Project 2
 Number Theoretic Transform

KG

January 23, 2023

1 Introduction

In this project, we will examine the Number Theoretic Transform and its use in speeding up arithmetic in some rings. We want to find a ring isomorphism $\phi: \mathbb{F}[X] /\left(X^{2^{m}}+1\right) \rightarrow \mathbb{F}^{2^{m}}$. We have a primitive 2^{m+1} th root of unity ω. This isomorphism can be computed by an iterative process, which we describe briefly.

First, Consider a ring of the form $R_{0}=\mathbb{F}[X] /\left(X^{2 u}-v^{2}\right)$, which by the Chinese remainder theorem is isomorphic to $R_{1} \times R_{2}$, with $R_{1}=\mathbb{F}[X] /\left(X^{u}-v\right)$ and $R_{2}=\mathbb{F}[X] /\left(X^{u}+v\right)$. The CRT isomorphism maps the coset in R_{0} represented by $f(X)$ to the cosets of R_{1} and R_{2} represented by the same polynomial $f(X)$. We divide by $X^{u}-v$ and $X^{u}+v$, respectively, to find representatives of minimal degree.

Given a polynomial $\sum_{i=0}^{2 u-1} f_{i} X^{i}$, the remainder when dividing by $X^{u}-v$ is $\sum_{i=0}^{u-1}\left(f_{i}+v f_{i+u}\right) X^{i}$, since $X^{u}=v$ in R_{1}. Likewise, the remainder when dividing by $X^{u}+v$ is $\sum_{i=0}^{u-1}\left(f_{i}-v f_{i+u}\right) X^{i}$, since $X^{u}=-v$ in R_{2}.

This construction can be repeated many times. If we begin with $X^{2^{m}}+1$ and a 2^{m+1} th root of 1 , we need m iterations to get to linear factors. Finally, $\mathbb{F}[X] /(X-v)$ is trivially isomorphic to \mathbb{F}.

Let ω be a primitive 2^{m+1} th root of 1 in \mathbb{F}. Then $\omega^{2^{m}}=-1$. Suppose the polynomial is $X^{2^{j}}-v^{2}$ with $v^{2}=\omega^{i}$. Then we choose $v=\omega^{i / 2}$ and $-v=\omega^{i / 2+2^{m-1}}$. For the first split of $X^{2^{m}}+1, v=\omega^{2^{m-1}}$.

Computing the inverse of this isomorphism is also fast, up to a power of 2. If $g=f_{i}-v f_{i+u}$, and $h=$ $f_{i}+v f_{i+u}$, then $2 f_{i}=g+h$ and $2 f_{i+u}=(h-g) v^{-1}$.

It may be useful to look at Section 7 of Bernstein (1).
Examples: For simplicity, we only list the representatives and skip the coset notation.

1. Multiply $1+2 X$ and $3+4 X$ in $R_{0}=\mathbb{F}_{p}[X] /\left(X^{2}+1\right), p=257$. Let $m=1, \omega=v=2^{4}$, and note that $X^{2}+1=$ $(X-16)(X+16)$ in $\mathbb{F}_{p}[X]$.

$$
\begin{aligned}
& 1+2 X \mapsto(33,-31) \\
& 3+4 X \mapsto(67,-61) \\
& (1+2 X)(3+4 X)=3+6 X+4 X+8 X^{2}=-5+10 X \mapsto(155,-165)
\end{aligned}
$$

2. Multiply $1+2 X+3 X^{2}+4 X^{3}$ and $5+6 X+7 X^{2}+8 X^{3}$ in $R_{0}=\mathbb{F}_{p}[X] /\left(X^{4}+1\right), p=257$.

