
WEEK 10–11

In this exercise set we will give a short account of the Fourier analysis theory.

1. Good kernel (from [2]).

Definition 1. A family of 2π-periodic continuous functions {Kn(x)}∞n=1 is said to be a family of
good kernels if it satisfies the following properties:

1) For all n ≥ 1, 1
2π

∫ π
−πKn(x) dx = 1;

2) supn≥1
∫ π
−π |Kn(x)| dx <∞;

3) For all fixed δ > 0, we have

lim
n→∞

∫
δ≤|x|≤π

|Kn(x)| dx = 0.

Remark: By Week 5-1, Exercise 1 and 2, we know that the Fejér kernels

Fn(x) :=
1

n

sin2(nx/2)

sin2(x/2)
,

defines a family of Good kernels. Thus the following exercise can be seen as a generalization of
Fejér’s theorem.

Exercise 1: Let {Kn(x)}∞n=1 be a family of good kernels and f be a 2π-periodic continuous
function. Then

lim
n→infty

(f ? Kn)(x) = f(x),

where (f ? Kn)(x) := 1
2π

∫ π
−π f(x− y)Kn(y) dy.

Remark 1: One may also define a continuous family of good kernels, e g the Poisson kernel
{Pr(θ)}0≤r≤1. Then the Poisson theorem (Week 5-1, Exercise 5) can also be seen as a standard
property of the good kernel.

Remark 2: The main convergence theorem (Theorem 1.1 page 6 in the notes) for the Fourier
series only works for C1 functions (nor for all continuous function). One reason is that the
associated family of Dirichlet kernels

Dn(x) =
sin(n+ 1/2)x

sinx/2
,

is not a family of good kernels (see the following Exercise).

? Exercise 2: Put

Ln =
1

2π

∫ π

−π
|sin(n+ 1/2)x

sinx/2
| dx.

1
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Show that LN ≥ c lnn for some constant c > 0. Hint: Show that

|sin(n+ 1/2)x

sinx/2
| ≥ c|sin(n+ 1/2)x

x
|,

change of variables, and prove that

Ln ≥ c

∫ nπ

π

| sinx|
|x|

dx− C,

where C is a constant. Write the integral as a sum
∑n−1

k=1

∫ (k+1)π

kπ
. To conclude, use the fact that

lnn = lnn− ln 1 =

∫ n

1

(lnx)′ dx =

∫ n

1

1

x
dx ≤ 1 +

1

2
+ · · ·+ 1

n− 1
, n ≥ 2.

Remark: One may also define the notion of good kernel on R (see page 139 in [2] and page
140–141, exercise 9, 10, 14, 16 in page 163–164 in [2]).

2. Poisson summation formula (from [2]).

The original version of the Poisson summation formula (see Theorem 2.2 in the notes) has
many applications (see page 25 for its applications in theta relations). One the other hand, in
some interesting cases, the original version does not apply. A natural generalization of it is
the distribution version of Poisson summation formula (see Theorem 2.7), which is essentially
a distribution version of the Fourier series expansion. The distribution version also has many
applications, one of them is the elementary solution for −id/dx + s (see page 33). In this
section, we shall see how to use the Poisson summation formula to decode relations between
kernels on R and S1 = R/Z. From section 1.7.2, we know that

Ht(x) :=
∑
k∈Z

e−tπk
2

e2πik·x

is essentially the heat kernel on S1, and usually we call

Ht(x) := t−
1
2 e−

πx2

t

the heat kernel on R. Since the Fourier transform of Ht(t) is equal to e−tπγ2 , the Poisson sum-
mation formula gives

(1) Ht(x) =
∑
k∈Z

Ht(x+ k).

Thus we get

Fact 1: The heat kernel on R/Z is the periodization of the heat kernel on R.

Exercise 3: Recall the definition of the Poisson kernel on R/2πZ

Pr(θ) :=
∑
n∈Z

r|n|einθ =
1− r2

1− 2r cos θ + r2
, 0 < r < 1, θ ∈ R.
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We call

Py(x) :=
1

π

y

y2 + x2
, y > 0, x ∈ R

the Poisson kernel on R (boundary of the upper half plane). Show that

P̂y(γ) = e−2π|γ|y

Then use the Poisson summation formula to prove

Pr(2πx) =
∑
n∈Z

Py(x+ n), r := e−2πy.

Remark: The above exercise implies:

Fact 2: The Poisson kernel on R/Z is the periodization of the Poisson kernel on R.

One application of the distribution version of the Poisson summation formula is (see (1.5) in
page 11, or page 32–33 of the lecture notes)

lim
N→∞

∑
|n|≤N

1

n+ s
= π cotπs, ∀ s /∈ Z.

use it to do the following exercise.

