Chapter 4 Fourier Series and Integrals
on Groups

4.1 GROUPS

Up to now, you have studied Fourier series and integrals for assorted
classes of functions, mostly on the circle and the line. Both of these spaces
are commutative groups (under addition). The purpose of this chapter is,
first, to take a new look at the old series and integrals from the point of view
of groups, and second, to develop similar ways of expressing functions on
other important (commutative and noncommutative) groups. The knowl-
edge of groups that you will need is prepared in the present section and at
appropriate places later. Birkhoff and MacLane [1965] is recommended
for additional information; for a fascinating elementary account of finite
groups and symmetry, see Weyl [1952].

1. Groups as Such

A group G is a class of objects g which is equipped with a multiplication,
that is, a map of (g,,9,) € GXG into G expressed as a (formal) product
“g.g,,” in such a way that
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204 4 FOURIER SERIES AND INTEGRALS ON GROUPS

(a) the multiplication is associative: g,(g9,93) =(9,92)93,
(b) there is an identity 1: lg=gl =g.
(c) every ge G has an inverse g ': g lg=gg9 ' =1.

G is commutative if g, g, is always the same as g, g,; in this circumstance,
it is customary to use addition [g,+g,] in place of multiplication [g,g,]
and to denote the identity by O instead of by 1.

EXAMPLES

(1) S!': the circle [0, 1) under addition modulo 1.

(2) R': the line under addition.

(3) R'*: the positive real numbers under multiplication.

(4) Z': the integers under addition.

(5) Z,': the integers O,1,...,m—1 under addition modulo a positive
integer m.

(6) Z,*: the positive integers 1,2,...,p—1 under multiplication modulo
a prime p.

(7) the permutation of n > 2 letters under composition of permutations.

(8) the symmetries of the square: counterclockwise rotation by 0°, 90°,
180°, 270°, reflection in either diagonal, horizontal and vertical reflection,
under composition.

(9) SO(3): the special orthogonal group of 3 x 3 real orthogonal matrices
[transpose = inverse] with determinant +1, under the conventional multi-
plication of matrices.

(10) M(2): the rigid motions of the plane, i.e., translations and rotations,
alias the Euclidean congruences.

EXERCISE 1. Example 6 is an actual group only if p is prime. Hint:
If p is prime, then 0 <n<p and p are relatively prime, so in+jp=1 for
some integral / and j.

EXERCISE 2. Example 7 is noncommutative if n > 3.

EXERCISE 3. Examples 8-10 are noncommutative groups.

2. Subgroups and Homomorphisms

Let G be a group. Then H < G is a subgroup if it is a group in its own right.
G/H stands for the family of cosets gH =(gh: he H) as g runs over G.
A homomorphism j of G is a map of G into a second group, which preserves
the multiplication [j(g,9,) =j(9:)j(g9,)]; j is an isomorphism if it is also
1:1 and onto.
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EXERCISE 4. Check that two cosets are either identical or disjoint, i.e.,
the nonidentical cosets cover G simply (no overlapping).

EXERCISE 5. Check that G/H is a group under the multiplication
(g, H)(g,H)=(g,9,) H iff g Hg < H for every ge G, and that in that
case the natural map j: g—» gH of G into G/H is a homomorphism. Hint:
Check first that the proposed rule for multiplication makes sense, i.e., if
g1H=g;Hand g,H=g,H, then g,9, H=g3;9,H.

EXERCISE 6. Every homomorphism j of G arises as in Exercise 5:
Namely, if j is a homomorphism of G into a second group G’, then j(G) is a
subgroup of G', H="'(1')=(ge G: j(g)=1") is a subgroup of G, and
j(G) is isomorphic to G/H. Here, 1’ stands for the identity of G’. Check all
these claims.

EXERCISE 7. The symmetries of the square [Example 8] which leave
the upper left-hand corner fixed form a subgroup H. Show that G/H can be
identified with the corners of the square, but is not a group. Hint: Identify
g € G with the place to which it sends the upper left-hand corner.

EXERCISE 8. Check that the groups of Examples 2 and 3 are iso-
morphic.

EXERCISE 9. Check that any finite group is isomorphic to a subgroup
of the permutations of » letters for sufficiently large n. Hint: Pick k e G.
Then you can identify the map g — kg with a permutation of the “letters”
geaG.

EXERCISE 10. Check that R'/Z! is isomorphic to S*.

3. Characters

A character of a group G is a homomorphism e of G into the (multiplica-
tive) group of complex numbers of modulus1:

(@ le(@l=1  gegq,

() e(g192) =e(gy)e(g2);

in the case of continuous groups, such as Examples 1, 2, and 3, it is cus-
tomary to insist that e be a continuous function on G.

EXERCISE 11. Check that e(1) = 1.
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EXERCISE 12. Check that e(g™ ") =e(g)" ' =e(g)*.
G stands for the class of characters of the group G.

EXERCISE 13. Check that G is a commutative group under the multi-
plication (e,e,)(g) = e,(g)e,(g). What is the identity of G? G is the so-
called dual group of G.

