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1 Introduction

In this note, we consider the following problem. Alice wants to send messages to Bob via
some communications channel. Eve has access to the channel and she may eavesdrop
on and possibly tamper with anything sent over the channel.

Alice does not want Eve to be able to eavesdrop on her messages. She wants to
communicate confidentially. Also, when Bob receives a message that looks like it came
from Alice, then Bob wants to be sure that Alice really sent the message and that Eve
did not tamper with it. Alice and Bob want integrity.

Alice and Bob share a secret, called the key. Cryptography where the sender and the
receiver (the honest users) have the same knowledge is called symmetric cryptography,
where the word symmetry refers to the symmetry of knowledge.

We define what a symmetric cryptosystem is and what the security requirements are
for such cryptosystems in Section 2.

To illustrate standard attacks, it is useful to study some historic cryptosystems
and how those systems can be attacked. This is done in Section 3, which alternates
between discussing historical ciphers and discussing interesting attacks that apply to
the historical ciphers. (Note that Section 3 is no history of cryptography.)

Section 3 contains a few constructions that provide confidentiality against eavesdrop-
pers. These constructions do not provide integrity, nor do they provide confidentiality
if Eve is willing to tamper with ciphertexts.

The main tool for providing integrity is discussed in Section 4. How to combine the
constructions provided in Sections 3 and 4 into cryptosystems providing both integrity
and confidentiality even when Eve tampers with the ciphertexts is discussed in Section 5.

This text is intended for a reader that is familiar with mathematical language, basic
algebra (groups, rings, fields, linear algebra and polynomials), elementary probability
theory and elementary computer science (algorithms).

This text is very informal. Every concept and result mentioned in the text can be
made precise, but the technical details are out of scope for this text.

While modern high-level constructions are discussed in this note, low-level construc-
tions are out of scope. This explains why this note defines what a block cipher is and
gives an informal explanation of what it means for a block cipher to be secure, but does
not contain a single example of a modern block cipher.

Another topic that is out of scope is proving the security of the modern constructions
discussed. We only include proofs for information theoretically secure constructions.

This text uses colour to indicate who is supposed to know what. Red denotes secret
information (typically keys) known only by Alice and Bob. Green denotes information
that Alice and Bob want to protect, typically messages. Blue denotes information that
the eavesdropper will see.

2 Basic Definitions

We begin with the definition of a symmetric cryptosystem and what it means for a
cryptosystem to be secure.



Definition 1. A symmetric cryptosystem consists of
e a set K of keys;
e a set P of plaintexts;
e a set C of ciphertexts;

e an encryption algorithm & that on input of a key and a plaintext outputs a ci-
phertext; and

a decryption algorithm D that on input of a key and a ciphertext outputs either
a plaintext or the special symbol L (indicating an invalid ciphertext).

For any key k and any plaintext m, we have that
D(k,E(k,m)) = m.

The set P will usually be a set of finite sequences of letters from an alphabet.
We shall assume that the key Alice and Bob share has been chosen uniformly at
random from the set of keys.

3 Confidentiality Against Eavesdroppers

In this section we shall consider the situation where Eve is eavesdropping on Alice and
Bob. Eve’s goal is to understand what Alice is saying to Bob.

We shall briefly discuss some historic cryptosystems. We do this to give a gentle in-
troduction to the basic concepts in cryptograpy and provide some insight into important
attack strategies.

The presentation in this section alternates between describing a cryptosystem and
describing how to attack that cryptosystem, until we reach systems that will provide
confidentiality.

Definition (informal) 2. A symmetric cryptosystem provides confidentiality if it is —
without knowledge of the key — hard to learn anything at all about the decryption of a
ciphertext from the ciphertext itself, except possibly the length of the decryption.

3.1 Shift Cipher

The shift cipher is also known as the Czaesar cipher.

Suppose first that we give our alphabet G some group structure. There is a natural
bijection between the English alphabet {A,B,C,...,z} and the group Zjs, given by
0 < A, 1< B, etc. We add F and G by applying the bijection to get 5 and 6, adding
them to 11, and then applying the inverse bijection to get L.

The plaintext m is a sequence of letters myms ... my from the alphabet. The key is
an element & from G. We encrypt the message by adding the key to each letter, that
is, the ith ciphertext letter is

ci = my; +k, 1<i<L. (1)
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Figure 1: Example of shift cipher encryption with the key & = D (D corresponds to the
number 3).

The ciphertext ¢ is the sequence of letters cico...cp.
To decrypt a ciphertext ¢ = ¢ ... cp, we subtract the key from each ciphertext letter,
that is, the ith plaintext letter is

m; =c¢; — k, 1<i<L.

Ezercise (algorithms) 1. The above is an informal description. Write down carefully
what the three sets K, P and C are, and implement the two algorithms £ and D. Show
that (KC,P,C,&,D) is a symmetric cryptosystem.

FEzercise 2. How many different keys are there for the shift cipher when the alphabet
has 26 elements?

3.1.1 Attack: Exhaustive Search

The easiest attack on the shift cipher is an exhaustive search for the key, or a brute force
attack. The two assumptions required for this attack is that only one key will give a
reasonable decryption, and that we will be able to recognize that decryption. Both of
these assumptions are almost always true.

