
Lecture 1  
1. Periodic functions  

In the first part of the course we study Fourier series. The Fourier series is a tool to study periodic functions by writing it as an 
infinite sum of trignomic polynomials. 

Definition 1.1. A function on  is called periodic provided  for some .  We usually tacitly assume  to 
be the smallest positive period of .

We identify the following three things: 

 (a) A periodic function on  with period .
  (b) A function  on  with .
  (c) A function defined on the unit circle.

If we have a periodic function with period , we can restrict the function to  or any interval of length , like . 
Conversely, if we have a function defined on  satisfying , then we can construct a periodic function on  by 
its periodization  (with modification at integral multiples of ). 

The unit circle can be parametrized on  by . Let  be a function on the circle, then  is a periodic 
function of period . Similarly, we can also identify  with , then  is a periodic function with period .  
is continuous, differentiable, or integrable... if and only if  the corresponding  is continuous, differentiable, or integrable. Let 

 denote , we also identify the circle as .

Let  be a periodic function with period , then  is a periodic function with period , hence we can restrict our study on 
period  or period  case and the period  case can be obtained by scaling. Note that the integral of function on its period is 
not invarient under scaling: , i.e. shrinking period by  also shrinks integral by 

.

Trignomic functions and trignomic polynomials  

A real trignomic polynomial is a function of the form . In most theoretical 
calculations will use the complex exponentials instead of sines and cosines, thanks to the identity . Then 

, and

        .

Let , in particular , we have  with . Note that this is because our  is real 
at the beginning.  

Example 1.1.  is a trignomic polynomial and .

Proof. Let ,then . The first term = , the second term = 

.



Then sum up we get . 

Question: Suppose I tell you that a function , for example, , is a trignomic polynomial, how do you know its 

coefficients? 

To answer this question we need the following fundamental property of complex exponentials.

Lemma 1.1 

         

The vector space of trignomic polynomials  

Let  be a vector space with inner product , let  be an orthonormal basis of . Then every vector  in  can be 
written as  for scalers , and we can calculate  by . In fact, we have 

.

Now let  be trignomic polynomials of degree , i.e,  consists of functions of the form . Then  is 

a complex vector space. Define inner product  on  by , then  is an orthonormal 

basis of . So we have  and . 

In the period  case the inner product is  and  is orthonormal basis. 

2. Fourier series  
Can we write any period function, say, with period , as a sum of complex exponentials? One can soon realize that finite sum 
will usually not be possible because a trignomic polynomial is always smooth. So we have to consider infinite sums. 

Definition 2.1. Let  be an integrable function on .

The n-th Fourier coefficient of  is given by . Sometimes we also use  to denote .
 is the -th Fourier partial sum of .

The series  is called the Fourier series of .

The first question is convergence of Fourier series, when and in which sense can we write ?

Note. In order for the integrals to make sense we need some integrability assumption on . Now you can understand the 
notion "integrable" as "Riemann integrable". Later, we'll introduce a more general notion of Lebesgue integrals, most of the 
results holds for Lebesgue integrable functions.

The convergence of Fourier series turns out to be delicate. 

If the function is continuously differentiable, then the Fourier series converges uniformly. 
There exists a continuous function whose Fourier series diverge at some point.
In the general case, need to consider more general sense of convergence.

Example 2.1  on . Then the Fourier series of  is given by 

when  and . So .



We can use the following Sagemath code to visualize the Fourier partial sums,  you can change  and see how it goes. This 
approach is to directly plot the Fourier partial sum based on our hand calculation.

Example 2.2  on , find the Fourier series of  on .

 for  and .

In the case , the Fourier series is .

Actually Sagemath has a built in method to calculate the Fourier series for us, as shown in the following code:

From the picture we can see that even though we approximate  hard enough, the approximation seems to be OK for points 
far from the jump. But near the jump we there is still big error remaining. This is called the Gibbs phenomenon.

3. Pointwise convergence (simple case)  
First observation as a consequence of Weierstrass -test:

If , then  converges uniformly.

