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1.

(i) By multiplying the first equation by x2 and the second by x1 and subtracting the first
equation from the first, we see that at a fixed point, we must have x21 + x22 = 0, which
implies x1 = x2 = 0. The final equation then gives us y = 1 or y = 0 at a fixed point. This
gives us the the two fixed points

p1 = (0, 0, 0)>, p2 = (0, 0, 1)>.

The linearization is governed by

Df =

 y −1 x1
1 y x2
−2x1 −2x2 2y − 1

 ,

which can be evaluated at the fixed points to yield

Df
∣∣
p1

=

0 −1 0
1 0 0
0 0 −1

 , Df
∣∣
p2

=

1 −1 0
1 1 0
0 0 1

 .

The matrix Df |p1 has eigenvalues λ = ±i,−1, and Df |p2 has eigenvalues λ = 1, 1± i.
That means that p2 is a hyperbolic fixed point in the neighbourhood of which the be-

haviour of the system is completely determined by the Hartman-Grobman theorem. In this
case, p2 is an unstable fixed point.

We focus on p1. We have

C =

(
0 −1
1 0

)
, P = −1.

We can write the system as

ẋ1 = −x2 + x1y = −x2 + F1(x1, x2, y)

ẋ2 = x1 + x2y = x1 + F2(x1, x2, y)

ẏ = −y − x21 − x22 + y2 = −y +G(x1, x2, y).

Using the ansatz

h(x1, x2) = ax21 + bx1x2 + cx22 +O(|x|3)
(if you attempt the first order ansatz, you will find h = O(|x|2)), so that

Dh(x1, x2) =

(
2ax1 + bx2
bx1 + 2cx2

)
+O(|x|2). (1)

From the centre manifold theorem we see that we require

0 = Dh(x1, x2) ·
(
C

(
x1
x2

)
+

(
F1(x1, x2, h(x1, x2))

F2(x1, x2, h(x1, x2))

))
−Ph(x1, x2)−G(x1, x2, h(x1, x2)).

Now Dh · (F1(x1, x2, h(x1, x2)), F2(x1, x2, h(x1, x2)))
> = O(|x|4), so we can neglect to

calculate those terms. Similarly, G(x1, x2, h(x1, x2)) = −x21 − x22 + O(|x|4). This leaves us
with

0 = Dh(x1, x2) ·C
(
x1
x2

)
−Ph(x1, x2)− x21 − x22 +O(|x|4)

= (3a+ 1)x21 + 3bx1x2 + (3c+ 1)x22 +O(|x|3).
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Since this equation has to be satisfied for any sufficiently small (x1, x2), we find that a =
c = −1/3, and b = 0. Hence

h(x1, x2) =
−1

3
x21 −

1

3
x22 +O(|x|3), F (x1, x2, h(x1, x2)) = −1

3

(
x31 + x1x

2
2

x21x2 + x32

)
.

The centre manifold theorem then suggests that on the centre manifold, we locally and
qualitatively expect the behaviour

ẋ1 = −x2 −
1

3
x1(x

2
1 + x22)

ẋ1 = x1 −
1

3
x2(x

2
1 + x22).

Multiplying 2x1 to the first equation and 2x2 to the second, we can add them up and use
the polar change-of-variables r2 = x21 + x22 on the x1 − x2 plane to find that

d

dt
(r2) = −1

3
r4 ≤ 0.

Therefore one expects a stable spiral near the origin on the x1 − x2 plane.
(ii) Again linear analysis will show that we should focus on “centre” behaviour at the origin.

Here the equations are

ẋ1 = x1y − x1x22 = F1(x1, x2, y)

ẋ2 = −2x21x
2
2 − x41 + y2 = F2(x1, x2, y)

ẏ = −y + x21 + x22 = −y +G(x1, x2, y),

This means that C is the 2× 2 zero matrix and P = −1. Also, G does not in fact depend
on y.

We expect the lowest possible order ansatz to be

h(x1, x2) = ax21 + bx1x2 + cx22

because the lowest order term without y in the first and second equations are O(|x|3) so we
do not have even to attempt a first order ansatz and find that h = O(|x|2) as in part (i) of
this question.

We find Dh(x1, x2) exactly as in (1) foregoing. From the centre manifold theorem, we
require

0 = Dh(x1, x2) ·
(
C

(
x1
x2

)
+

(
F1(x1, x2, h(x1, x2))

F2(x1, x2, h(x1, x2))

))
−Ph(x1, x2)−G(x1, x2, h(x1, x2)).

