
COMPLEX ANALYSIS: SOLUTIONS 4

1. (i) Use Cauchy’s integral formula for derivatives to compute

1

2πi

∫
|z|=r

ez

zn+1
dz, r > 0.

(ii) Use part (i) along with Cauchy’s estimate to prove that n! > nne−n.

Solution: (i) From Cauchy’s integral formula we have

1

2πi

∫
|z|=r

ez

zn+1
dz =

1

n!

dn

dzn
(ez)

∣∣∣∣
z=0

=
1

n!
.

(ii) By Cauchy’s estimate

1

n!
6

1

rn
max
|z|=r
|ez| = er

rn

for r > 0. Now, to make this inequality as sharp as possible we seek to minimise the
right hand side. By calculus, the function er/rn has a minimum at r = n where it
attains the value enn−n. Thus,

1

n!
6 enn−n.

Rearranging things gives the desired inequality.

2. (i) Let m > n. Use Cauchy’s integral formula for derivatives to compute

1

2πi

∫
|z−1|=r

zm

(z − 1)n+1
dz, r > 0.

(ii) Prove that
(
m
n

)
6 mmn−n/(m− n)m−n.

(iii) Give a complex anlytic proof of the identity
∑m

n=0

(
m
n

)2
=
(
2m
m

)
.

1
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Solution: (i) We have

1

2πi

∫
|z−1|=r

zm

(z − 1)n+1
dz =

1

n!

dn

dzn
(zm)

∣∣∣∣
z=1

=
1

n!
m(m− 1) · · · (m− n+ 1)

=
1

n!

m!

(m− n)!

=

(
m

n

)
.

(ii) By Cauchy’s estimate we have

(
m

n

)
6

1

rn
max
|z−1|=r

|zm| = (r + 1)m

rn
.

Now,

d

dr

(r + 1)m

rn
= m(r + 1)m−1r−n − nr−n−1(r + 1)m = 0

iff

mr = n(r + 1)

iff

r =
n

m− n
.

This choice of r minimises the right hand side of the inequality and we get

(
m

n

)
6

(m/(m− n))m

(n/(m− n))n
=

mmn−n

(m− n)m−n

as desired.
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(iii) Using the integral from part (i) we have
m∑
n=0

(
m

n

)2

=
m∑
n=0

(
m

n

)
1

2πi

∫
|z−1|=r

zm

(z − 1)n+1
dz

=
1

2πi

∫
|z−1|=r

zm

z − 1

[ m∑
n=0

(
m

n

)
1

(z − 1)n

]
dz

=
1

2πi

∫
|z−1|=r

zm

z − 1

(
1

z − 1
+ 1

)m
dz

=
1

2πi

∫
|z−1|=r

zm

z − 1

(
z

z − 1

)m
dz

=
1

2πi

∫
|z−1|=r

z2m

(z − 1)m+1
dz

=

(
2m

m

)
.

3. If f(z) is analytic for |z| < 1 and |f(z)| 6 1/(1 − |z|), find the best estimate of
|f (n)(0)| that Cauchy’s estimate will yield.

Solution: For r < 1 Cauchy’s estimate gives

|f (n)(0)| 6 n!

rn
max
|z|=r
|f(z)| 6 n!

rn(1− r)
where in the second inequality we have applied |f(z)| 6 1/(1 − |z|). How do we
know we could not do better in this second inequality? Well, for example function
f(z) = 1/(1−z) satisfies the hypotheses and gives equality: |f(z)| = 1/(1−|z|) when
z ∈ [0, 1). So for a general function satisfying the hypotheses, the second inequality
is sharp.

As usual, we now minimise the right hand side.

d

dr

1

rn(1− r)
=

1

rn(1− r)2
− n

rn+1(1− r)
= 0

iff
r = n(1− r)

iff
r = n/(n+ 1).

This choice of r gives

|f (n)(0)| 6 n!

(n/(n+ 1))n(1/(n+ 1))
= (n+ 1)!

(
1 +

1

n

)n
.



COMPLEX ANALYSIS: SOLUTIONS 4 4

With the choice of f(z) = 1/(1 − z) we have f (n)(0) = n! so Cauchy’s estimate is
not very sharp here. Where do we lose out then? (...recall Cauchy’s estimate is
essentially a consequence of the estimation lemma).

