TMA4165: Sheet IV Solutions

published 15/03/2021
1.
(i) By multiplying the first equation by x_{2} and the second by x_{1} and subtracting the first equation from the first, we see that at a fixed point, we must have $x_{1}^{2}+x_{2}^{2}=0$, which implies $x_{1}=x_{2}=0$. The final equation then gives us $y=1$ or $y=0$ at a fixed point. This gives us the the two fixed points

$$
p_{1}=(0,0,0)^{\top}, \quad p_{2}=(0,0,1)^{\top} .
$$

The linearization is governed by

$$
\mathrm{D} f=\left(\begin{array}{ccc}
y & -1 & x_{1} \\
1 & y & x_{2} \\
-2 x_{1} & -2 x_{2} & 2 y-1
\end{array}\right),
$$

which can be evaluated at the fixed points to yield

$$
\left.\mathrm{D} f\right|_{p_{1}}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right),\left.\quad \mathrm{D} f\right|_{p_{2}}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The matrix $\left.\mathrm{D} f\right|_{p_{1}}$ has eigenvalues $\lambda= \pm i,-1$, and $\left.\mathrm{D} f\right|_{p_{2}}$ has eigenvalues $\lambda=1,1 \pm i$.
That means that p_{2} is a hyperbolic fixed point in the neighbourhood of which the behaviour of the system is completely determined by the Hartman-Grobman theorem. In this case, p_{2} is an unstable fixed point.

We focus on p_{1}. We have

$$
\mathbf{C}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \mathbf{P}=-1 .
$$

We can write the system as

$$
\begin{aligned}
\dot{x}_{1} & =-x_{2}+x_{1} y=-x_{2}+F_{1}\left(x_{1}, x_{2}, y\right) \\
\dot{x}_{2} & =x_{1}+x_{2} y=x_{1}+F_{2}\left(x_{1}, x_{2}, y\right) \\
\dot{y} & =-y-x_{1}^{2}-x_{2}^{2}+y^{2}=-y+G\left(x_{1}, x_{2}, y\right) .
\end{aligned}
$$

Using the ansatz

$$
h\left(x_{1}, x_{2}\right)=a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}+O\left(|\mathbf{x}|^{3}\right)
$$

(if you attempt the first order ansatz, you will find $h=O\left(|\mathbf{x}|^{2}\right)$), so that

$$
\begin{equation*}
\mathrm{D} h\left(x_{1}, x_{2}\right)=\binom{2 a x_{1}+b x_{2}}{b x_{1}+2 c x_{2}}+O\left(|\mathbf{x}|^{2}\right) . \tag{1}
\end{equation*}
$$

From the centre manifold theorem we see that we require

$$
0=\operatorname{D} h\left(x_{1}, x_{2}\right) \cdot\left(\mathbf{C}\binom{x_{1}}{x_{2}}+\binom{F_{1}\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)}{F_{2}\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)}\right)-\mathbf{P} h\left(x_{1}, x_{2}\right)-G\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right) .
$$

Now $\mathrm{D} h \cdot\left(F_{1}\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right), F_{2}\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)\right)^{\top}=O\left(|\mathbf{x}|^{4}\right)$, so we can neglect to calculate those terms. Similarly, $G\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)=-x_{1}^{2}-x_{2}^{2}+O\left(|\mathbf{x}|^{4}\right)$. This leaves us with

$$
\begin{aligned}
0 & =\mathrm{D} h\left(x_{1}, x_{2}\right) \cdot \mathbf{C}\binom{x_{1}}{x_{2}}-\mathbf{P} h\left(x_{1}, x_{2}\right)-x_{1}^{2}-x_{2}^{2}+O\left(|\mathbf{x}|^{4}\right) \\
& =(3 a+1) x_{1}^{2}+3 b x_{1} x_{2}+(3 c+1) x_{2}^{2}+O\left(|\mathbf{x}|^{3}\right) .
\end{aligned}
$$

Since this equation has to be satisfied for any sufficiently small $\left(x_{1}, x_{2}\right)$, we find that $a=$ $c=-1 / 3$, and $b=0$. Hence

$$
h\left(x_{1}, x_{2}\right)=\frac{-1}{3} x_{1}^{2}-\frac{1}{3} x_{2}^{2}+O\left(|\mathbf{x}|^{3}\right), \quad F\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)=-\frac{1}{3}\binom{x_{1}^{3}+x_{1} x_{2}^{2}}{x_{1}^{2} x_{2}+x_{2}^{3}}
$$

The centre manifold theorem then suggests that on the centre manifold, we locally and qualitatively expect the behaviour

$$
\begin{aligned}
& \dot{x}_{1}=-x_{2}-\frac{1}{3} x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \\
& \dot{x}_{1}=x_{1}-\frac{1}{3} x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{aligned}
$$

Multiplying $2 x_{1}$ to the first equation and $2 x_{2}$ to the second, we can add them up and use the polar change-of-variables $r^{2}=x_{1}^{2}+x_{2}^{2}$ on the $x_{1}-x_{2}$ plane to find that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(r^{2}\right)=-\frac{1}{3} r^{4} \leq 0
$$

Therefore one expects a stable spiral near the origin on the $x_{1}-x_{2}$ plane.
(ii) Again linear analysis will show that we should focus on "centre" behaviour at the origin.