EXERCISE 4. Compute the dual group of Z,*. Hint: Z,* may be
identified with the integers 0 < n < m. Check that (Z,")" =Z,".

EXERCISE 15. The “signature” of a permutation is (—1)* in which
# is the number of transposition ij— ji figuring in the permutation. Check
that this signature is a character of the group of permutations of n=23
letters. Hint: Every permutation is a product of transpositions but can
be so expressed in many ways. The point is that the parity of the number
of transpositions involved is an attribute of the permutation itself.

EXERCISE 16. The only character of the group of permutations of
n = 2 letters besides the signature is e = 1. The moral is that characters are
probably not much use for noncommutative groups; see Subsection 4.8.4
for a proof that e = 1 is the only character of the group SO(3) of Example 9.
Hint: e(ij)= +1 for any transposition ij. Why? Besides, (ik)(ij) (ik) = kj,
and so e(ij) is either always + 1 or always —1 for every ij.

4.2 FOURIER SERIES ON THE CIRCLE

The purpose of this section is to “explain’ the exponentials
e,,(x) — eZninx
figuring in the standard Fourier series

f=Ylme,

from the point of view of the circle group S' = R'/Z".
1. Characters
e,: n€ Z"' is a complete list of the characters of the circle group.

PROOF. e, is a character for every integer n: Namely, |e,| =1 and
e,(x+y)=-e,(x)e,(¥). Now let e be any character and think of it as a
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character of R' of period 1 by putting e(x+n) =e(x) for 0<x <1 and
integral n. Because |e| =1,

e(x) = ™

with a real phase ¢, and since e is multiplicative [e(x+y) = e(x)e(y)],
¢ is additive [@(x+y) = @(x)+¢(y), modulo2r]. But then ¢(jx)=jp(x),
modulo2r, for any integral j, so ¢(x) = x¢(l), modulo2n, for rational
x =k/[j, and

e(x) = e*° W),

first for rational x = k/j, and then for every real x, by continuity. To finish
the proof, you infer from

1 = e(0) = e(l) = ei*®

that ¢ (1) can only be an integral multiple of 2r, i.e., e = ¢, for some ne Z*.

EXERCISE 1. The map e,—»neZ"' is an isomorphism between the
dual group (S')* and Z'. Check that (S")** [the dual group of ($')"]
is isomorphic to S! [(Z*)* up to isomorphism]. This is a simple instance
of the so-called ““Pontrjagin duality”; see also Exercises 4.1.10 and 4.1.14,
and Section 4.5, especially the comment on the Poisson summation formula.

2. Invariant Subspaces

A second group-theoretical way of getting at the exponentials e, is via
translation invariant subspaces of L*(S!). A closed subspace M is trans-
lation invariant if it is closed under translations, i.e., if

S,(x) = f(x+))

belongs to M for every fe M and every y € S'. A simple example is provided
by the class M, of complex multiples of e,.

Warning: In this book invariant subspaces are a/lways closed subspaces.

EXERCISE 2. Check that e,of = e, f(n) belongs to M for any fe M.
Hint: e,of may be approximated in L*(S') by the Riemann sum

m-1 k (k+ Djm
> f(x - —) [Tama.
k=0 my Jk

Im

EXERCISE 3. The “spectrum” of M is the class of integers n such that
f(n)# 0 for some fe M. Check that M is the (perpendicular) sum @®M,,
n running over the spectrum of M.
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The content of Exercise 3 is that M,: ne Z' is a complete list of minimal
invariant subspaces of L*(S'). The self-evident perpendicular splitting
LSH= & M,
|n] < o
is a special case; you may regard it as a new statement of the Plancherel
identity.

EXERCISE 4. Check that the family f,: 0 <y <1 spans L*(S") iff f(n)
never vanishes.

EXERCISE 5. Check that as n runs over Z', M" =(fe L*(S'): f(n) = 0)
runs through the maximal invariant subspaces of L?(S'). The adjective
“maximal”’ means that there are no other invariant subspaces between
M" and L*(S").

3. Eigenfunctions

Additional interest attaches to the exponentials e, as eigenfunctions of
the differential operator Kf=f". What is not self-evident beforehand is
that the minimal invariant subspaces should be eigenspaces of such a nice
differential operator! A link is provided by

EXERCISE 6. Check that any linear operator K acting on C%(S!)
and commuting with translations [x —x+y] and reflection [x —» —x] acts
like multiplication by a constant on M, ®@M_,, i.e., M, ® M_, is an eigen-
space of K. Check that if K= cy(x)+¢,(x) D+ +--+¢,(x) D" is a differential
operator with coefficients from C®(S') which commutes with translations
and reflections, then it must be a polynomial in D?.

4. Homomorphisms

Think of summable functions on the circle as an algebra under the cus-
tomary product

1
Siofi(x) = J;f1(x"Y)fz(}’) dy.

A homomorphism of this algebra is a mapping j# 0 into the complex
numbers which respects

(a) complex multiplication: j(constant x ) = constant x j(f),
(b) addition: j(f, +/;) =j(f1)+j(f>), and
(c) multiplication: j(f,f2) =j(£,) j(f2),
subject to the technical condition
(d) |j(f)| <constantx [ f|,, with a constant independent of f.
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A simple example is provided by the nth Fourier coefficient:
1
W) =fo = | fer.