4. Find the maxima of f(z) = z2 − 1 on the closed disk |z| 6 1.

Solution: By the maximum modulus principle we know that the maximum of |f(z)|
must occur on the boundary |z| = 1. So, we can set z = eiθ, θ ∈ [0, 2π], and consider

|f(z)|2 = |e2iθ − 1|2 = (e2iθ − 1)(e−2iθ − 1) = 2− e2iθ − e−2iθ = 2− 2 cos 2θ.

The maxima of this function occur at θ = π/2, 3π/2, i.e. at z = i,−i and at these
points we have |f(z)| = 2.

5. Determine the analytic continuations from |z| < 1 to as large a region as possible
of the following power series

∞∑
n=1

(−1)nnzn−1,
∞∑
n=1

zn

n
.

Solution: For |z| < 1 We have

∞∑
n=1

(−1)nnzn−1 = − 1

(1 + z)2
.

Therefore, the function on the right provides the analytic continuation of the series
from |z| < 1 to C\−1. Similarly, for |z| < 1

∞∑
n=1

zn

n
= − log(1− z)

and so this provides the analytic continuation to C\R>1.

6. Find and classify all singularties of the function f(z) = e1/(z−i) tan z. Determine
the order of any poles.

Solution: At z = i we have an essential singularity. The function tan z is meromor-
phic with poles at the zeros of cos z i.e. at zn = π/2 + nπ for n ∈ Z. About these
points cos z has Taylor series

cos z = cos zn − (z − zn) sin zn −
(z − zn)2

2!
cos zn +

(z − zn)3

3!
sin zn + · · ·

=− (z − zn)(sin zn)
(

1− (z − zn)2

3!
+ · · ·

)
.
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So the zeros at zn are of order 1 and so the corresponding poles are all simple. Indeed,

lim
z→zn

(z − zn) tan z = sin zn lim
z→zn

z − zn
cos z

= − sin zn ·
1

sin zn
= −1

which exists. Incidentally, this shows that the residue at all poles is −1.

7. Let f : G\{z0} → C be analytic with a removable singularity at z0. Show that

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw

for all z ∈ G\{z0} and all positively oriented contours γ ⊂ G\{z0} enclosing z i.e.
Cauchy’s formula still holds. What can be said if z = z0?

Solution: If γ does not enclose z0 then f is analytic on the interior of the contour
and so Cauchy’s formula clearly still holds. If γ encloses z0 then since we’re assuming
z 6= z0 we may surround both z0 and z by non-intersecting open disks, Dr0(z0) and
Dr(z) say, both of which are contained in the interior of γ.

Then, by the usual deformation trick with Cauchy’s theorem we have∫
γ

f(w)

w − z
dw =

∫
∂Dr0 (z0)

f(w)

w − z
dw +

∫
∂Dr(z)

f(w)

w − z
dw

since the integrand is analytic on the area between the contours. By Cauchy’s integral
formula this second integral is given by f(w), so we only need show that the first
integral vanishes.

Since the disks are non-intersecting the term w − z is bounded away from zero;
|w−z| > c > 0. Also, since f has a removable singularity at z0 there exists an analytic
continuation g such that f(z) = g(z) for all 0 < |z−z0| < r0 and consequently |f(z)|
is bounded in this region: |f(z)| < M . Then, by the estimation lemma∣∣∣∣ ∫

∂Dr0 (z0)

f(w)

w − z
dw

∣∣∣∣ 6 2πr0M/c.

Since r0 was arbitrary we can let it tend to zero to give the desired result. Alter-
natively, one could use the condition limz→z0(z − z0)f(z) = 0 and proceed as in the
proof of Cauchy’s integral formula.

If z = z0 then the left hand side is undefined. However, the integral on the right

1

2πi

∫
γ

f(w)

w − z0
dw

does make sense: f is analytic and hence continuous on the contour γ so the integral
exists. In fact, this integral is an analytic function for all z ∈ G (why?) and hence
represents the analytic continuation of f from G\{z0} to G.