Here the equations are

$$
\begin{aligned}
\dot{x}_{1} & =x_{1} y-x_{1} x_{2}^{2}=F_{1}\left(x_{1}, x_{2}, y\right) \\
\dot{x}_{2} & =-2 x_{1}^{2} x_{2}^{2}-x_{1}^{4}+y^{2}=F_{2}\left(x_{1}, x_{2}, y\right) \\
\dot{y} & =-y+x_{1}^{2}+x_{2}^{2}=-y+G\left(x_{1}, x_{2}, y\right)
\end{aligned}
$$

This means that \mathbf{C} is the 2×2 zero matrix and $\mathbf{P}=-1$. Also, G does not in fact depend on y.

We expect the lowest possible order ansatz to be

$$
h\left(x_{1}, x_{2}\right)=a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}
$$

because the lowest order term without y in the first and second equations are $O\left(|\mathbf{x}|^{3}\right)$ so we do not have even to attempt a first order ansatz and find that $h=O\left(|\mathbf{x}|^{2}\right)$ as in part (i) of this question.

We find $\mathrm{D} h\left(x_{1}, x_{2}\right)$ exactly as in (1) foregoing. From the centre manifold theorem, we require
$0=\operatorname{D} h\left(x_{1}, x_{2}\right) \cdot\left(\mathbf{C}\binom{x_{1}}{x_{2}}+\binom{F_{1}\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)}{F_{2}\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)}\right)-\mathbf{P} h\left(x_{1}, x_{2}\right)-G\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)$.
We can calculate and find that
$\operatorname{Dh}\left(x_{1}, x_{2}\right) \cdot\binom{F_{1}\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)}{F_{2}\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)}=a x_{1}^{3}+b x_{1}^{2} x_{2}+(c-1) x_{1} x_{2}^{2}+O\left(|\mathbf{x}|^{4}\right)=O\left(|\mathbf{x}|^{3}\right)$.
Therefore we require that for sufficiently small $|\mathbf{x}|$,

$$
0=\left(a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}\right)-x_{1}^{2}+x_{2}^{2}+O\left(|\mathbf{x}|^{3}\right)
$$

and this implies $b=0, a=c=1$, and $h\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$.
The centre manifold theorem then suggest that we should expect the dynamics on the centre manifold locally to be governed by

$$
\begin{gathered}
\dot{x}_{1}=x_{1}^{3} \\
\dot{x}_{2}=x_{2}^{4}
\end{gathered}
$$

These equations are integrable, and we find

$$
x_{1}(t)=\frac{1}{\sqrt{1 / x_{1}^{2}(0)-2 t}}, \quad x_{2}(t)=\frac{1}{\sqrt[3]{1 / x_{2}^{3}(0)-3 t}}
$$

These can be plotted parametrically for $\left(x_{1}(0), x_{2}(0)\right)$ near the origin and exhibits a saddlenode.
2. Multiplying the first equation by $2 x$ and the second equation by $2 y$, and using the polar change-of-variables $r^{2}=x^{2}+y^{2}$, we find that

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} x^{2}=-2 x y+2 x^{2}\left(1-r^{2}\right) \sin \left(\left|1-r^{2}\right|^{-1 / 2}\right) \\
& \frac{\mathrm{d}}{\mathrm{~d} t} y^{2}=2 x y+2 y^{2}\left(1-r^{2}\right) \sin \left(\left|1-r^{2}\right|^{-1 / 2}\right)
\end{aligned}
$$

Adding these together we arrive at

$$
\frac{\mathrm{d}}{\mathrm{~d} t} r^{2}=2 r^{2}\left(1-r^{2}\right) \sin \left(\left|1-r^{2}\right|^{-1 / 2}\right) .
$$

