
$$

iff

$$
m r=n(r+1)
$$

iff

$$
r=\frac{n}{m-n} .
$$

This choice of r minimises the right hand side of the inequality and we get

$$
\binom{m}{n} \leqslant \frac{(m /(m-n))^{m}}{(n /(m-n))^{n}}=\frac{m^{m} n^{-n}}{(m-n)^{m-n}}
$$

as desired.
(iii) Using the integral from part (i) we have

$$
\begin{aligned}
\sum_{n=0}^{m}\binom{m}{n}^{2} & =\sum_{n=0}^{m}\binom{m}{n} \frac{1}{2 \pi i} \int_{|z-1|=r} \frac{z^{m}}{(z-1)^{n+1}} d z \\
& =\frac{1}{2 \pi i} \int_{|z-1|=r} \frac{z^{m}}{z-1}\left[\sum_{n=0}^{m}\binom{m}{n} \frac{1}{(z-1)^{n}}\right] d z \\
& =\frac{1}{2 \pi i} \int_{|z-1|=r} \frac{z^{m}}{z-1}\left(\frac{1}{z-1}+1\right)^{m} d z \\
& =\frac{1}{2 \pi i} \int_{|z-1|=r} \frac{z^{m}}{z-1}\left(\frac{z}{z-1}\right)^{m} d z \\
& =\frac{1}{2 \pi i} \int_{|z-1|=r} \frac{z^{2 m}}{(z-1)^{m+1}} d z \\
& =\binom{2 m}{m} .
\end{aligned}
$$

3. If $f(z)$ is analytic for $|z|<1$ and $|f(z)| \leqslant 1 /(1-|z|)$, find the best estimate of $\left|f^{(n)}(0)\right|$ that Cauchy's estimate will yield.

Solution: For $r<1$ Cauchy's estimate gives

$$
\left|f^{(n)}(0)\right| \leqslant \frac{n!}{r^{n}} \max _{|z|=r}|f(z)| \leqslant \frac{n!}{r^{n}(1-r)}
$$

where in the second inequality we have applied $|f(z)| \leqslant 1 /(1-|z|)$. How do we know we could not do better in this second inequality? Well, for example function $f(z)=1 /(1-z)$ satisfies the hypotheses and gives equality: $|f(z)|=1 /(1-|z|)$ when $z \in[0,1)$. So for a general function satisfying the hypotheses, the second inequality is sharp.

As usual, we now minimise the right hand side.

$$
\frac{d}{d r} \frac{1}{r^{n}(1-r)}=\frac{1}{r^{n}(1-r)^{2}}-\frac{n}{r^{n+1}(1-r)}=0
$$

iff

$$
r=n(1-r)
$$

iff

$$
r=n /(n+1) .
$$

This choice of r gives

$$
\left|f^{(n)}(0)\right| \leqslant \frac{n!}{(n /(n+1))^{n}(1 /(n+1))}=(n+1)!\left(1+\frac{1}{n}\right)^{n}
$$

With the choice of $f(z)=1 /(1-z)$ we have $f^{(n)}(0)=n$! so Cauchy's estimate is not very sharp here. Where do we lose out then? (...recall Cauchy's estimate is essentially a consequence of the estimation lemma).
4. Find the maxima of $f(z)=z^{2}-1$ on the closed disk $|z| \leqslant 1$.

Solution: By the maximum modulus principle we know that the maximum of $|f(z)|$ must occur on the boundary $|z|=1$. So, we can set $z=e^{i \theta}, \theta \in[0,2 \pi]$, and consider

$$
|f(z)|^{2}=\left|e^{2 i \theta}-1\right|^{2}=\left(e^{2 i \theta}-1\right)\left(e^{-2 i \theta}-1\right)=2-e^{2 i \theta}-e^{-2 i \theta}=2-2 \cos 2 \theta .
$$

The maxima of this function occur at $\theta=\pi / 2,3 \pi / 2$, i.e. at $z=i,-i$ and at these points we have $|f(z)|=2$.
5. Determine the analytic continuations from $|z|<1$ to as large a region as possible of the following power series

$$
\sum_{n=1}^{\infty}(-1)^{n} n z^{n-1}, \quad \sum_{n=1}^{\infty} \frac{z^{n}}{n}
$$