EXERCISE 7. Check that if j is a homomorphism then there is an
integer n such that j(e,) =1 or 0 according as m = n or not. Hint: e,of =
e, f(n); now apply j to both sides.

Any summable function f can be well-approximated by sums of ex-
ponentials, so by (d) and Exercise 7, either j(f)=f(n) for some n, or
j(f) =0, which is not allowed; in short, j,: n€ Z"' is a complete list of the
homomorphisms of L' (S").

EXERCISE 8. Give a second proof that j,(f) =f(n) is a complete list
of homomorphisms using Exercise 1.5.6 to represent j(f) as [} f(x)e*(x)dx
with a bounded function e. Hint: Think of e and f as periodic functions on
R!. Then j(f,°f3) =j(f1) j(f2) implies e(x+y) = e(x)e(y) a.e. on the plane,

and therefore
b+ x

e(x) J;be(y) dy = Lbe(x+y) dy = f e(y) dy

a+x
for almost all x and any @ and b. Conclude that e C'(S') is a solution of
e'(x)=¢'(0)e(x).

5. Summary

To sum up, the exponentials e,: n € Z' play four different roles: (a) They
are the characters of the circle group; (b) they span the minimal invariant
subspaces; (c) they are eigenfunctions of Kf=f"; (d) they can be identified
with the homomorphisms of the algebra of summable functions.

This is the simplest statement of the four principal themes of the present
chapter. You will see that, with appropriate modifications, they recur for
(samples of) a wide class of important groups, and provide you with a
powerful and flexible arsenal of Fourier methods, specially adapted to
group-allied problems.

EXERCISE 9. Redo Subsections 1-4 for the standard (n > 2)-dimen-
sional torus T" = R"/Z" of Subsection 1.10.1.
4.3 FOURIER INTEGRALS ON THE LINE

A group-theoretical interpretation is also available for Fourier integrals
on the line, but with technical complications.
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1. Characters

The exponentials

2riyx

e(x)=e

are the characters of R', and the map e, —»y € R' is an isomorphism between
the dual group (R")" and R' itself, that is to say, R' is self-dual. The proof
is made as before; the only difference is that no restriction is placed upon
the phrase ¢ (1) =2ny.

2. Invariant Subspaces

The business of invariant subspaces is complicated by the fact that non-
zero minimal closed subspaces do not exist. But there is a perfectly satisfactory
analogue of Exercise 4.2.3.

EXERCISE I. Any invariant subspace M of L?>(R') can be expressed as
M = L*(Q)" = (fe L’(R"):f=00ff Q)

for some measurable set Q = R'. Hint: By Exercise 1.3.13, M is separable.
Pick f,:n>1 dense in M and let Q={J2,(y:/,(») #0). Check that
M* < L>(Q). The fact that M"* = L*(Q) is now verified by picking k from
the annihilator of M" in L2(Q) and concluding that k =0 from

0 = [ f) k() dy
for every y€ R' and fe M.

The content of Exercise 1 can be expressed in a formal but suggestive way.
The class M, of complex multiples of e, is closed under translations, and
while it is not a subspace of L*(R'), it is only “‘a little way out”: namely,

B
f e,(x)dy =

belongs to L?(R!) for any small interval [a,8] so you may think of M, dy as
a “thin slice” of L*(R'). The content of Exercise 1 is that any closed in-
variant subspace M is the (perpendicular) sum (or better, the integral) of
the “slices” in its “spectrum’:

M=@ Mydy=f M, dy.
Q 0]

eg(x) —e,(x)
2mix

A special case of Exercise 1 is the fact that the translates of fe L*(R") span
L2(R") iff (y: f(y) = 0) is of measure 0; see Exercise 2.5.11 for an application



4.3 FOURIER INTEGRALS ON THE LINE 211

to Hermite functions, and Exercise 4.2.4 for the analogue for the circle.
The present statement is known as “Wiener’s Tauberian theorem.”

EXERCISE 2. The translates of a summable function f span L!(R')
iff /() # 0 for any y € R'. Check this for rapidly decreasing f. The general
fact is known as “Wiener’s Tauberian theorem for L'(R').” Hint: Any
compact function of class C®(R') can be expressed as fl? for some compact
ke C®(R"). Why? Now look at (fk)¥ =fok. The rest should be plain
sailing.

3. Eigenfunctions
As before, it is very satisfactory to notice that the exponentials
2riyx

e

are (bounded) eigenfunctions of the differential operator Kf=f". As for
the circle, any nice differential operator commuting with translations and
reflection is a polynomial in K = D2

4. Homomorphisms

The business of homomorphisms of L!(R!) is technically more com-
plicated, too. A homomorphism is defined as before, and e,of = eyf(y),
but e, is not summable, so the old proof fails. But the fact is still true:

W) =50 = [fer. pert,
is a complete list of the homomorphisms of L' (R!).