We can check that this equation holds for $r=1$ as well.
The derivative is nought exactly when $r=1$ or when

$$
\frac{1}{\sqrt{\left|1-r^{2}\right|}}=n \pi, \quad n \in \mathbb{Z}
$$

Solving for r^{2} yields the radii of the limit cycles expected.
Set

$$
r_{ \pm n}^{2}=1 \mp \frac{1}{n^{2} \pi^{2}}, \quad \in \mathbb{N}
$$

When $R_{ \pm}^{2}=r_{ \pm n}^{2}+\varepsilon, n^{-2} \pi^{-2}>\varepsilon>0$, for some $\varepsilon^{\prime}>0$ dependent on n, we can write

$$
\frac{1}{\sqrt{\left|1-R_{ \pm}^{2}\right|}}=n \pi \pm \varepsilon^{\prime} .
$$

Likewise when $r_{ \pm}^{2}=r_{ \pm n}^{2}-\varepsilon, n^{-2} \pi^{-2}>\varepsilon>0$, for some $\varepsilon^{\prime}>0$ dependent on n, we can write

$$
\frac{1}{\sqrt{\left|1-r_{ \pm}^{2}\right|}}=n \pi \mp \varepsilon^{\prime}
$$

When n is odd, $\operatorname{sgn}\left(\sin \left(n \pi \pm \varepsilon^{\prime}\right)\right)=\mp 1$. When n is even $\operatorname{sgn}\left(\sin \left(n \pi \pm \varepsilon^{\prime}\right)\right)= \pm 1$.
Therefore when n is odd,

$$
\operatorname{sgn}\left(\left.\frac{\mathrm{d} r^{2}}{\mathrm{~d} t}\right|_{R_{ \pm}}\right)=\mp 1, \quad \operatorname{sgn}\left(\left.\frac{\mathrm{~d} r^{2}}{\mathrm{~d} t}\right|_{r_{ \pm}}\right)= \pm 1,
$$

and so the limit cycles of radii $r^{2}=1+1 /\left(n^{2} \pi^{2}\right)$ for odd n are stable, and the limit cycles of radii $r^{2}=1-1 /\left(n^{2} \pi^{2}\right)$ for odd n are unstable.

Similarly, the limit cycles of radii $r^{2}=1+1 /\left(n^{2} \pi^{2}\right)$ for even n are unstable, and the limit cycles of radii $r^{2}=1-1 /\left(n^{2} \pi^{2}\right)$ for even n are stable.
3. Verifying that the ansatz provided is indeed a solution is a simple matter of substituting $(x(t), y(t))^{\top}=(2 \cos (2 t), \sin (2 t))^{\top}$ into the equations provided and checking that the initial conditions are satisfied.

This cycle, which we shall call γ, has period $T=\pi$. For stability, as this is on \mathbb{R}^{2}, we need only check the sign of the integral

$$
\int_{0}^{\pi} \nabla \cdot f(\gamma(t)) \mathrm{d} t
$$

where
$f(x, y)=\binom{-4 y+x\left(1-x^{2} / 4-y^{2}\right)}{x+y\left(1-x^{2} / 4-y^{2}\right)}, \quad(\nabla \cdot f)(x, y)=\left(1-x^{2} / 4-y^{2}\right)-x^{2} / 2+\left(1-x^{2} / 4-y^{2}\right)-2 y^{2}$.
Therefore

$$
(\nabla \cdot f)(\gamma(t))=(\nabla \cdot f)(2 \cos (2 t), \sin (2 t))=-2
$$

We easily find that

$$
\int_{0}^{\pi} \nabla \cdot f(\gamma(t)) \mathrm{d} t=\int_{0}^{\pi}(-2) \mathrm{d} t<0
$$

This implies the stability of the periodic orbit on \mathbb{R}^{2}.
4. Again we multiply the first equation by $2 x$ and the second equation by $2 y$, and add them together to arrive at

$$
\frac{\mathrm{d}}{\mathrm{~d} t} r^{2}=r^{2}\left(r^{4}-3 r^{2}+1\right)=r^{2}\left(r^{2}-\alpha\right)\left(r^{2}-\beta\right),
$$

where

$$
\alpha=\frac{3+\sqrt{5}}{2}, \quad \beta=\frac{3-\sqrt{5}}{2} .
$$

Since $\beta<1<\alpha$, we find that $\mathrm{d}\left(r^{2}\right) / \mathrm{d} t<0$ on $\{r=1\}$, and as $r>0, \dot{r}<0$ also.
Similarly, $\beta<\alpha<2$ implies $\dot{r}>0$ on $\{r=2\}$.
The intermediate value theorem applied to \dot{r}, which is continuous, suggests that there is a value of r between 1 and 2 for which $\dot{r}=0$.

Near the origin, $r<\beta<\alpha$, therefore $\mathrm{d}\left(r^{2}\right) / \mathrm{d} t>0$, and it is unstable. To see that it is a focus, we find the equation for the argument also:

$$
\dot{\vartheta}=\frac{1}{r}(x \dot{y}-y \dot{x})=r>0,
$$

away from the origin.