Solution: For $|z|<1$ We have

$$
\sum_{n=1}^{\infty}(-1)^{n} n z^{n-1}=-\frac{1}{(1+z)^{2}}
$$

Therefore, the function on the right provides the analytic continuation of the series from $|z|<1$ to $\mathbb{C} \backslash-1$. Similarly, for $|z|<1$

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n}=-\log (1-z)
$$

and so this provides the analytic continuation to $\mathbb{C} \backslash \mathbb{R}_{\geqslant 1}$.
6. Find and classify all singularties of the function $f(z)=e^{1 /(z-i)} \tan z$. Determine the order of any poles.

Solution: At $z=i$ we have an essential singularity. The function $\tan z$ is meromorphic with poles at the zeros of $\cos z$ i.e. at $z_{n}=\pi / 2+n \pi$ for $n \in \mathbb{Z}$. About these points $\cos z$ has Taylor series

$$
\begin{aligned}
\cos z & =\cos z_{n}-\left(z-z_{n}\right) \sin z_{n}-\frac{\left(z-z_{n}\right)^{2}}{2!} \cos z_{n}+\frac{\left(z-z_{n}\right)^{3}}{3!} \sin z_{n}+\cdots \\
& =-\left(z-z_{n}\right)\left(\sin z_{n}\right)\left(1-\frac{\left(z-z_{n}\right)^{2}}{3!}+\cdots\right) .
\end{aligned}
$$

So the zeros at z_{n} are of order 1 and so the corresponding poles are all simple. Indeed,

$$
\lim _{z \rightarrow z_{n}}\left(z-z_{n}\right) \tan z=\sin z_{n} \lim _{z \rightarrow z_{n}} \frac{z-z_{n}}{\cos z}=-\sin z_{n} \cdot \frac{1}{\sin z_{n}}=-1
$$

which exists. Incidentally, this shows that the residue at all poles is -1 .
7. Let $f: G \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be analytic with a removable singularity at z_{0}. Show that

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

for all $z \in G \backslash\left\{z_{0}\right\}$ and all positively oriented contours $\gamma \subset G \backslash\left\{z_{0}\right\}$ enclosing z i.e. Cauchy's formula still holds. What can be said if $z=z_{0}$?

Solution: If γ does not enclose z_{0} then f is analytic on the interior of the contour and so Cauchy's formula clearly still holds. If γ encloses z_{0} then since we're assuming $z \neq z_{0}$ we may surround both z_{0} and z by non-intersecting open disks, $D_{r_{0}}\left(z_{0}\right)$ and $D_{r}(z)$ say, both of which are contained in the interior of γ.

Then, by the usual deformation trick with Cauchy's theorem we have

$$
\int_{\gamma} \frac{f(w)}{w-z} d w=\int_{\partial D_{r_{0}}\left(z_{0}\right)} \frac{f(w)}{w-z} d w+\int_{\partial D_{r}(z)} \frac{f(w)}{w-z} d w
$$

since the integrand is analytic on the area between the contours. By Cauchy's integral formula this second integral is given by $f(w)$, so we only need show that the first integral vanishes.

Since the disks are non-intersecting the term $w-z$ is bounded away from zero; $|w-z|>c>0$. Also, since f has a removable singularity at z_{0} there exists an analytic continuation g such that $f(z)=g(z)$ for all $0<\left|z-z_{0}\right|<r_{0}$ and consequently $|f(z)|$ is bounded in this region: $|f(z)|<M$. Then, by the estimation lemma

$$
\left|\int_{\partial D_{r_{0}}\left(z_{0}\right)} \frac{f(w)}{w-z} d w\right| \leqslant 2 \pi r_{0} M / c
$$

Since r_{0} was arbitrary we can let it tend to zero to give the desired result. Alternatively, one could use the condition $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0$ and proceed as in the proof of Cauchy's integral formula.

If $z=z_{0}$ then the left hand side is undefined. However, the integral on the right

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z_{0}} d w
$$

does make sense: f is analytic and hence continuous on the contour γ so the integral exists. In fact, this integral is an analytic function for all $z \in G$ (why?) and hence represents the analytic continuation of f from $G \backslash\left\{z_{0}\right\}$ to G.

