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3. LECTURE III: LINEAR SYSTEMS ON R¢
In this lecture, we look at linear systems more generally.

3.1. Autonomous linear systems on R?. We consider again the system
d
ar

where A is now a d x d matrix. Now as we saw, the matrix A is not in general diagonalizable.

However, it can always be put into a standard, or normal form, from which we can determine which

eigenvalues have strictly greater algebraic multiplicities than they have geometric multiplicities. We

have the following useful theorem:

(t) = Ax(1),

Theorem 3.1 (Jordan’s Normal Form Theorem). Let B,, for 1 < m < s be a d,, X d,, matriz
given by
(Bl = Aol + 57,
For every d x d matriz A, there exist d, x dp, matrices By, with ) ., ~.dm =d, and a d x d
matriz J given by
B,
J =
B;
for which
A~
The matrix J is unique up to the ordering of the blocks.

Recall that similarity is an equivalence relation.

The matrix J is the JORDAN NORMAL FORM of A. We sometimes write this as J = diag(B,).
The matrices B, with A, on the diagonal and, 1 on the superdiagonal are known as the JORDAN
BLOCKS. The number of Jordan blocks with' X on the diagonal is the geometric multiplicity of that
eigenvalue and the number of times A appears in J itself is its algebraic multiplicity.

As A is real, its characteristic equation also only has real coefficients, and therefore complex
roots only appear in conjugate pairs.

This normal form representation allows us to decouple the first-order system into blocks with
distinct eigenvalues of different multiplicities. We shall now repeat in general dimensions our de-
ductions in the case d = 2. In particular, from the Fundamental Theorem for Linear Systems
(Thm.1.2) it can be seen (cf. (6)) that where A = P~1JP,

x(t) = Pexp (Jt)P_lx(O).

One advantage of decoupling the equations is that, just as diagonal matrices are easy to exponen-
tiate, it is also relatively benign a calculation that determines exp (Jt). First, a direct calculation
shows that for any power n € N,

Bn
1
Jn = I ;
By
so that by the series representation of the exponential,

exp (Jt) = exp (diag(By,t)) = diag(exp(Bmt)).
Next it remains to find exp (Bmt). Writing N,,, for the d,, x d,, matrix with 1s along the
superdiagonal (with entries 7 ), we find

exp(Bn,) = exp(Amlg,, t) exp(Npt) = ermt exp(Np,t),

as the identity matrix commutes with any other matrix.
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Therefore we need only determine exp(IN,,t). We find that N, is nilpotent with power d,,, as,
by direct calculation (or by induction), for any power n € N,

J ]
Putting this into the series expansion for exp(IN,t) we find
dm—1

(exp(Nmt))j = Z Z_T;(Sg—n’

n=0

i.e., exp(N,,t) is an upper-diagonal matrix that looks like

1t 220 . tdml/(d, —1)!

o 1 t - tm2/(d, —2)!

. gdm—3 —3)!

exp(Nt) = 0 0o 1 t4m=3 /(dp, — 3)!
0 1 t
0 0 1

Recall that the algebraic multiplicity of an eigenvalue A is the number of times that A is a root
of p(z) = det(A — zI) = 0, and the geometric multiplicity is the dimension of ker(A — AI).

Associated with each distinct eigenvalue A, of A, of algebraic multiplicity u, is a generalized
eigenspace spanned by the y, linearly independent generalized eigenvectors V;, = {vl ... vh"}. Of
these, a subset will be actual eigenvectors. The rest are found by the Jordan chain proceedure. The
Jordan chain proceedure by which the bases V;, are found is given in Perko on p.43. Note that the
algorithm/theorem in Perko is written in such a way as to avoid vectors with complex entries.

The idea is that if the dimension of ker(A — AI) ismot great enough, we look among ker(A — \I)?,
and increasingly higher powers, until we find d linearly independent vectors.

