TMA4165: SHEET III SOLUTIONS **1.** Let $x \in A \cup B \subseteq X$. Then $f(x) \subseteq f(A)$ or $f(x) \subseteq f(B)$. Therefore $f(A \cup B) \subseteq f(A) \cup f(B)$. Conversely suppose $y \in f(A) \cup f(B)$. Then there is an $x \in A \cup B$ for which f(x) = y. Therefore $f(A) \cup f(B) \subseteq f(A \cup B)$. Let $x \in f^{-1}(U) \cup f^{-1}(V)$. Then $f(x) \in U$ or $f(x) \in V$, and $x \in f^{-1}(U \cup V)$. Therefore $f^{-1}(U) \cup f^{-1}(V) \subseteq f^{-1}(U \cup V)$. Conversely suppose that $x \in f^{-1}(U \cup V)$, then $f(x) \in U \cup V$, then $f(x) \in U$ or $f(x) \in V$, so $x \in f^{-1}(U)$ or $x \in f^{-1}(V)$. Therefore $f^{-1}(U \cup V) \subseteq f^{-1}(U) \cup f^{-1}(V)$. Let $x \in f^{-1}(U) \cap f^{-1}(V)$ Then $f(x) \in U$ and $f(x) \in V$. Therefore $x \in f^{-1}(U \cap V)$, and $f^{-1}(U) \cap f^{-1}(V) \subseteq f^{-1}(U \cap V)$. Conversely if $x \in f^{-1}(U \cap V)$, then $f(x) \in U$ or $f(x) \in V$, so $x \in f^{-1}(U)$ or $x \in f^{-1}(V)$. Therefore $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V)$. Suppose now we try to carry out the same argument for $f(A \cap B)$. If $x \in A \cap B$, $f(x) \in f(A)$ or $x \in f(B)$. Therefore $f(A \cap B) \subseteq f(A \cap B)$. But if $y \in f(A) \cap f(B)$, then all we know is that $f^{-1}(y) \subseteq A \cup B$ because the function may be many-to-one. In fact we can consider the example of $f(x) = \sin(x)$ and $A = [0, 2\pi]$, $B = [4\pi, 6\pi]$. Here $A \cap B = \emptyset$, but $f(A) \cap f(B) = [-1, 1]$. **2.** The fixed point is $\mathbf{x}_0 = (0,0,0)$. The linearised system has flux given by $$\nabla f|_{\mathbf{x}_0} = \begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$ The eigenvectors spanning the stable subspace E^s are $(1,0,0)^{\top}$ and $(0,1,0)^{\top}$. The eigenvector spanning the unstable subspace E^c is $(0,0,1)^{\top}$. We can integrate the full system by hand to find the solution with initial condition $\mathbf{x}(0) = \mathbf{y} = (y_1, y_2, y_3)^{\mathsf{T}}$. This yields (by Duhamel's formula or some other method): $$x_1(t) = y_1 e^{-t}$$ $$x_2(t) = y_2 e^{-t} + y_1^2 \left(e^{-t} - e^{-2t} \right)$$ $$x_3(t) = y_3 e^t + \frac{1}{3} y_2^2 \left(e^t - e^{-2t} \right) + 2 y_1^2 y_2 \left(\frac{1}{2} e^t - \frac{1}{3} e^{-2t} + \frac{1}{4} e^{-3t} \right) + y_1^4 \left(\frac{1}{30} e^t - \frac{1}{3} e^{-2t} + \frac{1}{2} e^{-3t} - \frac{1}{5} e^{-4t} \right).$$ The stable manifold consist of points \mathbf{y} for which $\phi_t(\mathbf{y}) \to \mathbf{x}_0$. From the solution $x_3(t)$, that happens when $$h_s(\mathbf{y}) := y_3 + \frac{1}{3}y_2^2 + \frac{1}{6}y_1^2y_2 + \frac{1}{30}y_1^4 = 0.$$ The function h is rank 1 and M_s is codimension 1 level set $$M_s = \{ \mathbf{y} \in U \subseteq \mathbb{R}^3 : h(\mathbf{y}) = 0 \},$$ where U is a small neighbourhood of \mathbf{x}_0 . The unstable manifold is given by $$M_u = \{ \mathbf{y} \in U \subseteq \mathbb{R}^3 : h_u(\mathbf{y}) := \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}.$$ The unstable manifold is evidently equal to the unstable subspace already. So we check the tangency condition for the stable manifold. First, $\mathbf{x}_0 \in M_s$. Therefore we check that at \mathbf{x}_0 , M_s and E^s have the same normal. The normal of E^s at \mathbf{x}_0 is the vector $(0,0,1)^{\top}$. For M_s , we find $$\nabla h = \begin{pmatrix} 2y_1^3/15 + y_1y_2/3 \\ y_1^2/6 + 2y_2/3 \\ 1 \end{pmatrix},$$ so that $\nabla h|_{\mathbf{x}_0} = (0,0,1)^{\top}$, and E^s is indeed tangent to M_s at \mathbf{x}_0 . **4.