PROOF. The map f—f, interacts with the homomorphism j as follows:
J k) = j(fy o k) = j(fek,) = j()j(k,)
for summable f and k. Pick k so as to make j(k)=1. Then
i) =e»n i)
for every summable f, with a universal function
e(y) = Jjk,).
This function is a character. To begin with,

e(x+y)j(f) = j(fis)) = e(x) jf)) = e(x) e(») j(f)

! Adapted from Kac [1965).
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so e is multiplicative. It is also bounded:
le()| = [jk,)| < constant x [k|;.
le] =1 follows readily, and from e(0) = 1, you conclude that
e(y) = ¥ = e,(y)

for some real y. Now j(f) may actually be evaluated as

Jj) =jk) j(f) = jkof)

=J (fk-yf(y) dy)

- f jte_) f(3) dy
- f F0) e dy
=f@).

The only point at issue is the passage from line 2 to line 3 which may be
justified by picking ke C°(R"), still with j(k)=1, and noting that the
length

i+ 1)jn
kef= ¥ ke [ )y u

lil<in ifn

tends to 0 as nToo and /foo, in that order, for then

_ . G+ 1)/n

o) = 3l | S0,
which is bounded by a constant multiple of this length, also tends to 0, and
therefore

@i+ 1)/n
Jj(f) = lim lim Z ey*(i/n)f SO dy = ffe,*.
it ntwo (i[<in iln

The proof is finished.

EXERCISE 3. Give a second proof that j,(f) = f(y) is a complete list
of homomorphisms in the style of Exercise 4.2.8.

EXERCISE 4. Redo Subsections 1-4 for R" (n > 2).

EXERCISE 5. L'[0, o0) inherits from L' (R!) the product

fiofa(®) = L =0 £, 0) dy .
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Check that
5 = F0) = [ e
is a homomorphism for any y > 0. What is the most general homomorphism?

EXERCISE 6. Check that the “Laplace transform” f—f, as defined
in Exercise 5, is 1:1 for fe L*[0,00) (y =0 is now excluded). How do you
actually compute f from f? Answer:

1 (> . .
fx) = lim—f f(a+ib) e db.
alo 27 J— o

Compute [(1+x%)~1]*, [sinx]", [x*]*. Can you apply your inversion for-
mula to these special cases?

This kind of transform is specially well-suited to problems of electrical
circuits as in Subsection 2.7.4, for instance. Heaviside introduced it for that
purpose about the turn of the century, though the idea is much older; for
additional information and applications, see Doetsch [1958].

EXERCISE 7.2 Define a new product for summable functions on the
line by the recipe

fiofo () = fi(x) f ACTETAS f £,0) dy.

Check that
(a) o is commutative and associative;

®) Ifiefale < AT

(c) every nontrivial homomorphism for the s-product can be expressed
as

J(f) = f ¥

for some — o0 <y <00, Hint for (¢): The s-product of the indicator func-
tions 1; and 1, of intervals I and J of length |I]| and |J| < oo can be expressed
1,01, =|I|1, if I lies to the left of J, so j(1,)j(1,}=1I|j(1,), and if
J(1,)#0, then j(f) = [ f for every f that lives to the left of J. Try a second
proof using Exercise 1.5.6 in the style of Exercise 4.2.8.

By (c), the inversion formula for the o-product is simply the “fundamental
theorem of calculus”: namely, the transform f(y)= [’ f is inverted by

2 Adapted from Lardy [1966).
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differentiation f¥ =f’! This kind of transform has been systematically
exploited for solving combinatorial problems by Rota [1964]. A typical
example is the ‘“Mobius inversion formula” of number theory. This has to
do with functions on the positive integers: the transform is

Jm= Y fla,

d dividing n
and you invert by use of

finy= Y e(n/d)f(d)),

d dividing n

in which e is the “Mobius function”:

1 if n=1,
(-nm if n>1 isthe product
e(n) = of m unequal primes,
0 if n>1 isnota product
L of unequal primes.

EXERCISE 8. Check the Mobius inversion formula. Hint: The bi-
nomial identity Y5_,(})(—1D*=(1—-1)"=0 implies that 3 sigingz€(k) =0
if d>1.

EXERCISE 9. Check that f— f(n) is a homomorphism for the product
frefd = T L0,
i,j)=n

(i, ) being the least common multiple of 7 and j.

44 FINITE COMMUTATIVE GROUPS

The Fourier idea is seen in its simplest form on a finite commutative
group. The purpose of this section is to develop the necessary facts about
such groups. The Fourier series themselves occupy Section 4.5; an applica-
tion to number theory will be found in Section 4.6.

Let G be a finite commutative group, and let H be a subgroup. The coset
space G/H is always a group [see Exercise 4.1.5]: the so-called factor group
#(G) is the cardinality of G. For g € G, #;(g) = #(g) is the smallest integer
n = 1 such that g" = 1. The following exercises have to do with these notions.

EXERCISE 1. Check that #(G) = #(G/H)#(H). Hint: Two cosets gH
are either identical or disjoint.
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EXERCISE 2. Check the following facts: #(g) divides #(G) for every
geG. g"=1iff nis an integral multiple of #(g). #;,4(gH) divides #4(g).
Hint: Use Exercise | with H = (g": 0 < k < #(g)) to prove the first assertion.

