
TMA4165 - Exercise set 3 Solutions
Unless otherwise stated the exercises below are from:
D.G. Schaeffer & J.W. Cain: Ordinary Differential Equations: Basic and Beyond.

Exercises for 15-02-2022
Chapter 3:

4 Since T[x](0) = b the mean value theorem gives

T[x](t)− b = t
d

dt
T[x](c) = tecb+ t cos(t+ c)x2(c)

for some c between 0 and t. If |t| ≤ η and x ∈ S we get

‖T[x](t)− b‖ ≤ ηeη|b|+ η(|b|+ δ)2,

Because |x− b| ≤ δ implies that ‖x‖ ≤ |b|+ δ It follows that T maps S into S if

ηeη|b|+ η(|b|+ δ)2 ≤ δ.

On the other hand, for any x, y ∈ S and t ∈ [−η, η]

T[x](t)− T[y](t) =

∫ t

0

cos(s+ t)(x2(s)− y2(s))ds.

Hence

|T[x](t)− T[y](t)| ≤
∫ |t|
0

|x2(s)− y2(s)|ds

≤ η‖x2 − y2‖
≤ η‖x+ y‖‖x− y‖
≤ η(‖x‖+ ‖y‖)‖x− y‖
≤ 2η(|b|+ δ)‖x− y‖.

Since this holds for any t ∈ [−η, η] we obtain

‖T[x](t)− T[y](t)‖ ≤ 2η(|b|+ δ)‖x− y‖,

which means that T is a contraction if

2η(|b|+ δ) < 1.

6 a) We begin by computing a few iterates before making a guess:

x1 (t) = x0 (t) +

∫ t

0

(−sx0 (s)) ds

= 2− 2

∫ t

0

sds

= 2− t2

x2 (t) = x0 (t) +

∫ t

0

(−sx1 (s)) ds

= 2−
∫ t

0

(
2s− s3

)
ds

= 2− t2 +
t4

4
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x3 (t) = x0 (t) +

∫ t

0

(−sx2 (s)) ds

= 2−
∫ t

0

(
2s− s3 +

s5

4

)
ds

= 2− t2 +
t4

4
− t6

24

= 2

(
1 +

(
− t

2

2

)
+

(
− t

2

2

)2

· 1

2!
+

(
− t
·2

2

)3

· 1

3!

)
This allows us to make the guess that

xn (t) = 2

n∑
k=0

(
− t

2

2

)n
1

n!
.

We can prove this by induction. It is clearly true for n = 0 (and n = 1, 2, 3). Moreover if
it is true for n then

xn+1 (t) = x0 (t) +

∫ t

0

(−sxn (s))ds

= 2− 2

∫ t

k

n∑
=0

s

(
−s

2

2

)k
· 1

k!
ds

= 2− 2

n∑
k=0

(
−1

2

)k
· 1

k!

∫ t

0

s2k+1ds

= 2− 2

n∑
k=0

(
−1

2

)k
· 1

k!

t2k+2

2k + 2

= 2 + 2

n∑
k=0

(
− t

2

2

)k+1

· 1

(k + 1)!

= 2

n+1∑
k=0

(
− t

2

2

)k
· 1

k!
.

Hence it is true for all n by induction. If we set u =

(
− t

2

2

)
then it is easily seen that

x (t) = lim
n→∞

xn (t) = 2

∞∑
k=0

uk

k!
= 2eu = 2e−

t2

2

b) Now we only have to check that indeed x(t) = 2e−
t2

2 is a solution:

d

dt
x (t) =

d

dt
2e−

t2

2 = −t2e− t2

2 = −tx (t)

x (0) = 2e−
02

2 = 2.

