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9. LECTURE IX: STABLE MANIFOLD AND HARTMAN—-GROBMAN THEOREMS

9.1. Stable Manifold Theorem. Now we are ready to discuss the ideas of the stable manifold
theorem.

Recall that for a linear system, by Thm.4.3, we can decompose phase space about its critical
points to R = B @ E° @ EY, where

FE?® = span U Vi

{n:%A, <0}
E°¢ = span U Vi
{n:RA\,=0}
E" = span U Vi,
{n:RA, >0}

and V,, were the vectors spanning the general eigenspace associated with A,,. Now if 0 is a hyperbolic
critical point, by definition, D f(0) does not have eigenvalues with R\, = 0. Therefore, for the linear
system

d
Sx(t) = Df(O)x(1),

we have a decomposition of phase space into R? = E @ Ev.
The stable manifold theorem is as follows:

Theorem 9.1 (Stable Manifold Theorem). Let U be an open subset of RY containing the origin.
Let f € CY(U;R?), and let ¢; be the flow of the nonlinear system
d

gx = f(x).

Suppose that f(0) =0 and Df(0) has k eigenvalues (counting multiplicity) with negative real parts
and d — k eigenvalues with positive real parts. Then

(i) there exists a dimension k C*-manifold M tangent to E° of the linearized system

d
3= Df(0)x

at 0 such that for all t > 0, ¢t(Ms) C My and for all y € M,
tlg})lc #t(y) = 0;

and
(ii) there exists a dimension d — k C'-manifold M, tangent to E* of the linearized system at O
such that for all t <0, ¢4(M,) € M, and for all'y € M,,

Jlim_y(y) = 0.
Example 9.1. We look at a nonlinear system that we can solve explicitly:
T1 = —21
To = —x2 + x%
T3 = T3+ a:%
There is one fixed point, which is the origin. The linearization is given by

-1 0 0
Dfo)y=(0 -1 0],
0 0 1
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and so 0 is a hyperbolic critical point. The eigenvalues and eigenvectors are readily deducible, and
we see that

E® = {x: 35 =0} = span{(1,0,0)7,(0,1,0)T},  E"={x:a1 =2y =0} =span{(0,0,1)"}.

The equations can also be integrated by hand, giving

x1(t) = yret

za(t) = yoe t +yile Tt — ™)
z3(t) = yse' + yi(e" — e )/3,

with x(0) =y = (y1,2,3) -
We see that lim;_ ¢:(y) = 0 if, and only if, y3/3 + y3 = 0, and so

M, ={y eR®:9? +3y3 =0}.
Likewise, lim;, o ¢¢(y) = 0 if, and only if, y; = yo = 0, and so
]\Ju={y€]R3:y1=y2=0}.

It is clear that M,, is tangent to E* at 0 because they coincide entirely. Taking the derivative of

h(y1,y2,y3) = y% + 3ys, for which Mj; is the level set at 0, we find

Vh| = (2?/17 O) S)T |(0,0,0) = (07 07 3)7
0

which is indeed perpendicular to E?, and so S and E° are tangent at 0, as expected.

The way that the Stable Manifold Theorem is usually proven gives us insight into the structure
of nonlinear systems. And whilst we shall not be proving the Stable Manifold Theorem, it is of
benefit to discuss some elements of its proof. First notice that for a general first order, autonomous
nonlinear system, we have the following Taylor’s expansion around a hyperbolic critical point xq:

%x(t) = Df (x0)x(t) + G(x),

where G has zero first derivative at xg. This means that whilst G might not be “second-order” in
x, for every e, there is a J such that if |x — xg| < J, and |y — xo| < 9,

|G(x) - G(y)| <elx—yl.
By applying the Jordan Normal Form Theorem (Thm. 4.1), we can assume that D f(xg) is of the

form
D (x) = (103 g) 7

where P is a matrix in Jordan normal form with only eigenvalues of negative real parts, and @) is
a matrix in Jordan normal form with only eigenvalues of positive real parts. The linear system can
be solved by exponentiating D f(x() so that where

ePt o 0 O
W(t) - ( 0 0/’ Z(t) —\o th )
the flow of the linearized system is
ePTOt — W () + Z(¢).

