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22. LECTURE XXII: ONE-DIMENSIONAL LOCAL BIFURCATIONS I

With this lecture we move onto the final part of the module, where we shall concern ourselves with
bifurcations of systems with parameters. We have seen systems with parameters before, both fixed
and vanishing. It happens that at times, the qualitative behaviour of systems change drastically
and suddenly as the parameters on which the depend vary continuously. We call these phenomona
BIFURCATIONS. Recall in Example 7.5, the activator-inhibitor model
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has one critical point at the origin for any o, but only at ¢ > 2 does it suddenly have two further
critical points at (r4,7r%), where
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We say that a bifurcation occurs at o = 2 for this system.
We shall be looking systematically at simple bifurcations in the remaining lectures in this module.
First we shall consider one-parameter systems, so we shall be looking at systems of the form

X = f(X,/,L), (33)

where p varies over R, and specifically, is not the temporal variable. For each fixed u, we have a
C'-autonomous, first order system of long familiarity. We may think of this as a system over R%+1
by augmenting it with the equation g = 0.
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22.1. Dimension one/Codimension one bifurcations. The reason that the title of this sub-
section seems somewhat of an oxymoron is that again, the nomenclature is a matter of perspective.
In any case, the bifurcation is only happening along one direction. We shall introduce four types of
bifurcations below.

To understand the codimension one perspective, first suppose the system (33) has a critical point
at (xo, o) at which D f(xg, 1o) (is an d x d matrix which) has a single zero eigenvalue. We know
that hyperbolic critical points are quite stable already.

Then by the centre manifold theorem applied to the (d 4+ 1) dimensional system, we know that
there is a two dimensional manifold W¢((xq, 10)) € R%*! tangent to the centre subspace at (X, f10).
Restricting the system to the surface W¢((xo, 110)), we can “foliate” W€((xo, po)) be (one dimen-
sional) curves indexed by a parameter p close to po. (That is, we can think of W€((xo, po)) as being
made up entirely of curves 7, as p varies, which do not intersect.)

The centre manifold theorem gives us:
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where g : R — R is the “centre” component of f : R — R? and y is the “centre” variable
that is not u. That is, the centre equations of the (d + 1)-dimensional system are

=g, f=0.

We shall now see that by increasing the “degeneracy” of this centre manifold dynamics, we naturally
arrive at different types of bifurcating behaviour, in which the system changes abruptly in different
ways as j varies continuously.

1. Saddle-node bifurcation
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We can stem the degeneracy on the centre manifold of the (d+ 1)-dimensional system by requiring

dg 0%g
) £, g9
oz (x0,10) oy? (x0,40)

This is a sort of transversality condition, because we know that this means whilst the curves v,
with p close enough to g all reach an optimum in the y direction on W¢((xg, 1)) (this is (34)), at
least they do not vanish to second order in both the y and the u direction.

Integrating the equations (34) and (35) leads us directly to the equation for centre variable of
the form:

£0. (35)

g = (1 — o) — (¥ — 0)* + O((1t — o) (y — o), (10 — 110)*, (¥ — ¥0)*),

where we have normalized over all constants that could be multiplied to (1 — o) or (y —)?. Here
9o is the “centre” component of xg. The minus sign is an arbitrary convention, as we shall see.

Neglecting the higher order terms, and assuming xg = 0, g = 0, there are critical points along
the nullcline y? = p. As p varies over R, we see that there are no critical points for the system
where < 0. For g > 0, there are two, y = £,/u. This would be reversed if the minus sign were
a plus sign. At p = 0, of course, there is one single critical point, about which we had applied the
centre manifold theorem to begin with.

We can ask about the stability of these two critical points where they exist. Looking again at
the centre variable equation with xo = 0 and po = 0, we find that at the linearization:
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ayiﬁ(“ yh) =2y|, n =F2V0

That means that y = —,/u is an unstable fixed point and y = /1 is a stable fixed point. We do not
have to worry about the non-centre variables because their characteristics are stable with respect
to small perturbations around (0, 0).

We can record this graphically in what is-known as a BIFURCATION DIAGRAM:

The red lines indicate the locations of the fixed points as p varies away from 0. The dashed line
indicates an unstable fixed point and a solid line indicates a stable fixed point. We call this type
of bifurcation a SADDLE-NODE BIFURCATION. The statement that these transversality conditions
guarantee a saddle-node bifurcation is known as Sotomayor’s Theorem (see Perko, pg. 338).

2. Transcritical bifurcation

By allowing one higher order of degeneracy, we arrive at the transversality /non-degeneracy con-
dition:
%g
ou dy

#0. (36)
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Integrating the equations (34) and (36) leads us now to the following equation for the centre
variable:

§=py—y*+ 002y,
where again, we have taken x¢9 = 0 and pg = 0.
Sufficiently close to (xo, f10), ther are critical points at y? — uy = 0. That is, at y = 0 and at
y = . There are always two critical points as p varies over R, except at u = 0.

We can again analyse the stabilty of the critical points as p varies away from 0 over R. The
linearized system is governed by

(%(uy —y’) =p—2y.
This derivative is positive or negative according as p is positive or negative along y = 0. This means
the fixed point y = 0 is unstable when p > 0, and stable when g < 0.
This derivative is negative or positive according as pu is positive or negative along y = p. This

means that the fixed point y = u is stable when p > 0, and unstable when p < 0.
We can again record this type of bifurcation graphically:

The red lines indicate the locations of the fixed points as p varies away from 0. The dashed line
indicates an unstable fixed point and a solid line indicates a stable fixed point. We call this type of
bifurcation a TRANSCRITICAL BIFURCATION.

3. Pitchfork bifurcation

Let us continue allowing one higher order of degeneracy. We allow

2o,
Wloo

in addition to (34) but require
03y
— # 0. (37)
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These conditions then lead us as before to:
g=ny—y>+ 0yt
Sufficiently close to (0,0) there are critical points at y> — uy = 0. That is, at y = 0, and at

y?> — pp=0. When p < 0, there is only one critical point. At p > 0, there are three.
The stability of y = 0 as p varies away from 0 depends on

9
91,0
which implies stability when p < 0 and instability when g > 0.

(y — v°) = p,
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At y = +/u, we find

0
o (ny = y°) = p—3p = =2p.
Y y=+/fi
That is, both these critical points are stable where they exist, which is only over p > 0.
This this type of bifurcation is known as the PITCHFORK BIFURCATION, and its bifurcation

diagram is:

The naturality with which these bifurcations have arisen and their simplicity suggest that they
arise often and in many simplified/approximate models. This is indeed the case and we shall look
at some examples next time.