The generalized eigenvectors give the full generalized basis by which P is constructed so that
A=PJP L

Example 3.1. Examples of matrices-in Jordan normal form:

100 1 00 110 1100 1100
0100 0100
02 0],10 2 0),{0 1 0}, ,
003 \oo1/ \ooa4/ (00100011
0 0 0 4 00 01
Example 3.2. Consider the Cauchy problem:
d 2 1 0
d—x(t)z 0 2 0]x(t), x(0) = b.
t 0 -1 3

Let the matrix be called A.
One can find that the eigenvalues of the matrix are A\; = 2, with algebraic multiplicity 2, and
Ay = 3.
However, A1 only has geometric multiplicity of 1, and its associated eigenvector is vi = (1,0,0)7.
The eigenvector associated with Ay is vo = (0,0,1)T.
This tells us that the Jordan normal form is

J=

S O N
O N =
w o o

We can also find the non-singular matrices P that puts A into its Jordan normal form. The Jordan
chain proceedure involves finding an linearly independent vector vs in the kernel of (A — A1Iy). This
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is done by setting
(A — /\113)V3 = Vi.
Doing so we find that v3 = (0,1,1)T is a solution.
The subspace decomposition then suggests that

x(t) = (C1 + Czt)€2tV1 + Che®lvy + COze3tvs.

Setting
1 00
P:(Vl,Vg,VQ): 010 ,
01 1
we have
J=P 'AP.
Therefore with the change-of-variables y = P~'x, we can transform the Cauchy problem to
d
gy = y(0)

This can be exponentiated easily:
y(t) = (C1 + Czt)€2tP_1V1 + Coe®'Pvs + C’ge‘%P_lvz7

(because if w is an eigenvector of A, then APP~'w = Aw, and P~!w is the eigenvector of P~ AP).
We can recover x via x = Py, verifying our intuitions.

3.2. Linear stability theory. The main advantage of decoupling the system by casting it into
the Jordan normal form, however, is that we can state a sort of “structure theorem” for all linear
systems.

Let V,, be the collection of generalized eigenvectors-associated with the eigenvalue A\, € C. We
can group the collections V, into three classes: Set

E? = span U Vi

{n::\\, <0}

Ef = span U Vi (10)
{n:R X\, =0}

E" = span U V.
{n:R A\, >0}

We call E® the STABLE SUBSPACE, E¢ the CENTRE SUBSPACE, and E" the UNSTABLE SUBSPACE.
They are so named because E° consist of the directions along which the dynamics of the system
enforces decay to 0 and E“ consist of the directions along which x(¢) tends to infinity as ¢ — oo.

We say that a subspace £ C R" is INVARIANT with respect to the flow ¢; if ¢ FZ C E for all time
t € R. That is, the (forward and backward) orbit(s) of each point within F remains in E.

For us, the flow, as identified following (5) is exp(At). If all eigenvalues of A have non-zero
real parts (i.e., the centre manifold is trivial), then we say that the flow, and the linear system, is
HYPERBOLIC.

From the definition of the generalized eigenvectors that span E*, E¢, and E“, we can deduce
that:

Lemma 3.2. Let E be the generalized eigenspace of A corresponding to an eigenvalue . Then
AECE.

Let E be the subspace of the generalised eigenvectors £ that is spanned by the eigenvectors of A.
This lemma boils down to the fact that if u € E, then it can be written as a linear combination of
cigenvectors e; or generalized eigenvectors v;, for which AFv; € E for high enough k. Now for every
k , including k& = 1, v; being defined using a Jordan chain, must still satisfy that Av; € Av; + F.
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And for eigenvectors e;, it is even better — AE = E, unless 0 is an eigenvalue, in which case the
equality again reverts to an inclusion.

Since A acts linearly over the linear combination, AF C FE.

Iterating the theorem we see that

A"ECA"'EC...CAECE.
So using the partial sums of series representation of the flow exp(At), and taking the limit, it further
holds that the subspaces are invariant with respect to the flow also. This invariance means that in
general, the Jordan normal form decouples the system into invariant subspaces, and these invariant
subspaces span the entire phase space:
Theorem 3.3. Let A be a real d x d matriz. Then the phase space R% can be decomposed thus:

Rd:ESEBEC@Eu,

which are defined in (10). Furthermore, these subspaces are each invariant with respect to the flow
exp(At).