If there are few keys, we can decrypt with all possible keys in reasonable time. The
correct key will be the one that gives a reasonable decryption.

Exercise 3. Find all the possible decryptions of HGHUUT. How many are English words?
What about the possible decryptions of MBQ?

Ezercise (for groups) 4. Choose a key for the Shift cipher at random and encrypt some
message. Give the ciphertext to someone else in the group and have them decrypt it
without knowing the key.

3.2 Affine Cipher

Now we give our alphabet R a ring structure, say like Zog. We add as before. We
multiply ¥ and G by applying the bijection to get 5 and 6, multiplying them to get 30
which is 4 modulo 26, and then applying the inverse bijection to get E.

The plaintext m is a sequence of letters mims ... my from the alphabet. The key
is a pair (k1, ko) of ring elements, the first of which must be invertible. We encrypt the
message letterwise using the formula

c; = kimg + ko, 1<¢<L. (2)



The ciphertext ¢ is the sequence of letters cico ... cp.
To decrypt a ciphertext ¢ = ¢; ...cr, we compute the ith plaintext letter using the
formulas
mi:kl_l(cz-—kg), 1<:<L.

Exercise 5. The above is an informal description. Write down carefully what the three
sets IC, P, C and the two algorithms £ and D are. Show that they constitute a symmetric
cryptosystems.

Ezercise 6. How many different keys are there for the affine cipher when the alphabet
has 26 elements?

3.2.1 Attack: Known Plaintext

Suppose Eve knows that Alice always begins her messages with HI. One ciphertext
starts with the letters UB. When the attacker knows the plaintext corresponding to a
piece of ciphertext, that is called known plaintext.

Eve knows that Alice used the affine cipher, which means that equation (2) was used
to encrypt H to U and I to B. She gets the following two equations:

U=FkH+ k?g,

3
B:kll—‘rkfg. <)

This is a linear system of equations with two equations and two unknowns. As long as
the difference H — 1 is invertible in the ring (which it is), we can solve the system and
recover the key (k1, k).

Ezercise 7. Solve the linear system of equations given in (3) to find the key.

Ezercise (for groups) 8. Choose a key for the affine cipher at random and encrypt some
message. Give the ciphertext along with some known plaintext to someone else in the
group and have them decrypt it without knowing the key.

Exercise 9. Develop a similar known plaintext attack for the Shift cipher from Sec-
tion 3.1.

3.3 Substitution Cipher

The formulas (1) and (2) define bijections on the alphabet. We can generalize these
schemes by using any bijection or permutation on our alphabet. Let our alphabet be a
set S.

The plaintext m is a sequence of letters mims ... my from the alphabet. The key
is a permutation 7 on S. We encrypt the message letterwise using the formula

c; = m(m;), 1<i< L. (4)

The ciphertext c¢ is the sequence of letters cico...cp.
To decrypt a ciphertext ¢ = ¢; ...cr, we compute the ith plaintext letter using the
formula
7TLZ‘:7T_1(CZ‘), 1<i<L.



Exercise 10. The above is an informal description. Write down carefully what the three
sets IC, P, C and the two algorithms £ and D are. Show that they constitute a symmetric
cryptosystems.

Ezercise 11. How many different keys are there for the substitution cipher when the
alphabet has 26 elements?

Ezercise 12. Explain how we can recover part of the key (a partial key) from known
plaintext, but not necessarily the full key.

3.3.1 Attack: Frequency Analysis

Known plaintext will reveal part of the key. But there are stronger attacks on the
substitution cipher, based on the number of times the various ciphertext letters appear.

If the permutation takes the plaintext letter A to the ciphertext letter z, the number
of 7’s in the ciphertext will be the same as the number of A’s in the plaintext. This
means that the relative frequencies of the ciphertext letters will be the same as the
relative frequencies of the plaintext letters, up to permutation.

For most long English texts, the relative frequency of the various letters is constant.
This means that for encryptions of long English texts, the relative frequencies of ci-
phertext letters is a simple permutation of the relative frequencies of letters in English
text. It will be a simple matter of matching plaintext letters and ciphertext letters and
thereby recovering the key and thus the plaintext.

For English texts of moderate length, the relative frequencies of the less common
letters will vary a lot, and reliable matching of plaintext letters to ciphertext letters will
be impossible. However, some letters, E in particular, are so common in English that
they will usually be the most common letters, even for fairly short texts.

Ezercise 13. Gather a collection of English texts of varying topic and length. Compute
the frequency distributions. Use these distributions to estimate how long a text must
be before we can expect to identify with reasonable certainty (a) E, (b) the five most
frequent letters, and (c) the ten most frequent letters.

This means that even though we cannot reliably match every plaintext letter to
every ciphertext letter, we can match a few plaintext letters to a few ciphertext letters.
This gives us a partial key and a partial decryption.

The next step is to pretend that this partial decryption is a crossword puzzle, and
guess some plaintext words that fit with the partial decryption. We then treat these
guesses as known plaintext and recover more of the key. This gives us a better partial
decryption. If the new partial decryption does not make sense or is impossible, we
guessed wrong. We backtrack and guess again.

If, on the other hand, the new partial decryption makes sense, we probably guessed
right. Now we treat the new partial decryption as a crossword puzzle. We repeat this
process of guessing and verifying until we have the complete decryption.