In this case we call the Fourier series of  converge absolutely. For a postive series, it converges when the coefficients decays 
sufficiently fast, and from calculus we know that  is not enough and  is enough. In fact, we can show using 
Fourier series of the quadratic function that  (in exercise).

Proposition 3.1 (The derivative theorem) Let  be continuously differentiable on  (this means  is continuously differentiable 

on  with ), then . 

Proof. This is just integration by part. 

. 

Remark. In the period  case .

Lemma. (  estimate) . If we denote  by  then .

x = var('x') # Define symbolic variable x
n = var('n') # Define symbolic variable n
N = 20
a(n) = 2*(-1)^(n+1)*(1/n)
Sf=sum(a(n)*sin(n*x),n,1,N) # The Fourier partial sum of f 
plot(Sf,x,-pi,pi)

x = var('x') # Declare variable x
f = piecewise([[(-pi,-1/2),0],[(-1/2,1/2),1],[(1/2,pi),0] ] ) # Define f as a piecewise 
function
FS5=f.fourier_series_partial_sum(5,pi) # For a piecewise function, there is a method called 
"fourier_series_partial_sum", we calculate 5 terms
print(FS5) # print the result
P1 = f.plot() # plot the graph of f
P2 = plot(FS5,x,-pi,pi,linestyle="--") # plot the graph of fourier partial sum
(P1+P2).show(title="5 terms") # print the graph
FS100=f.fourier_series_partial_sum(50,pi)
P3 = plot(FS100,x,-pi,pi).show(title="100 terms") # What happens if we calculate 100 terms?

https://en.wikipedia.org/wiki/Gibbs_phenomenon
https://en.wikipedia.org/wiki/Weierstrass_M-test


Proof. .

Corollary. If  has continuous second derivative then , hence the Fourier series of  converges uniformly.

Proof. Apply the derivative theorem twice we get . By the  estimate we have 

. So .   

Next we consider the continuous case.

Proposition 3.2. Let  be an integrable function on the circle. If  for all , then  vanishes at continuous 
points, i.e. for every  such that  is continuous at , . 

Note. The Fourier coefficients vanishes means  is orthogonal to all trignomic polynomials.

Proof. 

Method 1. Assume  for some continuous point . We can moreover assome , then since  is continuous at 
, it must be  near . Then the idea is to construct a sequence of trignomial polynomials  such that  goes to  near 
 and the negative part of  is controlled, so that , which contradicts to the assumption that  is 

orthogonal to . Precisely, fix  and choose small  such that  on . Let 
 for small . Let . We choose  so small that  so  when 

. Then . The first term go to  
when , the second term go to  when , contradiction.

Note: the second limit is a consequence of the dominated convergence theorem. If you want a more elementary proof see the book 
Theorem 2.1.

The second method involves Lemma 5.1 and Theorem 5.2 in Chapter 2 of Stein-Shakarchi, that we'll do later.

Method 2. Let  which is a trignomic polynomial called Fejer kernel. Assume  is continuous at , the Fejer 

theorem (later) implies  when . Since  is orthogonal to trignomic polynomials, this 
shows . If , let , apply the result to  shows . 

Corollary. Let  be an integrable function on the circle such that the Fourier series of  converges absolutely. If  is continuous 
at , then the Fourier series of  converges to  at , i.e. .

Proof. Since the Fourier series of  converges absolutely which implies  converges uniformly, hence  is a continuous 
function. Note that the Fourier coefficients of  is precisely , so  and  has same Fourier coefficients. Then  
and  coincide on continuous points by Proposition 3.2.

Appendix: Plot of Direchlet kernel and Fejer kernel  

We can also plot an approximate process for different values, for example the Fejer kernel

N=20
x=var('x')
DN=sin((N+1/2)*x)/sin(1/2*x)
FN=(1/N)*sin(N*x/2)^2/(sin(x/2)^2)
P1=plot(DN)
P1.show(title="Direchlet kernel")
P2=plot(FN)
P2.show(title="Fejer kernel")

https://en.wikipedia.org/wiki/Dominated_convergence_theorem


for N in [20,40,60,80]:
    FN=(1/N)*sin(N*x/2)^2/(sin(x/2)^2)
    P2=P2+plot(FN)
P2.show()
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