The “product” G, x G, of the groups G, and G, is the set-theoretical
product, made into a group by use of componentwise multiplication: If
g=(9,.9,) and h=(h,, h,), then gh=(g,hy,g9,h,). A simple [infinite]
example is provided by Z? [the lattice of integral points in the plane] which
is the direct product of two copies of Z!: Z?=Z'x Z!.

BASIS THEOREM. Any finite commutative group G is isomorphic to
a direct product of ““‘counters”

Z,." = the integers under addition modulo m,
alias the multiplicative group of mth roots
of unity e*™ ™. 0 < k <m,

i.e., G is isomorphic to
+ +
Zy X X ZE

for some 1 < n<oo and some integral m;: i < n.

The m;’s need not be primes, but you can choose them to be powers of a
prime. You may take this on faith if you like and pass directly on to Section
4.5. The proposition goes back to Gauss; the proof presented below is
adapted from Speiser [1945, pp. 46-49].

Step 1: Check that G is isomorphic to Z,* x---x Z,* if #(g) is a fixed
prime p for every g € G, excepting g = 1.

PROOF. Pick g;:i<n from G such that

gi' - ga # 1

for any 0 <e; <p, excepting ¢; =0, and make n as big as possible subject
to this condition. These products fill out a subgroup H of G which is iso-
morphic to Z," x++xZ," (n-fold), and the statement is that H =G; if
not, you could find g ¢ H, and you could augment » (against the assump-
tion), as follows from the fact that #;,,(g) > 1, since gH is not the identity
in G/H, and therefore #,,(g) = p, since it divides #;(g) = p [see Exercise 2].

Step 2: Check that G is isomorphic to a product of counters if #(g) is
a power of a fixed prime p for every g€ G.
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PROOF. Put
max #(g) = p".
G
The proposition is proved by induction on m; Step 1 is the case m =1, and
you assume that everything works for any integer less than m for m > 2. Now
G’ =(g°. g € G) is a subgroup of G, and
m—1

max #(g') =p ,
p

so G’ is a product of counters. Therefore, you can pick n>1 and g,":
i < nout of G’ so that every g’ € G’ can be expressed in precisely one way as

g =@ @), 0<e <#¥(g)=p
Because g, € G, it is a pth power of some g; € G, and
¥(9) = p¥(g) = p7"1.
The claim is that
gi' g # 1
for any 0 < e; < p/**!, excepting ¢; = 0. In the opposite case,
g1 gan =1

for some 0<a; <p’i*!, and a, would have to be an integral multiple of
#6,k(9,:K), K being the subgroup

(g5 gir: 0< by < p/**h).

But #;,(g,K) divides #;(g,) and is therefore a power of p, so that a, (and
likewise every one of the other exponents a;) is a power of p, and the offend-
ing identity g{'---gs» = 1 can be expressed in the forbidden form

(@) (g™ =1, 0<e¢ <phil
This contradiction shows that the subgroup
H=(g7" g 0<e<pi™h)
is isomorphic to
ZSier X o X Zhgan.

Now if H =G, you are finished. If not, pick g ¢ H. Then g~ ? € G’; as such
it is the pth power of some h e H, and #(gh) = p since (gh)’ =1 but gh # 1.
By the now familiar argument

g1t g (ghyrt # 1
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for any 0<e;<p’**! and e,,, <p, excepting e,=0. Put g,,, =gh and
fw+1 =0. Then the subgroup
Hy = (g1 gt 0< e <pt™h

is isomorphic to H x Z,*, it contains g, and if you have not already exhausted
(either yourself or) the whole of G, you can go on in this way adjoining factors
Z," until you have done so. The bulk of the proof is finished.

Step 3: You have only to check that G splits into a direct product of
groups of the kind disposed of in Step 2.

PROOF. Pick a prime p dividing #(g) for some g # 1 from G. Both

G, =(g,: #(g,) isapowerof p) .
and
G’ = (g': #(gy) is not divisible by p)

are subgroups of G, as is plain from the fact that #(g, g,) divides #(g,) #(g,).
Also, G, contains a nontrivial power of g so that #(G,) =2, and if you
now grant that G is isomorphic to G, x G’, the rest will follow by induction:
G’ splits into G, x G” so as to make #(g,) a power of a fixed prime p, for
every ¢, € G, and #(G,) = 2, and so on. The point at issue is whether or
not every g € G can be expressed as a product g =g, g’ in precisely one way.
The fact that you can have at most one such splitting is self-evident from
G, n G'=1. To prove the existence of such a splitting, put #(g)=p’q
with g not divisible by p and pick integers i and j so that ip/ +jg=1. Then

g=4g"g"
is the desired splitting: Namely, for the second factor,
(g = (g7 =1,
so that #(g/%) divides p’ and is therefore a power of p, which is to say that
g’ € G,, while, for the first factor,

(%) = (g""% =1,

so that #(g'?) divides ¢ and is therefore not divisible by p, which is to say
that g’ € G’. The proof is finished.