Ezercise (for groups) 14. Choose a key for the substitution cipher and encrypt some
sufficiently long message. Give the ciphertext to someone else in the group and have
them decrypt it without knowing the key. You may also give them a small amount of
known plaintext.



3.4 Towards Block Ciphers

One approach to preventing frequency analysis is to use a permutation on pairs of
letters. That is, our permutation acts on the set S of all pairs of letters, not the set of
letters.

FEzercise 15. For a substitution cipher based on permutations on pairs, write down
carefully what the three sets IC, P, C and the two algorithms £ and D are. Show that
they constitute a symmetric cryptosystems.

Unfortunately, the frequencies of pairs are uneven, which means that frequency
analysis still works, although it is less effective. A permutation on triples of letters
would be better, but still not perfect.

Even better would be [-tuples. The number [ is called the block length. Unfor-
tunately, representing a random permutation over a large set is impractical. (Merely
writing down a permutation requires at least log,(|S|"!) ~ |S|'(In|S|" — 1)/In2 binary
digits.)

One idea would be to use not a random permutation, but instead use a random
member of some family of permutations.

The Hill cipher is an example of such a family of permutations, namely the permu-
tations described by invertible matrices. We give our alphabet R a ring structure, say
like Zog. We denote a I-tuple of letters as m € R'. An invertible [ x [ matrix K acts
upon such [-tuples in the obvious fashion, and we denote this action by Km.

The plaintext m is a sequence of [-tuples of letters myms...my. The key is an
invertible [ x [ matrix K. We encrypt the message using the formula

ci:Krni, 1§’LSL

The ciphertext c is the sequence of [-tuples cics ... cp.
To decrypt a ciphertext ¢ = c; ...cp, we compute the ith plaintext tuple using the
formula
m; = K tc;, 1<i<L.

Exercise 16. The above is an informal description. Write down carefully what the three
sets IC, P, C and the two algorithms £ and D are. Show that they constitute a symmetric
cryptosystems.

Exercise 17. How many different keys are there for the Hill cipher with block length 2
when the alphabet has 29 elements?

Ezercise 18. How many blocks of ciphertext-plaintext correspondences do you need to
recover K with reasonable probability, when the block length is 2 and the alphabet has
29 elements? (For the purposes of this exercise only, you may assume that the known
plaintext consists of random letters from the alphabet.)

Ezercise (for groups) 19. Choose a key for the Hill cipher and encrypt some message.
Give the ciphertext along with some known plaintext to someone else in the group and
have them decrypt it without knowing the key.
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Figure 2: Example of Hill cipher encryption with the key K = ( i 1; )

A second example of a family of permutations is the Pohlig-Hellman exponentiation
cipher. This time, we do not consider tuples of letters, but rather a very large alphabet.
We give our large alphabet G the structure of a cyclic group of order n.

The plaintext m is a sequence of group elements myms ... my. The key is an integer
k between 0 and n that is relatively prime to n. We encrypt the message using the
formula

c; = kmy, 1<i<L.

The ciphertext c is the sequence of group elements cics .. .cp.
To decrypt a ciphertext ¢ = cico ... cr, we compute the ¢ plaintext tuple using the
formula
m; = ke, 1<:<L,

where the inverse k~! of k is computed modulo n.

Note that the expression km; where k is an integer and m; is a group element is very
different from the expression km; when k& and m; are elements in a ring. The former
notation is short for m; +m; + - - - + m;, where the sum contains % terms.

Ezercise 20. The above is an informal description. Write down carefully what the three
sets IC, P, C and the two algorithms £ and D are. Show that they constitute a symmetric
cryptosystems.

It is generally believed that if the group G is carefully chosen, it is hard to find the
key, even with known or chosen plaintext.

3.4.1 Attack: Distinguishing

The permutations used in the Hill cipher (linear, invertible maps) are very different
from most permutations. For any two [-tuples m, m’ of letters from the alphabet, an
invertible matrix /K satisfies the equation

Km+ Km’' = K(m + m’).

The same observation holds for the permutations used in the Pohlig-Hellman cipher.
For any two elements m, m’ € G, we get that

km + km' = k(m +m’).

Most permutations would not satisfy these equations. This means that the permu-
tations do not look like randomly chosen permutations. It is easy to distinguish the Hill
cipher and Pohlig-Hellman cipher permutations from random permutations.



We can use this property to make simple deductions about plaintext based only on
ciphertext properties.

Exercise 21. Consider the Hill cipher. Suppose ¢, ¢’ and ¢’ are ciphertexts such that
¢; + ¢ = ¢/ for one or more indexes i. What can you say about the corresponding
plaintexts?

3.5 Block Ciphers
We shall now work with a set .S, typically the set of I-tuples of letters from our alphabet.

Definition 3. A block cipher is a pair of maps m, 77! : K x S — S such that for all
k € K and s € S we have that

m(k, 7 (k,s)) = s and 7 (k, 7(k,s)) = s.

In other words, a block cipher is a family of permutations on a set S indexed by a
key set KC.

Ezercise 22. The Hill cipher is based on a block cipher. Identify the block cipher by

explaining what the key set &C, the set S and the functions m, 7! are.

