Exam

Problem 1

Let f be a continuous function on the circle and $\sum_{n=-\infty}^{+\infty} a_{n} e^{i n x}$ its Fourier series.

1. (10) Show that $f=\sum_{n=-\infty}^{+\infty} a_{n} e^{i n x}$ in the distributional sense.

- Hint: for a test function φ on the circle, write $\varphi(x)=\sum_{m=-\infty}^{+\infty} b_{m} e^{i m x}$, show that $\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \varphi(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{n=-\infty}^{+\infty} a_{n} e^{i n x}\right)\left(\sum_{n=-\infty}^{+\infty} b_{m} e^{i m x}\right) d x$. Justify your solution carefully.

2. (10) Suppose $f^{\prime \prime}$ (the second derivative of f in the distributional sense) is equal to an L^{2} function on the circle. Show that the Fourier series of f converges to f absolutely uniformly.

Problem 2

Given the function $f(t)=\cos (2 \pi t)$.

1. (10) Compute the Fourier transform of f in the sense of tempered distributions.
2. (5) Let u be the tempered distribution $\sum_{k=-\infty}^{+\infty} \delta_{\frac{2 k}{3}}$. Calculate $\mathcal{F f} * u$.

- Hint: You can use the fact that $\delta_{a} * \delta_{b}=\delta_{a+b}$ and $\delta_{a} * u=\sum_{k \in \mathrm{Z}} \delta_{a+\frac{2}{3} k}$.

3. (5) Let $\Pi_{\frac{4}{3}}(x)=\left\{\begin{array}{l}1,-\frac{2}{3}<x<\frac{2}{3} \\ 0, \text { else }\end{array}\right.$. Calculate $\Pi_{\frac{4}{3}} \cdot(\mathcal{F f} * u)$.
4. (5) Calculate $\mathcal{F}^{-1}\left[\Pi_{\frac{4}{3}}^{4} \cdot(\mathcal{F} f * u)\right]$.

Problem 3

(15) Let $f \in \mathcal{S}$ be bandlimited on $\left[-\frac{1}{2}, \frac{1}{2}\right]$, i.e. $\mathcal{F} f$ is supported on $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Show that $\int_{-\infty}^{+\infty}|f(x)|^{2} d x=\sum_{n \in Z}|f(n)|^{2}$.

Problem 4

1. (10) Let $R\left(x_{1}, \ldots, x_{n}\right)$ be the n-dimensional rectangular function given by

$$
R\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1, & x \in Q \\ 0, & \text { otherwise }\end{cases}
$$

where $Q:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{R}^{n}:-\frac{1}{2}<x_{j}<\frac{1}{2}\right.$ for every $\left.1 \leq j \leq n\right\}$ is the n-dimensional unit square. Calculate the n-dimensional Fourier transform $\mathcal{F} R(\xi)$.
2. (10) Calculate $\int_{-\infty}^{+\infty}\left(\frac{\sin x}{x}\right)^{2} d x$.

Problem 5

Let $(G,+)$ be a finite abelian group and denote its zero-element by 0_{G}. Suppose f, g are complex-valued functions on G and the convolution of f and g is given by
$f * g(a)=\frac{1}{|G|} \sum_{b \in G} f(a-b) g(b)$.

1. (5) Prove the convolution theorem $f * g(\chi)=\hat{f}(\chi) \hat{g}(\chi)$ for $\chi \in \hat{G}$.
2. Let $D: G \rightarrow \mathrm{C}$ be given by $D(c)=\sum_{\chi \in \hat{G}} \chi(c)$.

- (5) Show that $D(c)= \begin{cases}|G|, & c=0_{G} ; \\ 0, & \text { otherwise } .\end{cases}$
- (5) Show that $f * D=f$.
- (5) The Fourier series of f is given by $S f=\sum_{\chi \in \hat{G}} \hat{f}(\chi) \chi$. Show that $S f=f * D$.
10^{\prime}

1. 2. A test function on the circle is a 2π-periodic smooth function φ with compact support on its periods. Then its Fourier series, $\sum_{n=-\infty}^{t^{\infty}} b_{n} e^{i n x}$ converges uniformly.