4.5 FOURIER SERIES ON A FINITE COMMUTATIVE GROUP

By Section 4.4, you may as well suppose that the group in question is a
product of counters:

G=2Z, x-xZ,.
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The usefulness of this splitting may now be seen in the following computa-
tion of the dual group G.
Z," is identified with the integers 0 < k < m under addition modulo m,

m

and g e G is identified with a point k =(k,---,k,) of the additive group
Zy x--xZy  that is to say, you identify g with k, g, +---+k,g,, in which
g,=(0,---,1,---,0) contains a 1 in the /th place and 0’s elsewhere. A character
e € G is now seen to split as

e(g) = e(g)" - e(g)",
and since
e(g)™ =e(g™) =e(l) =1,
you see that the numbers e(g,) are mth roots of unity:
e(gy) = e2riiim
for some 0 < j, < m,. But then the character e is completely specified by
J=Ut i) €Zp, X o X Zy |

and the map e —; establishes an isomorphism between the dual group G
and the group Z; x---x Z, ; in particular, G is self-dual!

A function f on G may be expanded into a sum of characters, or “Fourier
series.”” The chief point is that under the inner product

(fi.f2) = Zecfl @) L2(9)*,

the characters form a perpendicular family:

(e,,e;) = #(G) or O  according as e, = e, or not.
PROOF.
e1(go0) (e, ;) = ;el(go)el(g)ez(g)*
= ;el (gog)e2(9)*
= ;el(g)ez(galg)*
= ;el(g)ez(ga *er(9)*

= e,(go) (e, €3),

for any g, € G, so either e, = e, or else (¢,,e,) =0. The evaluation

lell? = (e,e) = Y le(g)|* = #(G)

G
is automatic from |e(g)| = 1. The proof is finished.



4.5 FOURIER SERIES ON A FINITE COMMUTATIVE GROUP 219

EXERCISE 1. Check that if H is a subgroup of G, then

Yeh)=#(H) or 0 according as e = 1 on H or not.
H

Hint: Think of the sum as the inner product of e with the identity of H.
Every g € G can be viewed as a character on G, i.e., as an element in G *,
by defining

g(e) = e(g).
Clearly g is multiplicative:

gleye;) = (e;ey) (9) = e(g)ex(g) = gle)g(er),

and of modulus1. Moreover in the present circumstances [G isomorphic to
G] distinct elements in G give rise to distinct elements in G* * and therefore
you see that

Y e(gy)e(g)* = #(G) or 0 according as g, = g, or not.
G
This leads at once to the

PLANCHEREL THEOREM. Any function f on G can be expanded into a
Fourier series

f= /Z:f (e)e
with coefficients

fle) =#G) " (fie) = #(G)! ;f(g)e(g)*,
and there is a Plancherel identity:
1£1? = ;lf(g)l2 = #(G)glf(e)lz = $&)|f]*
PROOF. To see that f=Y f(e)e, just compute the sum as follows:
%f(e)e(go) = ;e(go)#(G)_1 ;f(g)e(y)*
= ‘G;f(g)#(G)_l %:e(go)e(g)*

= f(g0)-
The proof of the Plancherel identity is just as easy.

The next topic is the Poisson summation formula, but first a brief aside.
Given a subgroup H of G, let (G/H) be the class of characters e of G which
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are trivial on H: e(h) = 1. A character of this kind is a function of cosets gH
and so can be thought of as a character of the factor group G/H. This cor-
respondence goes the other way too: any character e’ of G/H can be lifted
up to G by the rule e(g) =e'(gH) and so can be thought of as belonging
to (G/H)'. To sum up, (G/H) and (G/H)" are isomorphic, and you may
take the liberty of confusing the two. The Poisson summation formula may
now be stated as

Yy =4%H) Y fe).
H (G/H)"

PROOF. Bring in the function
o) = ;f(gh)
and compute
$(G)f°"(e) = ;f‘)(g)E(g)*

=Y. Y flghye(g)*
G H

=Y 2 f(g)egh™ )
H G

= Yeh) ¥ f(g)e(9)*
H G

= $(H)#(G) f(e)

if e=1 on H, and 0 otherwise, in accordance with Exercise 1. But then
f°9) = %fo“(e)e(g)
=#(H) Y fel9),
(G/H)*
and Poisson’s formula drops out upon putting g = 1.

This formula should be compared with the Poisson summation formula
for functions on the line:

Y fin) =Y. f(n)
Z1 Z1

[see Subsection 2.7.5]. The similarity is plain; in fact, if G is the additive
group R! and if H is the subgroup Z', then G/H is the circle group S'=
[0,1), and (G/H)" =(S")" is a copy of Z' [see Exercise 4.1.10]. There-
fore, apart from the factor #(H), the formula has the same group-theoretical
flavor in both cases.
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EXERCISE 2*.' Find the solution of
on_xlxz = Jo» xlz—x2x0=y1, xzz—x0x1=y2,

for known y. Think of x and y as functions on the additive group Z,. The
dual group Z;" can be identified with the multiplicative group of cube roots
of unity:
W = 1 eZm‘/3 e41:i/3
via the formula e(k) = w*. Check the identity
.2(82’”./3(0))?(64’"./30)) = %—}7((02)

and obtain the Answer:

2(@) = £ [P(@)]7 {F79() 9(>7) p(e*7*)} %,

assuming j # 0.