Exercise 4: The Dirichlet kernel on the real line is defined by∫ R

−R
f̂(ξ)e2πixξ dξ = (f ?DR)(x), so that DR(x) = 1̂[−R,R](x) =

sin(2πRx)

πx
.

Also the modifies Dirichlet kernel for periodic functions of period 1 is defined by

D∗R(x) :=
∑
|n|≤R−1

e2πinx +
1

2
(e−2πiRx + e2πiRx), R ∈ Z+.

Use the above formula for π cot πs to prove that

lim
N→∞

∑
|n|≤N

DR(x+ n) = D∗R(x), ∀ x ∈ R, R ∈ Z+.

Remark: The above exercise implies:

Fact 3: The modifies Dirichlet kernel on R/Z is the periodization of the Dirichlet kernel on R.

Similar fact also holds for the Fejér kernel (see page 164, Exercise 14 in [2]).

*3. On the zeta function (from [2]).

Exercise 5: The Gamma function is defined for s > 0 by

Γ(s) :=

∫ ∞
0

e−xxs−1 dx.
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(a) Show that for s > 0 the above integral makes sense, that is, that the following two limits exist
(hint: use integration by parts for the first limit):

lim
δ→0+

∫ 1

δ

e−xxs−1 dx and lim
A→∞

∫ A

1

e−xxs−1 dx.

(b) Prove that Γ(s+ 1) = sΓ(s) for all s > 0 and conclude that for every integer n ≥ 1 we have
Γ(n+ 1) = n!.
(c) Show that Γ(1

2
) =
√
π (Hint: Use

∫
R e
−πx2 dx = 1).

Remark: From the definition, we know that Γ(s) is in fact holomorphic on Re s > 0. More-
over, Γ(s+ 1) = sΓ(s) implies that Γ(s) is a meromorphic function on s ∈ C with simple poles
at s = 0,−1,−2, · · · .

Exercise 6: The zeta function is defined for s > 1 by ζ(s) :=
∑∞

n=1 1/ns. Put

ξ(s) := π−s/2Γ(s/2)ζ(s),

where Γ denotes the Gamma function above. Verify that

ξ(s) =
1

2

∫ ∞
0

t
s
2
−1(θ(t)− 1) dt, ∀ s > 1,

where the theta function is defined by θ(t) =
∑

n∈Z e
−πn2t.

Remark: The above exercise implies that ξ(s) is also well defined for all s ∈ C such that
Re s > 0. Moreover, we can write

2ξ(s) =

∫ 1

0

t
s
2
−1(θ(t)− 1) dt+

∫ ∞
1

t
s
2
−1(θ(t)− 1) dt := I1 + I2.

It is clear that

I2(s) =

∫ ∞
1

t
s
2
−1(θ(t)− 1) dt

defines a holomorphic function of s ∈ C. Moreover, we have

I1(s) =

∫ 1

0

t
s
2
−1(θ(t)− 1) dt =

∫ 1

0

t
s
2
−1θ(t) dt− 2

s
, ∀ s > 0.

Notice that the Poisson summation formula implies that

θ(t) = t−1/2θ(1/t), ∀ t > 0.

Thus we have (consider t = 1/x)∫ 1

0

t
s
2
−1θ(t) dt =

∫ ∞
1

x−2x1−
s
2 θ(1/x) dx =

∫ ∞
1

x−1+
1
2
(1−s)θ(x) dx.

Let us write θ(x) = θ(x)− 1 + 1, then
∫∞
1
x−1+

1
2
(1−s) dx = −2

1−s gives∫ 1

0

t
s
2
−1θ(t) dt =

∫ ∞
1

t−1+
1
2
(1−s)(θ(t)− 1) dt− 2

1− s
.
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Now we know that

ξ(s) =
1

2

∫ ∞
1

(
t−1+

s
2 + t−1+

1−s
2

)
(θ(t)− 1) dt− 1

s
− 1

1− s
defines a meromorphic function on s ∈ C with simple pole at s = 0, 1 and

ξ(s) = ξ(1− s).
Together with the meromorphic extension of Γ(s), we know that the Riemann zeta function is
meromorphic on s ∈ C with a simple pole at s = 1 and ζ(−2n) = 0 for n = 1, 2, · · · . The zeta
values ζ(2), ζ(4), · · · , ζ(2k), · · · are closely related to the Bernoulli numbers (see page 97–99
and page 166–167 in [2], the Bernoulli numbers are not only interesting in analysis, they also
appear naturally in the fundamental Baker–Campbell–Hausdorff formula in Lie group theory,
see [1]).
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