
Exam

Problem 1

Let f be a continuous function on the circle and ∑ +∞
n = −∞ane

inx its Fourier series.

1. (10) Show that f = ∑ +∞
n = −∞ane

inx in the distributional sense.

Hint: for a test function φ on the circle, write φ(x) = ∑ +∞m= −∞bme
imx, show that 

1
2π ∫

π
− πf(x)φ(x)dx =

1
2π ∫

π
− π(∑

+∞
n= −∞ane

inx)(∑ +∞n= −∞bme
imx)dx. Justify your solution

carefully.

2. (10) Suppose f ″  (the second derivative of f in the distributional sense) is equal to an L2-
function on the circle. Show that the Fourier series of f converges to f absolutely
uniformly.

Problem 2

Given the function f(t) = cos(2πt).

1. (10) Compute the Fourier transform of f in the sense of tempered distributions.

2. (5) Let u be the tempered distribution ∑ +∞
k = −∞δ

2k
3

. Calculate Ff ∗ u.

Hint: You can use the fact that δa ∗ δb = δa + b and δa ∗ u = ∑k∈ Zδa +
2
3 k

.

3. (5) Let Π 4
3
(x) =

1, −
2
3 < x <

2
3

0, else
. Calculate Π 4

3
⋅ (Ff ∗ u).

4. (5) Calculate F − 1[Π 4
3

⋅ (Ff ∗ u)].

Problem 3

(15) Let f ∈ S be bandlimited on [ −
1
2 ,

1
2 ], i.e. Ff is supported on [ −

1
2 ,

1
2 ]. Show that 

∫ +∞
−∞ | f(x) | 2dx = ∑n∈ Z | f(n) | 2.

Problem 4

1. (10) Let R(x1, …, xn) be the n-dimensional rectangular function given by

{

 



R(x1, …, xn) =
1, x ∈ Q;
0, otherwise,

where Q := {(x1, …, xn) ∈ Rn : −
1
2 < xj <

1
2  for every 1 ≤ j ≤ n} is the n-dimensional unit

square. Calculate the n-dimensional Fourier transform FR(ξ).

2. (10) Calculate ∫ +∞
−∞(

sin x
x )2dx.

Problem 5

Let (G, + ) be a finite abelian group and denote its zero-element by 0G. Suppose f, g are

complex-valued functions on G and the convolution of f and g is given by

f ∗ g(a) =
1

|G | ∑b∈Gf(a − b)g(b).

1. (5) Prove the convolution theorem 
^
f ∗ g(χ) = f̂(χ)ĝ(χ) for χ ∈ Ĝ.

2. Let D :G → C be given by D(c) = ∑χ∈ Ĝχ(c).

(5) Show that D(c) =
|G | , c = 0G;

0, otherwise.

(5) Show that f ∗ D = f.

(5) The Fourier series of f is given by Sf = ∑χ∈ Ĝf̂(χ)χ. Show that Sf = f ∗ D.

{

{
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