Ezercise 23. The Pohlig-Hellman cipher is based on a block cipher. Identify the block

cipher by explaining what the key set /C, the set S and the functions m, 7—! are.

Despite the name, a block cipher by itself is not a cryptosystem. But we construct
a cryptosystem based on a block cipher.

The plaintext m is a sequence of elements mims ... my from the set S. The key is
an element &k in L. We encrypt the message elementwise using the formula

¢; = m(k,m;), 1<i<L.

The ciphertext ¢ is the sequence of set elements cics...cp,.
To decrypt a ciphertext ¢ = ¢;...cr, we compute the ith plaintext element using
the formula
mi =1k, ¢;), 1<i< L.

Ezercise 24. The above is an informal description of a block cipher used in electronic
code book (ECB) mode. Write down carefully what the three sets IC, P, C and the two
algorithms £ and D are. Show that they constitute a symmetric cryptosystems.

Our hope is that this scheme will be both practical and as good as the substitution
cipher when used on [-tuples. But as we have seen, the Hill cipher is easy to attack.

Definition (informal) 4. A block cipher is secure if it is hard to distinguish a pair of
randomly chosen inverse permutations (7,7~ 1) from the pair of inverse permutations
(m(k,-), 7= *(k,-)), where k has been chosen uniformly at random from K.

Note that whoever is trying to distinguish is only allowed to see the functions eval-
uated at various points. He is never allowed to see the permutation 7 or the key k.
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Figure 3: Typical high-level block cipher design.

The idea is that if it is hard to distinguish the block cipher’s permutations from
“average” permutations, we may as well use the block cipher with a random key instead
of a random permutation. If there is an attack on the block cipher cryptosystem that
does not work on the substitution cipher, that will be one way to distinguish the block
cipher.

We note that for a block cipher to be secure, the key set must be very large. Oth-
erwise, one can recognize the block cipher permutations with high probability by enu-
merating all the keys and observing how the corresponding permutation affects one or
two elements of the set.

3.5.1 Sketch: Feistel Ciphers

How to construct secure block ciphers is out of scope of this note. However, we shall
very briefly discuss one popular design for block ciphers, the Feistel cipher.

Block ciphers are typically built by repeatedly applying one or more simple block
ciphers called rounds. A single round will be very easy to break, but the composition
of sufficiently many rounds may be hard to break. Given the rounds p1, ps,. .., p, with
corresponding inverse rounds, we get a block cipher 7 by composition:

7(kym) = pr(lins - - po(kz, pr(ki,m)) ) and
7 (kym) = (k- pty (ke o (kg m)) -+ -)

The round keys ki, ks, ..., k, are derived from the key k. Using the same key for each
round is problematic. Using independent keys such that k = (kq, ko, ..., k,) leads to
impractically large keys. Instead, a key schedule is usually used to derive round keys
from the block cipher key. This high-level design is shown in Figure 3. We note that
for good ciphers, the key schedule and the rounds are highly dependent on eachother.

One convenient way to design rounds is the Feistel round. The construction assumes
that S = G x G for some finite group G. It uses a round function F : K x G — G to
construct the the permutation

p(k, (L, R)) = (R, L + F(k, R)).
It is easy to see that the inverse permutation is

p Yk, (L',R)) = (R — F(k,L"),L).

10
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Figure 4: The Feistel round and its inverse.

Choosing a suitable round function is a hard problem, especially when the goal is to find
a round function that can be computed very quickly and that does not require many
rounds. Again, this problem is out of scope for this note.

3.5.2 Practical: Padding

The plaintext set for the cryptosystem from Exercise 24 is the set of finite sequences
of elements from S, where each set element is typically an [-tuple of letters from the
alphabet. In other words, the plaintext set is the set of letter sequences whose length
is divisible by .

But when [ is large, it is unreasonable to expect message lengths to be a multiple of
[. We usually need to encrypt arbitrary sequences of letters. Since we need to decrypt
correctly, we cannot just append some fixed letter until the sequence length is a multiple
of I.

We extend a cryptosystem to accept sequences of any length by constructing a
suitable injective function, a so-called padding scheme.

Definition 5. Let P and P’ be sets. A padding scheme for P and P’ consists of two
functions ¢ : P — P’ and A : P’ — P U{L} satisfying

A(e(m)) = m for all m € P.

Ezercise 25. Suppose you have a cryptosystem (I, P’,C,E’,D’) and a padding scheme
(¢, A) for P and P’. Based on the padding scheme and the cryptosystem, construct a
new cryptosystem (K, P,C,E, D). Show that it is indeed a cryptosystem.

Typically, the alphabet will be {0, 1} and our set is S = {0, 1}, bit strings of length
[. The plaintext set P’ will then be bit strings of length divisible by I.

One padding scheme is the following: We first add one 1-bit, then we add 0-bits
until the total length is divisible by {. If the block size [ is 8, the bit string 10101 will
become 101011 00. If the block size [ is 5, the bit string 01010 becomes 01 01 01 00 00.

To remove the padding, we remove up to [ —1 trailing 0-bits and exactly one 1-bit. If
the block size [ is 8, the string 01010101 01 becomes the bit string 010101 010. If the

11



block size [ is 5, the string 01010 becomes 010, while the string 1010100000 cannot
be decoded and therefore becomes 1.