8 a) We set h(t) = g(t) + B
K . Then

h (t) = g (t) +
B

K

≤ C +
B

K
+Bt+K

∫ t

0

g (s) ds

= C +
B

K
+Bt+K

∫ t

0

(
h (s)− B

K

)
ds

= C +
B

K
+K

∫ t

0

h (s) ds

2



Applying Grönwall’s lemma gives

h (t) ≤
(
C +

B

K

)
eKt

which is equivalent to

g (t) ≤ CeKt +
B
(
eKt − 1

)
K

b) Set h(t) = g(t) +AeMt for some constant A to be chosen later. Then

h(t) = g(t) +AeMt

≤ C(eMt − 1) +K

∫ t

0

(h(s)−AeMt)ds+AeMt

≤ C(eMt − 1) +

(
A− KA

M

)
eMt +

KA

M
+K

∫ t

0

h(s)ds.

Now we want to pick A such that

C +A− KA

M
= 0

which is equivalent to

A =
C

K/M − 1
.

This choice of A leaves us with

h(t) ≤ A+K

∫ t

0

h(s)ds.

Applying Grönwall’s lemma to h(t) gives

h(t) ≤ AeKt

or equivalently

g(t) ≤ A(eKt − eMt) =
C

K/M − 1
(eKt − eMt).

12 Since (r, θ) = (1, π/2) and (r, θ) = (1,−π/2) correspond to the same point in the xy-plane, but
sin(π/2) = 1 and sin(−π/2) = −1, the function cannot be continuous without the cut. On
the other hand, with the cut every sufficiently small connected open set in K can be mapped
Bijectively to a connected set in the xy-plane. Consider now

|f(P+)− f(P−)|
|P+ − P−|

=
| sin((π − ε)/2)− sin((ε− π)/2)|

|(cos(π − ε), sin(π − ε))− (cos(π − ε),− sin(π − ε))|

=
2 sin((π − ε)/2)

2 sin(π − ε)

=
sin(π/2) cos(ε/2)− cos(π/2) sin(ε/2)

sin(π) cos(ε)− cos(π) sin(ε)

=
cos(ε/2)

sin(ε)
' 1

ε
,

where the approximate identity holds for small ε because

lim
ε→0

ε
cos(ε/2)

sin(ε)
= 1.
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Chapter 4:

1 a) Since x∗ : (α∗, β∗) → U it follows that x∗(t) ∈ U for all t ∈ (α∗, β∗). Hence we must have
limt→β∗ x∗(t) = x ∈ Ū , that is x ∈ ∂U or x ∈ int(U) = Ū \ ∂U . We exclude the latter case
by contradiction. Assume x ∈ int(U), then we can solve

(x∗)′ = F (x∗), x∗(β∗) = x

for all t ∈ (β∗ − η, β∗ + η). Constructing the function

x(t) =

{
x(t) = x∗(t) t ∈ (α∗, β∗)

x(t) = x∗(t) t ∈ [β∗, β∗ + η)

Gives us a solution to
x′ = F (x), x(0) = x∗(0) (1)

on (α∗, β∗ + η). It is clear that this is the case for all times but β∗. However, the function
x is clearly continuous because

lim
t→β+

∗

x(t) = lim
t→β+

∗

x∗(t) = x = lim
t→β−

∗

x∗(t) = lim
t→β−

∗

x(t),

and applying the mean value theorem we obtain

F (x(c)) = x′(c) =
x(β∗ + h)− x

h
=

x(β∗ + h)− x(β∗)

h

for any h 6= 0 and some c (depending on h) between β∗ and β∗+h. Thus the right derivative
is

lim
h→0+

x(β∗ + h)− x(β∗)

h
= lim
c→β+

∗

F (x(c)) = lim
c→β+

∗

F (x∗(c)) = F (x)

and the left derivative is

lim
h→0−

x(β∗ + h)− x(β∗)

h
= lim
c→β−

∗

F (x(c)) = lim
c→β−

∗

F (x∗(c)) = F (x),

which means x both is C1 and solves the eq. (1) on (α∗, β∗ + η).

b) A possible example is f(x) =
√

1− x2 which is locally lipschitz as a function f : (−1, 1)→
R. The IVP

x′ =
√

1− x2, x(0) = 0,

has maximal solution, x : (−π/2, π/2)→ (−1, 1) given by x(t) = sin(t) .
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