Let $m=2, \omega=2^{2}$.

$$
\begin{aligned}
& \text { - } v=2^{4}, X^{4}+1=\left(X^{2}-16\right)\left(X^{2}+16\right) . \\
& 1+2 X+3 X^{2}+4 X^{3} \mapsto(49+66 X,-47-62 X) \\
& 5+6 X+7 X^{2}+8 X^{3} \mapsto(117+134 X,-107-122 X) \\
& \text { - } v=2^{2}, X^{2}-16=(X-4)(X+4) \\
& 49+66 X \mapsto(56,42) \\
& 117+134 X \mapsto(139,95) \\
& \text { - } v^{2}=-2^{4}=2^{10} \Rightarrow v=2^{5}, X^{2}+16=(X-64)(X+64) \\
& 210+195 X \mapsto(97,66) \\
& 150+135 X \mapsto(52,248)
\end{aligned}
$$

2 Tasks

You will write a report using $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. The report should include an explanation of what you have done, a description of your implementation, the theoretical analysis, any experimental results with explanations and a code listing.

You do not need to report on the results of the first task.

1. Warm-up Do these multiplications:

- $R_{0}=\mathbb{F}_{p}[X] /\left(X^{8}+1\right), p=257, m=3, \omega=3^{2^{4}}=249$. $\left(\sum_{i=0}^{7}(i+1) X^{i}\right)\left(\sum_{i=0}^{7}(i+9) X^{i}\right)$
- $R_{0}=\mathbb{F}_{p}[X] /\left(X^{2^{7}}+1, p=257, m=7, \omega=3\right.$. $\left(\sum_{i=0}^{127}(i+1) X^{i}\right)\left(\sum_{i=0}^{127}(i+9) X^{i}\right)$
- $R_{0}=\mathbb{F}_{p}[X] /\left(X^{2^{8}}+1\right), p=\left(15 \cdot 2^{9}+1\right)=7681, m=8, \omega=4055$. $\left(\sum_{i=0}^{255}(i+1) X^{i}\right)\left(\sum_{i=0}^{255}(i+9) X^{i}\right)$

The first could be done by hand. The next two probably needs computer help.

2. Theory

a. Correctness Show that the map ϕ sketched in the introduction is a ring isomorphism.
b. Optional: Discrete Fourier Transform (DFT) Explain what the DFT is. Explain how the isomorphism ϕ is related to the DFT. Also explain the connection between ϕ and the Fast Fourier Transform (FFT)

3. Arithmetic

a. Implement: Naive arithmetic Implement naive arithmetic in $\mathbb{F}_{p}[X] /\left(X^{n}+1\right)$, in particular naive (schoolbook) multiplication of elements. You may either do a straight-forward polynomial multiplication followed by polynomial remainder, or you can exploit the specific form of the polynomial $X^{n}+1$ to use a more efficient formula for multiplication. Also implement unit tests.
b. Implement: NTT Implement the isomorphism $\phi: \mathbb{F}_{p}[X] /\left(X^{2^{m}}+1\right) \rightarrow \mathbb{F}_{p}^{2^{m}}$ described in the introduction, as well as its inverse.

Implement multiplication of elements in $\mathbb{F}_{p}[X] /\left(X^{2^{m}}+1\right)$ by applying the isomorphism ϕ, multiplying element-wise in $\mathbb{F}_{p}^{2^{m}}$ and then applying the inverse isomorphism ϕ^{-1}.

Also implement unit tests.
c. Analyse Explain the theoretical cost of the two multiplication algorithms you have implemented, in terms of multiplications in \mathbb{F}_{p}.
d. Run Find a suitable sequence of primes p and use them to time the cost of multiplications in $\mathbb{F}_{p}[X] /\left(X^{2^{m}}+\right.$ 1) using both the naive multiplication implementation from Task 3 a and Task 3 b If your programming environment has native polynomial arithmetic, also time native polynomial multiplication.

Compare the results with the theoretical analysis from Task 3 c

References

[1] Daniel J. Bernstein. Multidigit multiplication for mathematicians. https://cr.yp.to/papers.html\#m3 2001.