If decoding fails as in the last example, we have a padding error. Padding errors
have subtle effects on the security of cryptographic protocols.

3.5.3 Attack: Block Repetitions
We make two observations about ECB mode (the cryptosystem from Exercise 24):

e Any repetition among plaintext blocks will cause corresponding repetitions among
ciphertext blocks.

e If we encrypt the same message twice, we get the same ciphertext.

Both of these observations allow an eavesdropper to learn something about the message
from the ciphertext, and thereby break confidentiality. Both observations are indepen-
dent of which block cipher we use. The problem is not with the concept of block cipher,
but with how we use the block cipher.

Exercise 26. Suppose a message has been encrypted with ECB mode using a block
cipher with block length 4, and that you know that the message is either

SELL THE HOUSE NOW DO NOT SELL THE CABIN
or
SELL THE HOUSE AND EVERYTHING ELSE NOW.

(Ignore spaces and punctuation.) Explain how you can decide which message is the
decryption by only looking at the ciphertext.

3.6 A Correct Use of a Block Cipher

We now allow our block cipher to operate on a group G instead of a set. (Note that our
permutations will still act on the set of group elements. Since most permutations on G
do not respect the group operation, neither should the block cipher permutations.)

The plaintext m is a sequence of elements mims ... my from the group G. The key
is an element k in IC. We encrypt the message elementwise by first choosing a random
group element ¢y and then using the formula

ci = m(kym; + ¢i—1), 1<i<L.

The ciphertext ¢ is the sequence of set elements cocics ... cr.
To decrypt a ciphertext ¢ = cgcy . .. ¢, we compute the ith plaintext element using
the formula
m; = 71'71(71‘, Ci) — Ci—1, 1<i<L.

Ezercise 27. The above is an informal description of a block cipher used in cipherblock
chaining (CBC) mode. Write down carefully what the three sets KC, P, C and the two
algorithms £ and D are. Show that they constitute a symmetric cryptosystems.

12
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Figure 5: Cipherblock chaining (CBC) mode encryption diagram using the block cipher
(m,m=1). To get the decryption diagram, reverse the direction of the vertical arrows,

replace + by — and 7 by 7 1.

What happens when we encrypt is that we start at a random group element. This
random element is added to the first message block, which is then permuted, resulting in
essentially a random-looking group element. This element is added to the second mes-
sage block, which is again permuted, resulting in essentially a second random-looking
group element. This process continues, producing a ciphertext that consists of a se-
quence of random-looking group elements.

Remark. The initial random group element cq is often called an initialization vector.
It is possible to prove a precise variant of the following statement. Its proof is out

of scope for this note.

Security claim (informal) 1. A secure block cipher used in CBC mode provides
confidentiality against eavesdroppers.

Ezercise 28. Consider the attacks discussed in previous sections. Explain why they fail
against a secure block cipher used in CBC mode.

Ezercise 29. CBC mode is insecure if the initialization vector c¢q is predictable. Suppose
the group G is Z;zs. We play the following game.

1. You get an encryption c¢* = cjc} of a plaintext m* € Z;‘lzg.
2. You choose m € Z;QB.

3. You are given an encryption ¢ of m + A, A € {0,1}, where the initial random
element ¢y was not chosen at random, but rather as c¢j. That is, ¢ = cpc; with
co = cj.

Show how you can play this game and be able to determine A by choosing m carefully.

3.7 Vigenere Cipher

Frequency analysis worked very well against the substitution cipher from Section 3.3.
One approach to preventing frequency analysis might be to encrypt different plaintext
letters with different substitution ciphers.

13
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Figure 6: Example of Vigenere cipher encryption with the key k = JAPE.

The idea is that the frequencies produced by the encryption will be the average of the
frequencies produced by the different substitution ciphers, which should tend towards
a uniform distribution, thereby preventing frequency analysis.

Again, we let our alphabet be a group G, such as Z;.

The plaintext m is a sequence of elements myms ... myp from the group G. The key
is a sequence of elements k1, ko, k3, ..., k; from G. We encrypt the message elementwise
with the formula

ci=miy+k;, wherel1<i< L 1<j<landj=1 (mod 7).

The ciphertext c is the sequence of elements cics ... cp.
To decrypt a ciphertext ¢ = cics ... cr, we compute the ith plaintext element using
the formula

m; =¢; —kj, where1<i< L, 1<j<landj=i (mod]I).

Exercise 30. The above is an informal description. Write down carefully what the three
sets IC, P, C and the two algorithms £ and D are. Show that they constitute a symmetric
cryptosystems.

Ezercise (for groups) 31. Choose a key for the Vigenere cipher and encrypt some mes-
sage. Give the ciphertext along with sufficient known plaintext to someone else in the
group and have them decrypt it without knowing the key.

3.7.1 Attack: Frequency Analysis II

There is an easy attack against the Vigenere cipher if we have known plaintext. If we
subtract the known plaintext from the corresponding ciphertext, we get the key repeated
over and over. However, there are stronger attacks based on frequency analysis.

We begin with an English text and create a subsequence of letters by starting at the
1th letter and then adding every [th letter. It so happens that such subsequences tend
to have the same frequency distribution as the entire text.

