TMA4165-Exercise set 3 Solutions

Unless otherwise stated the exercises below are from:
D.G. Schaeffer \& J.W. Cain: Ordinary Differential Equations: Basic and Beyond.

Exercises for 15-02-2022

Chapter 3:

4 Since $\mathbb{T}[x](0)=b$ the mean value theorem gives

$$
\mathfrak{d}[x](t)-b=t \frac{d}{d t} \mathbb{C}[x](c)=t e^{c} b+t \cos (t+c) x^{2}(c)
$$

for some c between 0 and t. If $|t| \leq \eta$ and $x \in S$ we get

$$
\|\boldsymbol{T}[x](t)-b\| \leq \eta e^{\eta}|b|+\eta(|b|+\delta)^{2},
$$

Because $|x-b| \leq \delta$ implies that $\|x\| \leq|b|+\delta$ It follows that \mathfrak{c} maps S into S if

$$
\eta e^{\eta}|b|+\eta(|b|+\delta)^{2} \leq \delta
$$

On the other hand, for any $x, y \in S$ and $t \in[-\eta, \eta]$

$$
\mathfrak{T}[x](t)-\mathbb{T}[y](t)=\int_{0}^{t} \cos (s+t)\left(x^{2}(s)-y^{2}(s)\right) d s
$$

Hence

$$
\begin{aligned}
|\boldsymbol{C}[x](t)-\mathbb{T}[y](t)| & \leq \int_{0}^{|t|}\left|x^{2}(s)-y^{2}(s)\right| d s \\
& \leq \eta\left\|x^{2}-y^{2}\right\| \\
& \leq \eta\|x+y\|\|x-y\| \\
& \leq \eta(\|x\|+\|y\|)\|x-y\| \\
& \leq 2 \eta(|b|+\delta)\|x-y\| .
\end{aligned}
$$

Since this holds for any $t \in[-\eta, \eta]$ we obtain

$$
\|\mathbb{T}[x](t)-\boldsymbol{T}[y](t)\| \leq 2 \eta(|b|+\delta)\|x-y\|,
$$

which means that \mathbb{C} is a contraction if

$$
2 \eta(|b|+\delta)<1
$$

6 a) We begin by computing a few iterates before making a guess:

$$
\begin{aligned}
x_{1}(t) & =x_{0}(t)+\int_{0}^{t}\left(-s x_{0}(s)\right) d s \\
& =2-2 \int_{0}^{t} s d s \\
& =2-t^{2} \\
x_{2}(t) & =x_{0}(t)+\int_{0}^{t}\left(-s x_{1}(s)\right) d s \\
& =2-\int_{0}^{t}\left(2 s-s^{3}\right) d s \\
& =2-t^{2}+\frac{t^{4}}{4}
\end{aligned}
$$

$$
\begin{aligned}
x_{3}(t) & =x_{0}(t)+\int_{0}^{t}\left(-s x_{2}(s)\right) d s \\
& =2-\int_{0}^{t}\left(2 s-s^{3}+\frac{s^{5}}{4}\right) d s \\
& =2-t^{2}+\frac{t^{4}}{4}-\frac{t^{6}}{24} \\
& =2\left(1+\left(-\frac{t^{2}}{2}\right)+\left(-\frac{t^{2}}{2}\right)^{2} \cdot \frac{1}{2!}+\left(-\frac{t^{2}}{2}\right)^{3} \cdot \frac{1}{3!}\right)
\end{aligned}
$$

This allows us to make the guess that

$$
x_{n}(t)=2 \sum_{k=0}^{n}\left(-\frac{t^{2}}{2}\right)^{n} \frac{1}{n!} .
$$

We can prove this by induction. It is clearly true for $n=0$ (and $n=1,2,3$). Moreover if it is true for n then

$$
\begin{aligned}
x_{n+1}(t) & =x_{0}(t)+\int_{0}^{t}\left(-s x_{n}(s)\right) d s \\
& =2-2 \int_{k}^{t} \sum_{=0}^{n} s\left(-\frac{s^{2}}{2}\right)^{k} \cdot \frac{1}{k!} d s \\
& =2-2 \sum_{k=0}^{n}\left(-\frac{1}{2}\right)^{k} \cdot \frac{1}{k!} \int_{0}^{t} s^{2 k+1} d s \\
& =2-2 \sum_{k=0}^{n}\left(-\frac{1}{2}\right)^{k} \cdot \frac{1}{k!} \frac{t^{2 k+2}}{2 k+2} \\
& =2+2 \sum_{k=0}^{n}\left(-\frac{t^{2}}{2}\right)^{k+1} \cdot \frac{1}{(k+1)!} \\
& =2 \sum_{k=0}^{n+1}\left(-\frac{t^{2}}{2}\right)^{k} \cdot \frac{1}{k!} .
\end{aligned}
$$