EXERCISE 3% Check that for any function f on G, the determinant of
the #(G) x #(G) matrix [f(g,9; ')] can be expressed as

det[ f(g, 95 D] = 1;[ #(G) f(e)

and use this to prove a primitive variant of Exercise 4.2.4. Hint:
flg197") = ;f(e)e(y,)e(gz)*-

EXERCISE 4.> Check the following variant of the Poisson summation
formula:
2

= $G)8(H) > ] @)

(G/H)"

> Sghy

H

G/H

with the previous convention about (G/H)". Hint: Apply the Plancherel
identity to f°(g) = X f(gh).

EXERCISE 5.3 The group G=Z," x---xZ,* (n-fold) is placed in
1:1 correspondence with the set 9 =0,1,---,2"—1 by mapping

n—1 .
g = (kO"",kn—l) - 'ZO kizla

! K. Itd, private communication.
2 Adapted from W. N. Anderson, Jr., private communication,
3 After Crimmins er al. [1969).
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in which k; =0 or 1 for 0 <i < n. This permits you to think of Q as a group
isomorphic to G. Prove that j: G— Q is an isomorphism iff

n=1
Jj(9) = ;)[l—e.-(g)] 271,

in which e;: 0<i<n is a basis of the dual group G, that is to say, every
character e can be expressed in precisely one way as a product e =eke-..
ekt with 0 < k; < 2.

EXERCISE 6. The infinite product G=Z," xZ," x-.- is a commu-
tative group; it may be put into correspondence with the interval 0 < x <1
by means of the map

j:g = (klakza'“)_’x = Z ki2—i.
i=1

The correspondence is not 1:1 owing to the fact that rational numbers x
have ambiguous binary expansions, but they fill up a set of measure 0, only.
Check that the action of G on [0, 1] defined by the recipe gx = j[gj ' (x)]
preserves the lengths of intervals and therefore the measure of nice sets,
also. The so-called ‘““Rademacher function” e,(x) =1—2k, is a character
of G, as is the “Walsh function”

¢(x) = el (x) e (x) -

for any ‘“‘tame” i=(i,, i,,:--) € G, i.e., any string of 0’s and 1’s with only
0’s from some point on. Draw pictures of the first few Rademacher func-
tions. Prove that the family of Walsh functions is a unit-perpendicular basis
of L2[0, 1].

4.6* GAUSS’ LAW OF QUADRATIC RECIPROCITY

Fourier series on a finite commutative group look very simple, but the
applications can be both complicated and deep. Applications to number
theory can be found in Chandrasekharan [1968], Hardy and Wright [1954],
and Rademacher [1956]; to statistical mechanics in Ginibre [1970], and
McKean [1964]; to coding in Crimmins et al. [1969]; and this is only a
tiny sample. The present application is to number theory.

Gauss’ law of quadratic reciprocity has to do with a problem of arith-
metic: for which integers 0 <n < p is it possible to solve the quadratic con-
gruence x> = n, modulo p, for a fixed prime p > 2, or, what is the same, which
of the integers 0 <n < p are ‘‘quadratic residues’” modulo p? To study this
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problem, bring in the “Legendre symbol”

-(3)
p

Gauss’ law states that for any odd primes p and q

(L’) (ﬂ) = (= YDE-DUDE-D
q/\pP

The purpose of this section is to prove this fact by Fourier methods via the
so-called Gaussian sum defined by the recipe

+1 if n isa quadratic residue modulop,

-1 otherwise .

q—1
G (e2nin/q) - eZm’kzn/q
,, &

for 0 < n < g and any odd integer g, prime or not. This is one of the simpler
though not the most elementary proofs of the law of quadratic reciprocity.
Gauss himself gave eight different proofs; see Nagell [1951, p. 144], and,
for additional information on this beautiful circle of ideas, Bachmann
[1907] and/or Rademacher [1964]. The first steps of the proof are con-
tained in Exercises 1 and 2. Z,* is the group of integers 0 <n < p under
multiplication modulop [see Exercise 4.1.1]. Q is the class of quadratic
residues 0 <n < p, and Q' the complementary class of quadratic nonresidues.

EXERCISE 1. Check that the integers 12,2% ... (p—1)?, considered
modulo p, provide a twofold list of Q; in particular, both Q and Q’ contain
3(p—1) integers, each.

EXERCISE 2. Check that the Legendre symbol e(n) = (n/p) is a character
of Z,, that is to say, Q-QcQ, Q"-Q<=Q’, and Q’-Q' = Q. Hint: Check
Q-0 < @ first; the rest follows by counting with the help of Exercise 1.