Exercise 32. In Exercise 13, you gathered a collection of English texts. Extract subse-
quences as above and compute the frequency distributions. Compare these distributions
to the frequency distribution of the whole text, and estimate how long subsequences
must be before we can expect to identify with reasonable certainty (a) E, (b) the five
most frequent letters, and (c) the ten most frequent letters.
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What happens to such subsequences when we encrypt the text with the Vigenere
cipher using a key of length [? The letters in the subsequence are encrypted by adding
the same letter from the key to it. In other words, the subsequence is encrypted using
a shift cipher.

Earlier, we attacked the shift cipher by exhaustive search, but recognizing subse-
quences of English text is more difficult than recognizing English text. A better ap-
proach is to use frequency analysis. We know that E will likely be the most common
letter in the plaintext subsequence, which corresponds to the most common letter in
the ciphertext subsequence.

To recover a key of length [, all we have to do is run [ frequency analysis attacks
against the shift cipher.

Ezercise (for groups) 33. Choose a key for the Vigenere cipher and encrypt some suffi-
ciently long message. Give the ciphertext along with key length to someone else in the
group and have them decrypt it without knowing the key.

There is one minor problem: The key length may vary and we do not know it. The
simplest approach is to try every possible length, beginning with [ = 1. When we have
the wrong key length, the attack will fail to produce a sensible decryption.

If everything has to be done by hand, there are faster ways to determine the key
length. The oldest method relies on repetitions in the plaintext affecting the ciphertext.
A newer method uses the so-called index of coincidence.

Ezercise (for groups) 34. Choose a key for the Vigenere cipher and encrypt some suffi-
ciently long message. Give the ciphertext to someone else in the group and have them
use the index of coincidence to determine the key length.

3.8 One Time Pad

Suppose the key for the Vigenéere cipher is completely random, that is, each key letter
is sampled from the uniform distribution and each letter is independent of the other
letters. What happens if the key is at least as long as the message and used for only
one message? When used like this, the cipher is known as the one time pad.

Again, our alphabet is a group G, such as Z3;.

The (single) plaintext m is a sequence of L group elements myms ... my, € GL. The
key k is a sequence of L group elements kiks ...k, € GLY. We encrypt the message
elementwise using the formula

c; =m; + ki, where 1 <¢ < L.

The ciphertext ¢ is the sequence of L group elements cics ... cy,.
To decrypt a ciphertext ¢ = cicz ... cp, we compute the ith plaintext element using
the formula
m; = ¢; — k;, where 1 <17 < L.

Ezercise 35. The above is an informal description. Write down carefully what the three
sets IC, P, C and the two algorithms £ and D are. Show that they constitute a symmetric
cryptosystems.
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We shall prove that Eve’s knowledge about the message after she saw the ciphertext,
is the same as the knowledge she had before she saw the ciphertext.

Even before Alice has sent her ciphertext, Eve has some information about what
Alice’s plaintext will be. We can model this information as a random variable M,
which means that from Eve’s point of view, we assign a probability for Alice’s plaintext
being a specific message m. We denote this probability by Pr[M = m].

Likewise, we model Eve’s information about the ciphertext as a random variable
C. Again, from Eve’s point of view, we can now assign a probability to the likelihood
of seeing a given ciphertext. We denote that probability by Pr[C' = ¢]. We can also
consider, from Eve’s point of view, the conditional probability of seeing a particular
ciphertext, given a particular plaintext. We denote that conditional probability by
Pr[C =c| M =m).

Once Eve has seen the ciphertext, she has perfect knowledge of it, so there is no
longer any uncertainty. Now, however, her information about the message may have
changed. We denote the probability of Alice’s message being a specific message condi-
tioned on the observed ciphertext by Pr[M =m | C = ¢].

Theorem 2. If the above scheme has been used to encrypt exactly one message, then
Pr[M =mymg...mp | C =cica...cp] =Pr[M =mymg...myg].

Proof. The assumption on the key means that from Eve’s point of view before seeing
the ciphertext, the key letters are uniformly and independently distributed, which is
expressed as the statement

Pr[K = kiky... k] = |G|7L.
Again, K is a random variable describing Eve’s knowledge about the key.
We first compute the probabilities
Pr[C =cica...c | M =myma...mpg]
= Pr[K = (1 = ma)(ca —ma) ... (co —myp)] = |G|7*
and

Pr[C =] = ZPr[C =c| M =m]Pr[M = m]
= |G Pr[M =m] = |G|7".

Then we compute the a posteriori probability

Pr{M = m | C = d] = Pr[M =mAC = (]

Pr[C = ]
_ Pr[C =c| M =m]Pr[M = m]
N Pr[C = (]
= Pr[M =m],
which completes the proof. O
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The a posteriori probability is the same as the a priori probability, which means
that Eve has learned nothing new by observing the ciphertext. We have proved that
the one time pad provides confidentiality against eavesdroppers.

Security claim 3. If the key is used to encrypt only once, the one time pad provides
confidentiality against eavesdroppers.

Note that this claim is unconditional, unlike the corresponding claim for CBC mode
in Section 3.6, which is conditional on the use of a secure block cipher. This is good.
Unfortunately, we must note that the one time pad is impractical in almost every
application.

