TMA4165: SHEET II SOLUTIONS

1. See June 2018 examination solutions Q7

2. Since (z —y)(arctan(x) — arctan(y)) > 0 for = # y (i.e., the factors have the same sign), it holds
that

|T(x) — T(y)| = |x — y — arctan(z) — arctan(y)| < |z — y|.

This does not contradict the contraction mapping principle because even though the space R
is Banach under the absolute value, the map 7" : R — R is not a contraction, which requires a
Lipschitz constant strictly less than one.

3. First let us assume that »/(0) = K is a bounded constant that can be determined from the
boundary data for u. Integrating the equation, we find

%u(:ﬂ):/ox)\sin(u(y))—f(y) dy+ K, we01].

Integrating once again, we can use the boundary condition «(0) = 0 and find

u(a:)z/ox/oz)\sin(u(y)) dydz—/ox /Ozf(y) dydz + K.

If u € C(]0,1]) satisfies the integral equation above, it is evidently also in C?([0, 1]).
A solution u to the integral equation exists in C([0, 1]) if the map

() () =/Ox/02)\sin(u(y)) dydz—/om/ozf(y) dydz + Kz

has a fixed point, which in turn depends on ¥ : C([0,1]) — C([0,1]) being a contraction map.
For u,w € C([0,1]), we can estimate as follows:

[T(u) = F(w)llcqo) < sup
z€[0,1]

< s /0 /0 |sin(u(y)) — sin(w(y))| dydz

z€[0,1

| Nsintuty) —sinwiw) dyd:
0 0

< [M[[sin(u) = sin(w)| (o, -

We can conclude that ¥ is Lipschitz with Lipschitz constant |A| by the observation that the sine
function is differentiable and has derivative bounded by one in absolute values, i.e.,

[sin(u(y)) — sin(w(y))| < |u(y) —w(y)l.

Invoking the contraction mapping principle, we see that if |A\| < 1, then a unique solution to the
initial value problem with u(0) = 0, v/(0) = K exists regardless of K. It remains to show that we
can in fact find a K € R to ensure u(1) = 0. From

u(z) = /Om /OZ)\sin(u(y)) dydz — /Ox /OZ fly) dydz + K.

above, we see that we need only set K to be

K:—/Ol /OZ/\Sin(u(y)) dydz+/01/ozf(y) dydz.

This ensures well-posedness of the boundary-value problem.




We could also have reduced this to a first-order system by setting v = du/dx:
d
au(m) = v(x)
av(m) = —Asin(u(x)) — f(z).

d
4. We compare y(t) with z(t) = ¢/(c —t), which also satisfies z(0) = 1, and with ¢ = 1, is the
homogeneous solution.
Taking a derivative, we have
2
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Now if (¢ —¢)/(c—t)? —t > 0 for 0 < t < ¢, we can conclude that

t.

-2z wra-2),

from which we also have, by an integrating factor (like in Gronwall’s inequality)

%(e‘ Jo y(s)+2(s) s (y(t) — z(t))> > 0.

This in turn means y(t) > z(t) as y(0) = z(0), and z(t) blows up at t = ¢, so y(t) blows up before
t=-c.

Therefore we seek a lower bound on ¢ for which (¢? —¢)/(c —t)?> =t > 0for 0 < ¢ < c. ...I can
only get as good as ¢ > 1.23 or so...

5. We seek a solution to the fixed point problem for the map
1 [ 1
T(f)=1+— —_— dy.
=141 | o=l

We know such a solution must exist and be unique in, e.g., C([—a,al), if we can show that ¥ is
a contraction map under the uniform norm of C([—a, a]).
Let therefore f,g € C([—a,a]). We estimate as follows:

“ 1
/_a m(f(y) —g(y)) dy

1
I() = =(9)llo-aa = — sup

z€[—a,a)

1 a 1
< — su S E—— — d
< - IE[_S’G] /_a T+ _y)glf(y) 9(y)| dy

1 “ 1
< = —d - —a,a])"
o zes[l_lg,a] /_a 1+ (z—y)? vlf gHC([ e

The integral can be further evaluated:

a 1 r—a 1
—dyz/ dr = arctan(x — a) — arctan(x + a).
/_al—i—(ac—y)2 wta 1+72 ( ) ( )

It can be readily verified (by setting the derivative in x to zero) that the integral is maximized when
z=0.

Therefore the Lipschitz constant is 2arctan(a)/m, which is always less than 1 for a < oco. The
contraction mapping principle then provides a unique solution to the fixed-point problem.

As a — oo, this problem may fail to be well-posed.

To see non-negativity, decompose a solution f into f = fi + f—, where f1 > 0 and f_ < 0.

Let

a a

gr(x) =1+ | K(x—y)f+(y)dy, g-(y):= [ K(z—y)f-(y)dy,

—a —a



and 1 1
K(z) = ——.
(z) w1422
First we see that g+ > 0. Next, since
a a
g-(@)= | K@-y)/f-(y)dy> [ K(y)dyminf_(y)>aminf(y),
—a —a

for some [ K(y)dy < o < 1, and the last inequality is strict unless min,, f_(y) =0 (i.e., f- = 0).
By linearity,

a

g+(@) +9-(z) =1+ | K(z—y)f(y)dy = f(x).

—a
Since g4 > 0, if f is not non-negative it must be that

min f(z) > ming_(z) > amin f_(z) = amin f(z) > min f(x),
a contradiction.

6. The bound in the theorem statement follows from the Gronwall inequality:
t
() =y (0] < lxo = yol + [ 1 (5).0) = £ (3). ) ds
t
< [x0 — yol +/0 [F(x%(s), @) = fF(y7(s),0) + | F(y"(s),0) = F(y°(5), B)| ds

t
< Jxo — yol + / K%[x*(s) - y?(s)] ds + Clwo(|ex — BT,
0

where C} is a constant depending on f, since the modulus of continuity is uniform in the first
argument. The theorem is proven with an application of Gronwall’s inequality.