Hence it is true for all n by induction. If we set $u=\left(-\frac{t^{2}}{2}\right)$ then it is easily seen that

$$
x(t)=\lim _{n \rightarrow \infty} x_{n}(t)=2 \sum_{k=0}^{\infty} \frac{u^{k}}{k!}=2 e^{u}=2 e^{-\frac{t^{2}}{2}}
$$

b) Now we only have to check that indeed $x(t)=2 e^{-\frac{t^{2}}{2}}$ is a solution:

$$
\begin{aligned}
\frac{d}{d t} x(t) & =\frac{d}{d t} 2 e^{-\frac{t^{2}}{2}}=-t 2 e^{-\frac{t^{2}}{2}}=-t x(t) \\
x(0) & =2 e^{-\frac{0^{2}}{2}}=2
\end{aligned}
$$

8
a) We set $h(t)=g(t)+\frac{B}{K}$. Then

$$
\begin{aligned}
h(t) & =g(t)+\frac{B}{K} \\
& \leq C+\frac{B}{K}+B t+K \int_{0}^{t} g(s) d s \\
& =C+\frac{B}{K}+B t+K \int_{0}^{t}\left(h(s)-\frac{B}{K}\right) d s \\
& =C+\frac{B}{K}+K \int_{0}^{t} h(s) d s
\end{aligned}
$$

Applying Grönwall's lemma gives

$$
h(t) \leq\left(C+\frac{B}{K}\right) e^{K t}
$$

which is equivalent to

$$
g(t) \leq C e^{K t}+\frac{B\left(e^{K t}-1\right)}{K}
$$

b) Set $h(t)=g(t)+A e^{M t}$ for some constant A to be chosen later. Then

$$
\begin{aligned}
h(t) & =g(t)+A e^{M t} \\
& \leq C\left(e^{M t}-1\right)+K \int_{0}^{t}\left(h(s)-A e^{M t}\right) d s+A e^{M t} \\
& \leq C\left(e^{M t}-1\right)+\left(A-\frac{K A}{M}\right) e^{M t}+\frac{K A}{M}+K \int_{0}^{t} h(s) d s
\end{aligned}
$$

Now we want to pick A such that

$$
C+A-\frac{K A}{M}=0
$$

which is equivalent to

$$
A=\frac{C}{K / M-1} .
$$

This choice of A leaves us with

$$
h(t) \leq A+K \int_{0}^{t} h(s) d s
$$

Applying Grönwall's lemma to $h(t)$ gives

$$
h(t) \leq A e^{K t}
$$

or equivalently

$$
g(t) \leq A\left(e^{K t}-e^{M t}\right)=\frac{C}{K / M-1}\left(e^{K t}-e^{M t}\right)
$$

12 Since $(r, \theta)=(1, \pi / 2)$ and $(r, \theta)=(1,-\pi / 2)$ correspond to the same point in the $x y$-plane, but $\sin (\pi / 2)=1$ and $\sin (-\pi / 2)=-1$, the function cannot be continuous without the cut. On the other hand, with the cut every sufficiently small connected open set in \mathcal{K} can be mapped Bijectively to a connected set in the $x y$-plane. Consider now

$$
\begin{aligned}
\frac{\left|f\left(P_{+}\right)-f\left(P_{-}\right)\right|}{\left|P_{+}-P_{-}\right|} & =\frac{|\sin ((\pi-\epsilon) / 2)-\sin ((\epsilon-\pi) / 2)|}{|(\cos (\pi-\epsilon), \sin (\pi-\epsilon))-(\cos (\pi-\epsilon),-\sin (\pi-\epsilon))|} \\
& =\frac{2 \sin ((\pi-\epsilon) / 2)}{2 \sin (\pi-\epsilon)} \\
& =\frac{\sin (\pi / 2) \cos (\epsilon / 2)-\cos (\pi / 2) \sin (\epsilon / 2)}{\sin (\pi) \cos (\epsilon)-\cos (\pi) \sin (\epsilon)} \\
& =\frac{\cos (\epsilon / 2)}{\sin (\epsilon)} \simeq \frac{1}{\epsilon}
\end{aligned}
$$

where the approximate identity holds for small ϵ because

$$
\lim _{\epsilon \rightarrow 0} \epsilon \frac{\cos (\epsilon / 2)}{\sin (\epsilon)}=1
$$