Ezercise (for groups) 36. The one time pad is not secure if the key is used more than
once. Choose a key of sufficient length for the one time pad and encrypt two different
messages using the same key. Give the ciphertext along with part of one message to
someone else in the group and have them decrypt it without knowing the key. To ease
decryption, the messages should consist of mostly long words.

3.9 Stream Ciphers

There are many possible definitions of stream ciphers, but we shall consider only the
notion of synchronious or additive stream ciphers. The idea is that a key stream gen-
erator expands a key and an initialization vector into something that looks like a key
for the one time pad, which is then used to encrypt the message.

Definition 6. A key stream generator is a function f : I x T — G.

Definition (informal) 7. A key stream generator is secure if it is hard to distinguish
the function values f(k, 1), f(k,vs),..., f(k,iv,) from random values when % has
been chosen uniformly at random from X and the values vy, ivo, ..., v, have been
chosen uniformly at random from Z.

Again, our alphabet is a group G, such as Z3;.

The plaintext m is a sequence of group elements myms ... my of length L < N. The
key k is an element in IC. We encrypt the message by first choosing v uniformly at
random from Z, then computing the L first elements z1 29 ... zp, of f(k, ) = z129...2N.
We encrypt the plaintext elementwise using the formula

w; = my; + 2, where 1 < ¢ < L.

The ciphertext ¢ is the pair (iv, wiws ... wr).
To decrypt a ciphertext ¢ = (v, wiws ... wy), we first compute the L first elements
z129...2y of f(k,iv) and then compute the ith plaintext element using the formula

m; = w; — 2, where 1 < ¢ < L.

Ezercise 37. The above is an informal description of a stream cipher based on a key
stream generator. Write down carefully what the three sets IC, P, C and the two
algorithms £ and D are. Show that they constitute a symmetric cryptosystems.
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It is possible to prove a precise variant of the following statement. Its proof is out
of scope for this note.

Security claim (informal) 4. A stream cipher using a secure key stream generator
provides confidentiality against eavesdroppers.

3.9.1 Key Stream Generators from Block Ciphers

Let 7,71 : K x G — G be a block cipher. Suppose the set Z x {1,2,..., N} is a subset
of the set of group elements of G. We shall use this block cipher to construct two key
stream generators, forp/r : K X G — GV and ferr/z K XTI — GN.

For any iv € G and k € K, let

z1 = mw(k, i) and z; = w(k,z;-1), where 2 < i < N.

Then forp/x(k,iv) = z122... 2N
For any i € Z and k € K, let

z; = w(k, (iv,1)), where 1 <4 < N.

Then fCTR/‘IT(k7 Z"U) = Z1Z2...ZN.
It is possible to prove a precise variant of the following statement. Its proof is out
of scope for this note.

Security claim (informal) 5. Output feedback mode forp/r and counter mode forr /x
using a secure block cipher are secure key stream generators.

From a practical point of view, counter mode is very easy to parallelize and can
therefore be made very fast. Output feedback mode is inherently unparallelizable.

4 Integrity

In this section we shall consider the situation where Eve controls the communications
channel between Alice and Bob. Eve’s goal is to tamper with the messages sent by Alice
so that Bob receives a different message, without noticing. For the moment, we shall
not care about confidentiality.

The main tool we shall use is the message authentication code, where Alice adds
an authentication tag to her message that allows Bob the verify that the message is
unchanged.

Definition 8. A message authentication code is a function p: K x P — T.

Definition (informal) 9. A message authentication code is secure if it is hard to guess

the function value p(k, m) for any m, even after seeing the values pu(k, mq), u(k, ma), ..., u(k,
for any mqy,mo,...,m, € P. Here, k has been chosen uniformly at random from /C,
and m #m; fori=1,2,...,n.
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When Alice wants to send a message m to Bob, she sends the pair (m, u(k,m)).
When Bob receives the pair (m/,t), he checks that u(k, m’) = t. If it is, he accepts that
the message came from Alice. Otherwise, he discards the message.

Security claim (informal) 6. A secure message authentication code used as above
provides integrity.

Note that nothing prevents Eve from replaying old messages by sending them to
Bob. Defending against such attacks is out of scope for this note.

One of the most popular MAC constructions — HMAC — is based on so-called hash
functions, which are out of scope for this note. We shall discuss two constructions of
message authentication codes.

4.1 Polynomial evaluation MACs

We begin our discussion with a one-time polynomial-evaluation MAC. This MAC is
insecure if it is used on more than one message. Such a MAC is impractical, so we shall
also discuss how a block cipher can be used to make a more practical variant.

Our alphabet is a finite field F, say a field with a prime p number of elements.

The plaintext m is a sequence of field elements mimg...my. The key (k1,k2) is a
pair of field elements. The function porpg is computed as

L
porpe(ky, ko, m) = ky + > maki + ky (5)
=1

Ezercise 38. The above is an informal description. Write down carefully what the three
sets IC, P, T and the function porpg are. Show that porpg is a message authentication
code.

We shall first prove the following statement.

Theorem 7. Let m,m’ be two messages of length at most L. Let t,t' € F. The
probability that porpr(k1, ke, m') =t given that porpr(ki, ka,m) =t is at most (L +

1)/p.