Using the Duhamel representation to treat the term G as an inhomogeneity, we find

t
x(t) = IO [ PIIGx(s)) ds
0
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If we look at solutions that start on what might potentially be the stable manifold, we have
solutions of the form

x(t) = W(t)b —I—/O W(t—s)G(x(s)) ds — /too Z(t — s)G(x(s)) ds.

Now we can take Picard iterations and exploit the signs of the real parts of the eigenvalues to
bound W and Z to reach our conclusions via an applicaiton of the contraction mapping theorem
on a sufficiently small ball around the fixed point. With these same estimates, it can be shown that
the solution to which the Picard approximation tend also satisfies

Ix(t;b)| < K|ble™

for initial conditions b sufficiently close to the fixed point xp and o > 0 chosen as to be smaller
in magnitude than all negative eigenvalues of Df(xp). A similar procedure can be done for the
unstable manifold, except we then run time in the backwards direction using the reversal ¢ — —t.

We can see what form the stable manifold must take from the Duhamel representation by taking
t = 0. First, taking ¢t = 0, we find

b =x(0;b) + /OO Z(t — s)G(x(0; b)) ds.
0

Next, by the form of the solution, it is clear that x(¢; b) is independent of the last d — k coordinates
of b. So we are led to the equations defining a manifold:

o0
0= (y19y27~"7yd)—r_W(O)X(O;y19~-'7yk707'"70)_/ Z(t_S)G(X(O;yL--'7yk707"'>0))d8'
0

The first k equations yield no information as they only say 0 = 0 — 0. The final d — k equations are
level set (at 0 € R9~F) of the map

o0
yeRdwka,...yk)T—/ Z(t— )Gx(0: g1, Y10, .., 0))dls,
0

which is a manifold of codimension d — k, as sought. It is more effort to show that solutions not
beginning on this manifold do not tend to the fixed point xg as t — oco.

The Stable Manifold Theorem only defines M and M,, on a small neighbourhood of the hyperbolic
critical point. To supplement their definition in the theorem we also introduce the GLOBAL STABLE
AND UNSTABLE MANIFOLDS at 0 if it is a hyperbolic fixed point:

W*(0) = [ ¢u(M,)

t<0

W(0) = | ¢e(M.).
>0
These may not be manifolds in the sense we have defined, or in the more general sense conventionally
used, except restricted to a neighbourhod of the hyperbolic critical point, but they are flow invariant,
and satisfy the properties respectively ascribed to Mg and M, in the Stable Manifold Theorem. This
is primarily because the function of which they are level sets can fail to be constant rank, and the
“manifold” can intersect itself, so when we say “C*-manifold” below, we mean essentially that it is
C* on neighbourhoods where the function defining it has the same rank.
We are also in a position to speak briefly of non-hyperbolic critical points:

Theorem 9.2 (Centre Manifold Theorem). Let f € CY(U;R?) and f(0) = 0. Suppose Df(0) has k
eigenvalues with negative real parts, m eigenvalues with zero real parts, and (d —k —m) eigenvalues
with positive real parts. There exists

(i) an m-dimensional C'-CENTRE MANIFOLD W¢(0) tangent to the centre subspace E° of the
linearized system at 0,
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(ii) a k-dimensional C* stable manifold W*(0) tangent to the stable subspace E* of the linearized
system at 0, and

(iii) a (d —k —m)-dimensional C* unstable manifold W*(0) tangent to the unstable subspace E"
of the linearized system at 0.

These three subsets of R? are invariant under the flow ¢y.

What happens on the centre manifold shall remain a mystery to us as long as we are only willing
to look at approximations to first order because of another topological fact, this time of the real
numbers. If A = ¢+ i1, and o # 0, then there is always a small enough perturbation of A by h € C
such that the sign of S3(A+h) is the same as the sign of 0. Not being zero is an open condition. But
if 0 = 0, any (general) perturbation of A will give o a sign. Therefore, we see that what determines
the behaviour on the centre manifold is determined by how the nonlinear terms perturb the system
spectrally in a neighbourhood of a critical point. We shall find that at nonhyperbolic critical points,
completely novel behaviours can arise because of nonlinearity.