Let $\sum_{n=-\infty}^{+\infty} a_{n} e^{i n x}$ be the Fourier series of f, then

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \varphi(x) d x & =\int_{-\pi}^{\pi} f(x) \sum_{m=-\infty}^{+\infty} b_{m} e^{i m x} d x \\
& =\int_{-\pi}^{\pi} \sum_{m=-\infty}^{+\infty} b_{m} f(x) e^{i m x} d x
\end{aligned}
$$

$$
\begin{aligned}
\begin{aligned}
& \text { You need to explain then } \rightarrow=\sum_{m=-\infty}^{+\infty} b_{m} \int_{-\pi}^{\pi} f(x) e^{i m x} d x \\
& \text { this is because } \\
& \text { Uniform convergence. }=\sum_{m=-\infty}^{+\infty} b_{m} a_{-m}
\end{aligned} \text { }
\end{aligned}
$$

On the other hand, for positive integer N.

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sum_{n=-N}^{N} a_{n} e^{i n x} \sum_{m=-\infty}^{+\infty} b_{m} e^{i m x} d x \\
= & \sum_{n=-\infty}^{N} a_{n} \int_{-\pi}^{\pi} \sum_{m=-\infty}^{+\infty} b_{m} e^{i(n+m) x} d x \\
= & \sum_{n=-N}^{N} a_{n} b_{-n}
\end{aligned}
$$

$$
=\sum_{n=-\infty}^{N} a_{n} \int_{-\pi}^{\pi} \sum_{m=-\infty}^{+\infty} b_{m} e^{i(n+m) x} d x \leftarrow \text { here we need uniform }
$$

let $N \rightarrow \infty$ we get the desired result. because $\left|a_{n}\right|$ is uniform bounded, $\left|b_{n}\right| \rightarrow 0$ Tepidly because φ is test for

We have shoved that $\int_{-\pi}^{\pi} f \varphi d x=\int_{-\pi}^{T_{1}}\left(\sum_{n=-\infty}^{1^{7}} a_{n} e^{i n x}\right) \varphi(x) d x$
$10^{10^{\prime}} 1.2$. Sine $f=\sum_{n=-\infty}^{+\infty} a_{n} e^{i n x}$ in sense of distribution $f^{\prime \prime}=\sum_{n=-\infty}^{+\infty} i^{2} n^{2} a_{n} e^{i n x} \quad$ in sense of distribution

By assumption, $f^{\prime \prime}$ is L^{2}, so

$$
\left\|f^{\prime \prime}\right\|_{L^{2}\left(s^{\prime}\right)}^{2}=\sum_{n=-\infty}^{+\infty} n^{2}\left|a_{n}\right|^{2}<\infty
$$

This implies $n^{2}\left|a_{n}\right|^{2}$ is bounded.

$$
\begin{aligned}
\sum_{n=-\infty}^{+\infty}\left|a_{n} e^{i n x}\right| \leqslant \sum_{n=-\infty}^{+\infty}\left|a_{n}\right| & \leqslant \text { constant } \cdot \sum_{n=-\infty}^{+\infty} \frac{1}{n^{2}} \\
& <\infty
\end{aligned}
$$

So $\sum_{n=-\infty}^{+\infty} a_{n} e^{\text {ind }}$ converges to f uniformly by M test.

Problem 2

$$
\begin{aligned}
10^{\prime} \text { 1. } f(t) & =\cos (2 \pi t)=\frac{e^{2 \pi i t}+e^{-2 \pi i t}}{2} \\
g f & =g\left(\frac{e^{2 \pi i t}+e^{-2 \pi i t}}{2}\right)=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right)
\end{aligned}
$$

Note: $g\left(e^{2 \pi i t}\right)=\delta_{1}$ as tempered distribution

$$
\begin{aligned}
\text { 5 }^{\prime 2} \quad f f * u & =\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right) * \sum_{k=-\infty}^{+\infty} \delta_{\frac{2}{3} k} \\
& =\frac{1}{2} \sum_{h=-\infty}^{+\rho}\left(\delta_{1+\frac{2}{3} k}+\delta_{-1+\frac{2}{3} h}\right)
\end{aligned}
$$

