TMA4165: PROBLEM SHEET V

published 15/03/2021

1. Let $M: \mathbb{R} \to \mathrm{GL}(\mathbb{R}^d)$ be an invertible matrix-valued C^1 function. Show that

$$\frac{\mathrm{d}}{\mathrm{d}t}\log(\det(M)) = \mathrm{tr}(\frac{\mathrm{d}}{\mathrm{d}t}\log(M)),$$

where $d \log(M)/dt$ is interpreted as $M^{-1}dM/dt$, or look up its proof on the Internet.

2. Find the index about the critical points in the following diagrams:

FIGURE 1. Taken from Jordan and Smith

3. Find the index at the critical points of the following systems:

- (i) $\dot{x} = 2xy$, $\dot{y} = 3x^2 y^2$; (ii) $\dot{x} = y^2 x^4$, $\dot{y} = x^3y$;
- (iii) $\dot{x} = x y$, $\dot{y} = x y^2$.

Find their indices at ∞ .

4. Show that for linear planar systems, saddles always have index -1, stable foci always have index 1, centres always have index 1, and stable nodes always have index 1.

5. Show that the following systems have no periodic solutions:

- (i) $\dot{x} = y$, $\dot{y} = 1 + x^2 (1 x)y$;
- (ii) $\dot{x} = -(1-x)^3 + xy^2$, $\dot{y} = y + y^3$; (iii) $\dot{x} = 2xy + x^3$, $\dot{y} = -x^2 + y y^2 + y^3$; (iv) $\dot{x} = x$, $\dot{y} = 1 + x + y^2$;