Solutions TMA4170, Spring 2014
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Problem 2

Finally
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Since f is even we have b, = 0. Further
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In order to find a,, n # 0 we apply the relation cos a cos f = (cos(a + ) + cos(a — 3))/2:

1 (7 1 (7 1
an = — / cos at cosnt = o [W cos(a + n)tdt + o cos(a + n)tdt = I (n) + I (n);

—T —T

1 ) (=1)"sinarw ) (=1)"sinar
I = —_— - —_— I = — - —_—
1(n) ey sin(a + n)w marn) 2(n) o sin(a — n)w A=)
Finally
(=1)"sinarw < 1 1 )
an = - )
m at+n a—n
and

i SR 1 1
cosat = 29T < + Z(—l)” ( + )cosnt) .
™ a T atn a—n

2b Can be obtained from the previous relation if put ¢ = 0 and a = z.

Problem 3
We look for a solution in the form u = uy + us where u; and us are solutions to the equations
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The first equation is straightforward, for example the function u;(z) = —0.1€* is a solution to this equation.
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The Fourier transform of the second equation gives

-1
2¢2 A oS
We use the formula:
—alz| 2a
Fe —>

-5 0
a? + dr2e2’ © ~
Therefore us(x) =

_Tle_sm and a final solution
. 1

w(z) = e — Ze 3,
(0) =" - 3

Remark 1 You may obtain another solution which differs by one obtained above by a linear combination of
elementary solutions e3* and e~3%.

Remark 2 You actually can solve equation with respect ug without using the Fourier transform if thinking

about combining the elementary solutions above into a continuous function which meets the homogeneous
equation for « # 0 and whose first derivative has jump +1 at = = 0.

Problem 4
First see how does T act on test functions. For a test function ¢ we have
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We have ¢ + ag’ + g = f. The Fourier transform yields (2iw\)2 4 2iraX 4+ 1)§(A) = f(N).
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here u is the Heaviside function.
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You can simplify these expression using sin and sinh functions.
Respectively for a = 42 one gets multiple routs and the solution of the form
h(t) = +teFtu(Ft), for +a = 2.

5b The solution is stable and realizable for a > 0.

Problem 6

f(x) = —¢p(4x) + 4¢(4x — 1) + 26(4z — 2) — 3¢(4x — 3) =
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One can also use normalized wavelet and scaling functions and use the standard algorithm. This would not be
faster for the given case (but still correct of course).