, 3.
Recall that $f \cdot \delta_{a}=f(a) \delta_{a}$ So

$$
\begin{aligned}
& \prod_{\frac{4}{3}} \cdot(g f * u)=\frac{1}{2} \prod_{\frac{4}{3}} \cdot \sum_{h=-\infty}^{+\infty}\left(\delta_{1+\frac{2}{3} h}+\delta_{-1+\frac{2}{3} h}\right) \\
& =\frac{1}{2} \sum_{k=-\infty}^{+\infty}\left(\prod_{\frac{4}{3}}\left(1+\frac{2}{3} k\right) \delta_{1+\frac{2}{3} b}+\prod_{\frac{4}{3}}\left(-1+\frac{2}{3} k\right) \delta_{-1+\frac{2}{3} b}\right) \\
& \Pi_{\frac{4}{3}}\left(1+\frac{2}{3} k\right)=1 \text { if and only if }-\frac{2}{3}<1+\frac{2}{3} k<\frac{2}{3} \\
& \Leftrightarrow \quad-\frac{5}{3}<\frac{2}{3} k<-\frac{1}{3} \\
& \Leftrightarrow \quad-5<2 k<-1 \\
& \Leftrightarrow \quad-2.5<k<-0.5 \\
& \text { ide. } k=-2 \text { or } k=-1
\end{aligned}
$$

heres $\sum_{k=-\infty}^{+\infty} \prod_{\frac{4}{3}}\left(1+\frac{2}{3} k\right) \delta_{1+\frac{2}{3} k}=\delta_{-\frac{1}{3}}+\delta_{\frac{1}{3}} \leftarrow$ here we need the foes

$$
f \delta_{a}=f(a) \delta_{a}
$$

Similarly $\sum_{k=\infty}^{+\infty} \prod_{\frac{4}{3}}\left(-1+\frac{2}{3} k\right) \delta_{-1+\frac{2}{3}}=\delta_{-\frac{1}{3}}+\delta_{\frac{1}{3}}$
If follows that $\pi_{\frac{4}{3}} \cdot(g f * u)=\delta_{-\frac{1}{3}}+\delta_{\frac{1}{3}}$

$$
\text { 4. } \begin{aligned}
g^{-1}\left[\pi_{\frac{4}{3}} \cdot(f f * u)\right] & =g^{-1}\left(\delta_{-\frac{1}{3}}+\delta_{\frac{1}{3}}\right) \\
& =e^{-2 \pi i\left(-\frac{1}{3} x\right)}+e^{-2 \pi i\left(\frac{1}{3} x\right)} \\
& =e^{\frac{2}{3} \pi i x}+e^{-\frac{2}{3} \pi i x} \\
& =2 \cos \left(\frac{2}{3} \pi x\right)
\end{aligned}
$$

15^{\prime}
Problem 3 let $F(S)$ be the Foamier transom of f, ie. $F(s):=I f(s)$
periodic F to a 1 -periodic function F_{1} i.e. $F_{1}(s)=\sum_{n=-\infty}^{+\infty} F(s-n)$
Then let $\sum_{n=-\infty}^{+\infty \infty} \hat{F}_{1}(n) e^{i n x}$ be the Foxier series of F_{1}
Note that since F is supported on $\left[-\frac{1}{2}, \frac{1}{2}\right]$

$$
\begin{equation*}
F=\pi_{1} \cdot F_{1} \tag{*}
\end{equation*}
$$

Then we know that $\hat{F}_{1}(n)=g F(n)=(g f f)(n)=f(-n)$
By parsval identity $\left\|F_{1}\right\|_{L^{2}(T)}^{2}=\sum_{n=-\infty}^{+\infty}\left|F_{1}(n)\right|^{2}$

$$
B y(x)\|F\|_{L^{2}(\mathbb{R})}^{2}=\left\|F_{1}\right\|_{L^{2}(T)}^{2}=\sum_{n=-\infty}^{n+\infty}|f(-n)|^{2}=\sum_{n=-\infty}^{+\infty}|f(n)|^{2}
$$

By Plancherel identity $\int_{-\infty}^{+7}|f(x)|^{2} d x=\int_{-\infty}^{+\pi}|f f(s)|^{2} d s$

$$
=\|F\|_{L^{2}(\mathbb{R})}^{2}
$$

combine above identities we find

$$
\int_{-\infty}^{+\infty}|f(x)|^{2} d x=\sum_{n=-\infty}^{-\infty}|f(n)|^{2}
$$