** The fixed point of the system is $\mathbf{x}_0 = (0, 0, 0)^{\top}$. The flow of the linearised system around \mathbf{x}_0 is $$\nabla f|_{\mathbf{x}_0} = \begin{pmatrix} -y^2 - 3x^2 & -1 - 2xy & 2z \\ 1 & -3y^2 & 3z^2 \\ -z - 2xz & -z^2 & -x - x^2 - 2yz - 5z^4 \end{pmatrix} \Big|_{\mathbf{x}_0} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$ The eigenvalues of $\nabla f|_{\mathbf{x}_0}$ are $\lambda_1 = 0$ and $\lambda_{\pm} = \pm i$. The corresponding eigenvectors are $\mathbf{v}_1 = (0,0,1)^{\top}$ and $\mathbf{v}_{\pm} = (\pm i,1,0)^{\top}$; so $\Re \mathbf{v}_{+} = (0,1,0)^{\top}$ and $\Im \mathbf{v}_{+} = (1,0,0)$. Therefore the linearised system has solutions $$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_1 \mathbf{v}_1 + (C_2 \cos(t) + C_3 \sin(t)) \Re \mathbf{v}_+ (C_3 \cos(t) - C_2 \sin(t)) \Im \mathbf{v}_+$$ $$= C_1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} \cos(t + \pi/2) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \sin(t + \pi/2) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$ $$+ C_3 \begin{pmatrix} \cos(t) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \sin(t) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$ where the term C_1 records the height above the x-y plane, and the remaining terms are two circles, 1/4 out of phase. Solutions do not tend to the fixed point $\mathbf{x}_0 = (0,0,0)^{\top}$ as $t \to \infty$, and shows stability but not asymptotic stability of \mathbf{x}_0 for the linearised system. Asymptotic stability of the full sstem can be see from the suggested Lyapunov function $V(x, y, z) = x^2 + y^2 + z^2$. We find that $$\nabla V \cdot f = 2x \left(-y - xy^2 + z^2 - x^3 \right) + 2y \left(x - y^3 + z^3 \right) + 2z \left(-xz - x^2z - yz^2 - z^5 \right)$$ $$= -2x^2y^2 - 2y^4 - 2x^4 - 2x^2z^2 - 2z^6.$$ which is strictly negative in $U\setminus(0,0,0)$ for any neighbourhood U of the origin. By Lyapunov's theorem, the origin is an asymptotically stable fixed point of the full system. 5. The nullclines of the Lorenz system are $$0 = \sigma(y - x),$$ $$0 = \rho x - y - xz,$$ $$0 = -\beta z + xy.$$ The fixed points are the intersection of the nullclines. These are at $x=y, \ \rho-z=y/x(=1)$ if $x\neq 0$, and finally $z=xy/\beta=x^2/\beta$. That is, $$x = \pm \sqrt{(\rho - 1)\beta}$$ or $x = 0$. Set $\alpha := \sqrt{(\rho - 1)\beta}$. The fixed points are at $$p_1 = (0, 0, 0)^{\top}, \quad p_2 = (\alpha, \alpha, \rho - 1)^{\top}, \quad p_3 = (-\alpha, -\alpha, \rho - 1)^{\top},$$ with p_2 and p_3 being fixed points only if $\rho - 1 > 0$. The linearised system has a flux around the origin given by $$\nabla f|_{p_1} = \begin{pmatrix} -\sigma & \sigma & 0\\ \rho - z & -1 & -x\\ y & x & -\beta \end{pmatrix} \Big|_{p_1} = \begin{pmatrix} -\sigma & \sigma & 0\\ \rho & -1 & 0\\ 0 & 0 & -\beta \end{pmatrix}.$$ Its eigenvalues are given by the characteristic equation $$0 = \lambda^3 + (\sigma + 1 + \beta)\lambda^2 + (\sigma + \beta + \beta\sigma - \rho\sigma)\lambda + \beta\sigma - \beta\rho\sigma.$$ By inspection $\lambda_1 = \beta$ is a root. Factoring out $(\lambda - \beta)$ from the left hand side of the above, we find the remaining eigenvalues $$\lambda_{\pm} = \frac{-(\sigma+1) \pm \sqrt{(\sigma+1)^2 + 34\sigma(\rho-1)}}{2}.$$ Therefore the system is stable around the origin if $(\sigma + 1)^2 < 4\sigma(1 - \rho)$ as $\beta, \sigma > 0$. The system is unstable with the inequality reversed. **6.** Take $q_1 = x, q_2 = y$, and $p_1 = \dot{x}$ and $p_2 = \dot{y}$. We postulate that $$\dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}}, \quad \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}},$$ for some Hamiltonian function H, and seek the properties of this Hamiltonian function, checking that it does not lead to contradictions. From the Hamiltonian equations above and the equation of \ddot{x} and \ddot{y} assumed, we derive $$p_i = \frac{\partial H}{\partial p_i}, \quad \frac{q_i}{\left(q_1^2 + q_2^2\right)^{3/2}} = -\frac{\partial H}{\partial q_i}, \qquad i = 1, 2.$$ Therefore $$H = \left(q_1^2 + q_2^2\right)^{-1/2} + \frac{p_1^2 + p_2^2}{2}$$ is a suitable Hamiltonian function by which the system in Q6 can be cast into Hamiltonian form. The orthogonal system of the Hamiltonian system is $$\dot{q}_i = \frac{\partial H}{\mathrm{d}q_i}, \quad \dot{p}_i = \frac{\partial H}{\partial p_i} \quad \Longrightarrow \quad \dot{q}_i = \frac{q_i}{\left(q_1^2 + q_2^2\right)^{3/2}}, \quad \dot{p}_i = p_i.$$ Substituting in the equations for x and y, we therefore find that the orthogonal system is $$\ddot{x} = \frac{x}{(x^2 + y^2)^{3/2}}, \quad \ddot{y} = \frac{y}{(x^2 + y^2)^{3/2}}.$$