TMA4170 FOURIER ANALYSIS, WEEK 11, 2018:

(1) In what follows, we assume that $n \geq 1$. Identify a positive trigonometric polynomial $M(\xi)$ satisfying

$$
M(\xi)+M(\xi+2 \pi)=1
$$

for all ξ by expanding the right-hand side of the identity

$$
1=\left(\cos ^{2}(\xi / 2)+\sin ^{2}(\xi / 2)\right)^{2 n+1}
$$

by means of the binomial formula.
(2) Use the result of the preceding problem to find a trigonometric polynomial $m_{0}(\xi)$ such that

$$
\left|m_{0}(\xi)\right|^{2}=M(\xi)
$$

(3) Prove that the solution $m_{0}(\xi)$ of the preceding problem gives rise to a compactly supported wavelet generating an ONB and satisfying the vanishing moment condition

$$
\int \psi(x) x^{\ell} d x=0, \quad \ell=0, \ldots, n
$$