Problem 4
Note that $R\left(x_{1}, \cdots, x_{n}\right)=\Pi_{1}\left(x_{1}\right) \cdot \Pi_{1}\left(x_{2}\right) \cdots \Pi_{1}\left(x_{n}\right)$
10° i.e. R is tensor product.

$$
\text { Then } \begin{aligned}
J R(\xi) & =\delta \pi_{1}\left(\xi_{1}\right) \ldots F \pi_{1}\left(\xi_{n}\right) \\
& =\frac{\sin \left(\pi \xi_{1}\right)}{\pi \xi_{1}} \ldots \frac{\sin \left(\pi \xi_{n}\right)}{\pi \xi_{n}}
\end{aligned}
$$

10 2. Apply Plancherel to $g \Pi_{1}(s)=\frac{\sin \pi s}{\pi s}$

$$
\text { we get } 1=\int_{-\infty}^{+\infty}\left|\pi_{1}(t)\right|^{2} d t=\int_{-\infty}^{+\infty} \frac{\left.\sin (\pi s)\right|^{2}}{|\pi s|^{2}} d s
$$

let $x=\pi s$, we get $d x=x d s$

$$
\begin{gathered}
1=\int_{-\infty}^{-\infty} \frac{\sin ^{2}(\pi s)}{(\pi s)^{2}} d s=\int_{-\infty}^{+\infty} \frac{\sin ^{2} x}{x^{2}} \cdot \frac{d x}{\pi} \\
\Rightarrow \int_{-\infty}^{+\infty} \frac{\sin ^{2} x}{x^{2}} d x=\pi
\end{gathered}
$$

Problem 5

$$
\hat{f}(X)=\frac{1}{|G|} \int_{G} f \bar{X}=\frac{1}{\mid 10} \sum_{a \in G} f(a) X(-a)
$$

$$
\text { 5' 1. } \begin{aligned}
\widehat{f * g}(x) & =\frac{1}{\mid G} \sum_{a \in G} f \times g(a) X(-a) \\
& =\frac{1}{|G|} \sum_{a \in G}\left(\frac{1}{|G|} \sum_{b \in G} f(a-b) g(b)\right) \chi(-a) \\
& =\frac{1}{|G|^{2}} \sum_{b \in G} \sum_{a \in G} f(a-b) g(b) X(-a+b) \chi(-b) \\
& =\frac{1}{|G|} \sum_{b \in G} g(b) \chi(-b) \cdot \frac{1}{|G|} \sum_{a \in G} f(a-b) X(-(a-b)) \\
& =\hat{g}(\chi) \hat{f}(x)
\end{aligned}
$$

ξ^{\prime}
(2)

$$
\begin{aligned}
& D(0)=\sum_{x \in \bar{G}} X(0)=\sum_{x \in G} 1=|\hat{G}|=|G| \\
& \begin{array}{l}
\text { here we need Than2.5 of } \\
\text { chapter } 7
\end{array} \\
& \text { for } C \neq O_{G} . \quad D(c)=\sum_{x \in \hat{G}} X(c) \\
& \text { fix any } X_{0} c+X_{0}(c) \neq 0 . \quad D(c) \cdot X_{0}(c)=\sum_{x \in \bar{G}} X(c) \cdot X_{0}(c)=\sum_{x \in \hat{G}}\left(X+x_{0} \mid(c)\right. \\
& \text { The only possibility for this to hold is } D(C)=0 \text {. } \\
& =\sum_{x^{\prime} \in \hat{c}} X^{\prime}(c)=D(c)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5' }(f * D)(a)=\frac{1}{|6|} \sum_{b \in G} f(a-b) D(b) \\
& =\frac{1}{|G|} f(a-0) \cdot|G|=f(a) \\
& \begin{array}{c}
5^{\prime} \text { show } \\
S P=f+1
\end{array} \quad S f(a)=\sum_{x \in G} \hat{f}(x) X(a)=\frac{1}{(G G} \sum_{X \in \zeta} \sum_{b \in G} f(b) X[-b) X(a)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{|G|} \sum_{b \in G} \sum_{X \in G} f(b) \chi(a-b) \\
& =\frac{1}{|G|} \sum_{b \in G} f(b) \cdot D(a-b) \\
& =\frac{1}{|G|} f(a) \cdot|G|=f(a)
\end{aligned}
$$

We have showed $S f(a)=(f * 0)(a)=f(a)$.