Chapter 4:

1 a) Since $\mathbf{x}_{*}:\left(\alpha_{*}, \beta_{*}\right) \rightarrow \mathcal{U}$ it follows that $\mathbf{x}_{*}(t) \in \mathcal{U}$ for all $t \in\left(\alpha_{*}, \beta_{*}\right)$. Hence we must have $\lim _{t \rightarrow \beta_{*}} \mathbf{x}_{*}(t)=x \in \overline{\mathcal{U}}$, that is $x \in \partial \mathcal{U}$ or $x \in \operatorname{int}(\mathcal{U})=\overline{\mathcal{U}} \backslash \partial U$. We exclude the latter case by contradiction. Assume $x \in \operatorname{int}(\mathcal{U})$, then we can solve

$$
\left(\mathbf{x}^{*}\right)^{\prime}=F\left(\mathbf{x}^{*}\right), \quad \mathbf{x}^{*}\left(\beta_{*}\right)=x
$$

for all $t \in\left(\beta_{*}-\eta, \beta_{*}+\eta\right)$. Constructing the function

$$
\mathbf{x}(t)= \begin{cases}\mathbf{x}(t)=\mathbf{x}_{*}(t) & t \in\left(\alpha_{*}, \beta_{*}\right) \\ \mathbf{x}(t)=\mathbf{x}^{*}(t) & t \in\left[\beta^{*}, \beta^{*}+\eta\right)\end{cases}
$$

Gives us a solution to

$$
\begin{equation*}
\mathbf{x}^{\prime}=F(\mathbf{x}), \quad \mathbf{x}(0)=\mathbf{x}_{*}(0) \tag{1}
\end{equation*}
$$

on $\left(\alpha_{*}, \beta_{*}+\eta\right)$. It is clear that this is the case for all times but β_{*}. However, the function x is clearly continuous because

$$
\lim _{t \rightarrow \beta_{*}^{+}} \mathbf{x}(t)=\lim _{t \rightarrow \beta_{*}^{+}} \mathbf{x}^{*}(t)=x=\lim _{t \rightarrow \beta_{*}^{-}} \mathbf{x}_{*}(t)=\lim _{t \rightarrow \beta_{*}^{-}} \mathbf{x}(t),
$$

and applying the mean value theorem we obtain

$$
F(\mathbf{x}(c))=\mathbf{x}^{\prime}(c)=\frac{\mathbf{x}\left(\beta_{*}+h\right)-x}{h}=\frac{\mathbf{x}\left(\beta_{*}+h\right)-\mathbf{x}\left(\beta_{*}\right)}{h}
$$

for any $h \neq 0$ and some c (depending on h) between β_{*} and $\beta_{*}+h$. Thus the right derivative is

$$
\lim _{h \rightarrow 0^{+}} \frac{\mathbf{x}\left(\beta_{*}+h\right)-\mathbf{x}\left(\beta_{*}\right)}{h}=\lim _{c \rightarrow \beta_{*}^{+}} F(\mathbf{x}(c))=\lim _{c \rightarrow \beta_{*}^{+}} F\left(\mathbf{x}^{*}(c)\right)=F(x)
$$

and the left derivative is

$$
\lim _{h \rightarrow 0^{-}} \frac{\mathbf{x}\left(\beta_{*}+h\right)-\mathbf{x}\left(\beta_{*}\right)}{h}=\lim _{c \rightarrow \beta_{*}^{-}} F(\mathbf{x}(c))=\lim _{c \rightarrow \beta_{*}^{-}} F\left(\mathbf{x}^{*}(c)\right)=F(x),
$$

which means \mathbf{x} both is C^{1} and solves the eq. (1) on ($\alpha_{*}, \beta_{*}+\eta$).
b) A possible example is $f(x)=\sqrt{1-x^{2}}$ which is locally lipschitz as a function $f:(-1,1) \rightarrow$ \mathbb{R}. The IVP

$$
x^{\prime}=\sqrt{1-x^{2}}, \quad x(0)=0,
$$

has maximal solution, $x:(-\pi / 2, \pi / 2) \rightarrow(-1,1)$ given by $x(t)=\sin (t)$.

