Exam

Problem 1

Let *f* be a continuous function on the circle and $\sum_{n=-\infty}^{+\infty} a_n e^{inx}$ its Fourier series.

- 1. (10) Let $S_N := \sum_{n=-N}^N a_n e^{inx}$. Show that $f = \lim_{N \to \infty} S_N$ in the distributional sense.
 - *Hint: for a test function* φ *on the circle, write* $\varphi(x) = \sum_{m=-\infty}^{+\infty} b_m e^{imx}$, *show that* $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)\varphi(x)dx = \lim_{N \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} S_N(x) (\sum_{m=-\infty}^{+\infty} b_m e^{imx})dx$. Justify your solution carefully.
- 2. (10) Suppose f'' (the second derivative of f in the distributional sense) is equal to an L^2 -function on the circle. Show that the Fourier series of f converges to f absolutely uniformly.

Problem 2

Given the function $f(t) = \cos(2\pi t)$.

- 1. (10) Compute the Fourier transform of f in the sense of tempered distributions.
- 2. (5) Let *u* be the tempered distribution $\sum_{k=-\infty}^{+\infty} \delta_{\frac{2k}{3}}$. Calculate $\mathcal{F}f * u$.
 - Hint: You can use the fact that $\delta_a * \delta_b = \delta_{a+b}$ and $\delta_a * u = \sum_{k \in \mathbb{Z}} \delta_{a+\frac{2}{3}k}$.
- 3. (5) Let $\Pi_{\frac{4}{3}}(x) = \begin{cases} 1, -\frac{2}{3} < x < \frac{2}{3} \\ 0, else \end{cases}$. Calculate $\Pi_{\frac{4}{3}} \cdot (\mathcal{F}f * u)$.
- 4. (5) Calculate $\mathcal{F}^{-1}[\Pi_{\frac{4}{2}} \cdot (\mathcal{F}f * u)].$

Problem 3

(15) Let $f \in S$ be bandlimited on $\left[-\frac{1}{2}, \frac{1}{2}\right]$, i.e. $\mathcal{F}f$ is supported on $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Show that $\int_{-\infty}^{+\infty} |f(x)|^2 dx = \sum_{n \in \mathbb{Z}} |f(n)|^2$.

Problem 4

1. (10) Let $R(x_1, \ldots, x_n)$ be the *n*-dimensional rectangular function given by

 $R(x_1, \dots, x_n) = \begin{cases} 1, & x \in Q; \\ 0, & \text{otherwise,} \end{cases} \text{ where } Q := \{(x_1, \dots, x_n) \in \mathbb{R}^n : -\frac{1}{2} < x_j < \frac{1}{2} \text{ for every } 1 \le j \le n\} \text{ is the dimensional matrices form } \mathcal{T} P(\zeta) \end{cases}$

n-dimensional unit square. Calculate the *n*-dimensional Fourier transform $\mathcal{F}R(\xi)$.

2. (10) Calculate $\int_{-\infty}^{+\infty} (\frac{\sin x}{x})^2 dx$.

Problem 5

Let (G, +) be a finite abelian group and denote its zero-element by 0_G . Suppose f, g are complex-valued functions on G and the convolution of f and g is given by

$$f st g(a) = rac{1}{|G|} \sum_{b \in G} f(a-b) g(b)$$
 .

1. (5) Prove the convolution theorem $\widehat{f * g}(\chi) = \widehat{f}(\chi)\widehat{g}(\chi)$ for $\chi \in \widehat{G}$.

- 2. Let $D:G
 ightarrow \mathbb{C}$ be given by $D(c)=\sum_{\chi\in\hat{G}}\chi(c).$
 - (5) Show that $D(c) = \begin{cases} |G|, & c = 0_G; \\ 0, & \text{otherwise.} \end{cases}$ (5) Show that f * D = f.

 - (5) The Fourier series of f is given by $Sf = \sum_{\chi \in \hat{G}} \hat{f}(\chi)\chi$. Show that Sf = f * D.