Here, the proof takes a peculiar twist: You take e, which is a character
of Z,*, extend it to the additive group Z,* by putting e(0) = 0, and expand
it into a Fourier series on the latter. This is how the Gaussian sums come
in. To begin with,

p—1 .
ev(”) — Z e(k)eank/p
k=0
— Z e2m’nk/p _ Z eZm’nk/p
Q o

for 0<n<p, in which Z;* is identified with the multiplicative group of
pth roots of unity. The elementary identity

p—1
0 — ZeZm'nk/p — 1 + Z eZm'nk/p + Z e2m‘nk/p
k=0 Q o
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and Exercise 1 are now applied to identify e¥ as a Gaussian sum:
evV(n) = 1+2) erinkir
0

— Z e27u'nk2/p
k=0
— Gp(eZnin/p) .
This leads at once to a useful formula: For 0 <n < p, nk runs through Z,*
once (modulop) as k runs from 0 to p—1, so by Exercise 2,
p—1

G,(e*™™P) = e¥(n) = ) e(nk)e*™™/Pe(n)

p—1

= Y e(k)e*™™Pe(n)

= G,(e’™")e(n),

permitting you to express the Legendre symbol for 0 <n < p as a ratio of

Gaussian sums:

G eZm‘n/p

6‘('1) = G_p(—?.n_l/p—) .
M Catd]

The latter is nothing but an odd way of writing the Z,* Fourier series for e,
modified at n =0 so as to make e(0) = G,(e*™/?)~ 1.

EXERCISE 3. Deduce that Gp(ez"i/”)=\/[_7 times a power of i; no
computations are needed! Hint: e¥" =G,(e*"/P)*e=pe(— -), and this
implies G2 = +p.

EXERCISE 4.
qu(eZni/pq) — Gp(eZn:iq/p) Gq(eZnip/q)
for any odd primes p and g. Hint: Compute the left-hand side from the

definition, using the fact that as k[j] runs once from 0 to p—1 [¢g—1],
kq+ jp runs once over 0 < n < pg—1, modulo pgq.

The law of quadratic reciprocity can now be stated entirely in terms of
Gaussian sums:

(_1)(1/2)(p—1)(1/2)(q—1) — (_P)(g)
9/ \P

3 Gq(ez"i”/") Gp(ez"i"/”)
- Gq (eZM'/q) Gp(ean‘/p)
_ Gl

Gp (ean/p) Gq (ean/q) ¢
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EXERCISE 5. Check that the law of quadratic reciprocity follows from
the evaluation of the Gaussian sum:

G,(e*"?) = Jp ()= vie

for any odd integral p, prime or not. Hint: The elementary congruence

_ 2 _ 2 _ 2 _ _
(pqz 1) _<pTl> _(q21> _( 1)2(q 1)modulo4

is helpful.

The proof is finished by the actual evaluation of the Gaussian sum, based
upon the deeper formula of Landsberg and Schaar:

1A i emil4 241 —min®p
—_ nin2g/p __
7 E e N E exp( 5 )

n=0 n=0

for any integral p and g > 1.

PROOF.! The proof is based upon the Jacobi identity for the theta-

function:
[- o]

Y exp(—mntn) =1"% i exp(—nn?/t)

n= — n=-—w

[see Subsection 1.7.5], which was proved for ¢ > 0, but is actually valid in
the open right-hand half-plane, both sides being analytic in that region.
Replace >0 by t—2ig/p and make ¢|0. The left-hand side of Jacobi’s
identity is

p—1
¥ e exp(rin’alp) = 17| (1) S exp(arinalp) + o(1)].
n=0
since exp(2min®q/p), as a function of n, is of period p, and

Y exp(—nn®r) = t%[1+0(1)].
Besides, the right-hand side is

1 z exp( — nn*t exp( — 2nin*q/p
(1—2ig/p)* 1> +4q4*/p* 1* +44°%/p?

1 agr\% [ 1 —nin*p
" (—2ig/p)” (t—pT> [5-71;, exP( 2 ) oW

for similar reasons. A comparison of the two expressions produces the
Landsberg-Schaar identity.

! Adapted from Bellman [1961].
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The evaluation of the Gaussian sum is now achieved by putting g =1:
. P\~ . .
Gp(ean/p) — (_2) em/4[1+e—nlp/2]

= /p(i)p- 12

as you can easily check by looking at the cases p = | modulo4 and p =
3 modulo 4, separately.

EXERCISE 6. Use the Landsberg—Schaar identity to prove the so-called
“supplementary theorems”:

(a) <-—_1) = (= )~
p

(b) <2> = (_1)(p1-1)/8.
p

Hint: (b) is proved by putting ¢ = 2; as to (a), look at
-1 . , .
(_p_) Gp(ean/p) — Gp(e—Zm/p) — Gp(e2m/p)*.

EXERCISE 7. Check that the Mobius function of Exercise 4.3.8 can
be expressed as

e(n) — z e2xik/n'

Isk<n
(k,m)=1

(k.n) =1 signifies that & and » have no common primes. Hint: Prove first
that the sum [f(n)] is “multiplicative” [f(ij) =f() f(j) if (i,j)=1] with
the help of the trick suggested for use in Exercise 4. Then evaluate f(n) for
n a prime power.

4.7 NONCOMMUTATIVE GROUPS

The rest of this chapter is devoted to a number of special but important
noncommutative groups.

A finite noncommutative group G cannot have enough characters to do
Fourier series: If it did, then every function f on G could be expanded as a
sum

flg) = ;f(e)e(g),