Proof. For simplicity, we shall assume that both messages have length exactly L. We
want to compute the probability

Priuorpe(k1, k2, m') =t | porpe(k1, k2, m) = t].

We can do that by computing how many pairs (k1, ka) satisfy

L
t = ko + kEHL 4 Zmzkﬁ (6)
i=1
and how many also satisfy
L .
V= ko + kT + ) miks. (7)
i=1
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It is clear that for every value of ki, there is exactly one value of ko that satisfies
(6), so there are exactly p pairs that we need to consider.
Combining the two equations, we get that k1 must satisfy the equation
L
v —t= Z(m; — )k,
i=1
A solution to this equation is a zero of a polynomial equation of degree at most L, which
means that there are at most L solutions.
The conclusion is that out of p possible keys (k1, ko) satisfying (6), there are at most
L pairs that also satisfy (7). It now follows that we have a bound on the probability.
When the messages have different length, the exact same argument applies, but the
polynomial we consider has degree at most L + 1. O

Note that this means that when Alice sends a single message m to Bob with the
tag t = porpr(k1, k2, m), and Bob receives the message m’ # m and the tag ¢, the
probability that Bob accepts that message as coming from Alice is at most (L + 1) /p.
This proves the following claim.

Security claim 8. If the key is used to create a MAC tag only once, the one-time
polynomial evaluation MAC is a secure message authentication code.

Exercise 39. Show that the scheme is not secure if we
a. replace k¢ with klfl in the sum in (5);
b. remove the term kg from (5); or

c. remove the term kX! from (5).

The above construction is just a one-time MAC, which is usually impractical. How-
ever, if we use a block cipher m, 77! : K' x § — S with F C S, we can construct an
alternative polynomial-evaluation MAC that can be used more than once, using

L
ppeyx (K1, ko, m) = w(ko, ki + Zmiki)-

i=1

Exercise 40. The above is an informal description. Write down carefully what the three
sets KC, P, T and the function ppg/. are. Show that upg,, is a message authentication
code.

4.2 Block-cipher-based MACs

One simple MAC based on a block cipher 7, 77! : K x G — G is CBC-MAC, which is
somewhat similar to Cipherblock Chaining mode from Section 3.6.

Fix some element ¢ty € G. The plaintext m is a sequence of group elements myms ... my,.
The key k is an element of IC. Let

t; = mw(k,ti—1 +m;), where 1 <4 < L.

Then pcpe(k,m) =t.

20



Exercise 41. The above is an informal description. Write down carefully what the three
sets IC, P, T and the function pucpc are. Show that pucpc is a message authentication
code.

This MAC is only secure when restricted to messages of fixed length. If messages of
different lengths are allowed, it is not secure.

Ezxercise 42. Find an attack against this MAC when messages of different length are
allowed.

There are many secure variants of this MAC. One variant is based on a block cipher
m,m 1 : K xF = F over a field F. The idea is to modify the final plaintext block with
an unpredictable value.

Fix a non-zero element g € F. The plaintext m is a sequence of field elements
mims...mr. The key k is an element of K. Let tg =0, h = 7(k,0) and

t; =7(k,ti—1 +my;), where 1 <i <L —1.

Then pcper(k,m) = w(k,hg+tr—1 +mp).

Security claim (informal) 9. The modified CBC-MAC using a secure block cipher is
a secure MAC.

5 Confidentiality and Integrity

Finally, we consider the situation where Eve controls the communications channel be-
tween Alice and Bob. Eve’s goal is both to read Alice’s messages to Bob and tamper
with them.

We shall combine the secure cryptosystems we saw in Section 3 with the message
authentication codes we saw in Section 4 into cryptosystems that provide both confi-
dentiality and integrity.

Definition (informal) 10. A symmetric cryptosystem provides integrity if it is hard
to create a ciphertext that decrypts to anything other than | without knowledge of the
key.

First we consider a general principle in cryptography: Never use the same key for
two different things. This means that we should use different keys for the cryptosystem
and the MAC when we combine them. That leaves us with three obvious ways of
combining a cryptosystem with a MAC:

Encrypt-then-MAC First encrypt the message, then MAC the ciphertext:

w = E(key,m); t = p(kp,w); ¢ = (w,t).

MAC-then-encrypt MAC the message, then encrypt the message and the tag:

t = p(kpm,m); ¢ =E(ke,(m,t)).
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Encrypt-and-MAC Encrypt the message and attach a MAC tag of the message:

w = E(keym); t = p(km,m); ¢ = (w,t).

In all three cases, the decryption algorithm verifies the MAC and if the verification fails,
the output of the decryption algorithm is 1.

Encrypt-and-MAC is in general insecure. If you encrypt the same message twice,
you will always get the same tag, something that Eve will notice. Therefore, it fails
confidentiality.

MAC-then-encrypt is often secure, but there are special cases where it is not secure.
In particular, such schemes will often fail when combined with padding schemes.

Encrypt-then-MAC is always secure, which means that this is the best choice.

Security claim (informal) 10. A cryptosystem that provides confidentiality against
eavesdroppers and a secure message authentication code combined using Encrypt-then-
MAC provides both confidentiality and integrity.

Note that nothing prevents Eve from replaying old ciphertexts by sending them to
Bob. Defending against such attacks is out of scope for this note.
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