We can calculate and find that

Dh(x1, x2) ·
(
F1(x1, x2, h(x1, x2))

F2(x1, x2, h(x1, x2))

)
= ax31 + bx21x2 + (c− 1)x1x

2
2 +O(|x|4) = O(|x|3).

Therefore we require that for sufficiently small |x|,

0 = (ax21 + bx1x2 + cx22)− x21 + x22 +O(|x|3),

and this implies b = 0, a = c = 1, and h(x1, x2) = x21 + x22.
The centre manifold theorem then suggest that we should expect the dynamics on the

centre manifold locally to be governed by

ẋ1 = x31

ẋ2 = x42.
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These equations are integrable, and we find

x1(t) =
1√

1/x21(0)− 2t
, x2(t) =

1
3
√

1/x32(0)− 3t
.

These can be plotted parametrically for (x1(0), x2(0)) near the origin and exhibits a saddle-
node.

2. Multiplying the first equation by 2x and the second equation by 2y, and using the polar change-
of-variables r2 = x2 + y2, we find that

d

dt
x2 = −2xy + 2x2(1− r2) sin(|1− r2|−1/2)

d

dt
y2 = 2xy + 2y2(1− r2) sin(|1− r2|−1/2),

Adding these together we arrive at

d

dt
r2 = 2r2(1− r2) sin(|1− r2|−1/2).

We can check that this equation holds for r = 1 as well.
The derivative is nought exactly when r = 1 or when

1√
|1− r2|

= nπ, n ∈ Z.

Solving for r2 yields the radii of the limit cycles expected.
Set

r2±n = 1∓ 1

n2π2
, ∈ N.

When R2
± = r2±n + ε, n−2π−2 > ε > 0, for some ε′ > 0 dependent on n, we can write

1√
|1−R2

±|
= nπ ± ε′.

Likewise when r2± = r2±n − ε, n−2π−2 > ε > 0, for some ε′ > 0 dependent on n, we can write

1√
|1− r2±|

= nπ ∓ ε′.

When n is odd, sgn(sin(nπ ± ε′)) = ∓1. When n is even sgn(sin(nπ ± ε′)) = ±1.
Therefore when n is odd,

sgn(
dr2

dt

∣∣∣∣
R±

) = ∓1, sgn(
dr2

dt

∣∣∣∣
r±

) = ±1,

and so the limit cycles of radii r2 = 1 + 1/(n2π2) for odd n are stable, and the limit cycles of radii
r2 = 1− 1/(n2π2) for odd n are unstable.

Similarly, the limit cycles of radii r2 = 1 + 1/(n2π2) for even n are unstable, and the limit cycles
of radii r2 = 1− 1/(n2π2) for even n are stable.
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3. Verifying that the ansatz provided is indeed a solution is a simple matter of substituting
(x(t), y(t))> = (2 cos(2t), sin(2t))> into the equations provided and checking that the initial condi-
tions are satisfied.

This cycle, which we shall call γ, has period T = π. For stability, as this is on R2, we need only
check the sign of the integral ˆ π

0
∇ · f(γ(t)) dt,

where

f(x, y) =

(
−4y + x(1− x2/4− y2)
x+ y(1− x2/4− y2)

)
, (∇·f)(x, y) = (1−x2/4−y2)−x2/2+(1−x2/4−y2)−2y2.

Therefore
(∇ · f)(γ(t)) = (∇ · f)(2 cos(2t), sin(2t)) = −2.

We easily find that ˆ π

0
∇ · f(γ(t)) dt =

ˆ π

0
(−2) dt < 0.

This implies the stability of the periodic orbit on R2.

4. Again we multiply the first equation by 2x and the second equation by 2y, and add them together
to arrive at

d

dt
r2 = r2(r4 − 3r2 + 1) = r2(r2 − α)(r2 − β),

where

α =
3 +
√

5

2
, β =

3−
√

5

2
.

Since β < 1 < α, we find that d(r2)/dt < 0 on {r = 1}, and as r > 0, ṙ < 0 also.
Similarly, β < α < 2 implies ṙ > 0 on {r = 2}.
The intermediate value theorem applied to ṙ, which is continuous, suggests that there is a value

of r between 1 and 2 for which ṙ = 0.
Near the origin, r < β < α, therefore d(r2)/dt > 0, and it is unstable. To see that it is a focus,

we find the equation for the argument also:

ϑ̇ =
1

r
(xẏ − yẋ) = r > 0,

away from the origin.


