
Lattice-Based Cryptography

KG

September 25, 2017

Contents

1 Introduction 1

2 Lattices 2
2.1 The fundamental domain . 3
2.2 Short vectors . 4

3 GGH 5

4 Finding closest vectors 7
4.1 Enumerating short vectors . 7
4.2 LLL Algorithm . 8

1 Introduction

In this note, we discuss the basic definitions and results about lattices, how lattices can
be used in cryptography and how we could go about solving the lattice problems that
arise from cryptographic use.

Many different mathematical concepts share the name lattice, but the one we are
interested in is essentially integer linear combinations of linearly independent vectors
in a real vector space. This notion of lattice arises naturally in many areas of math-
ematics, and also in many applications, leading to a rich and varied theory that was
well-developed long before its use in cryptography.

Lattices have many uses in cryptography, and have for instance been used to attack
many cryptographic constructions. There have been many attempts to construct cryp-
tographic systems based on lattices, and some of these have failed. Recently, the theory
of lattice-based cryptography has grown significantly, especially related to so-called ho-
mormophic cryptosystems.

However, in this note, we are not interested in using lattices to attack cryptosystem
or these recent constructive developments, but rather the fact that there does not seem
to be any fast quantum algorithms for solving difficult lattice-related problems. This
makes lattice-based cryptography into a candidate for quantum-safe cryptography.

1

Section 2 gives a brief overview of the basic definitions regarding lattices. We need
this basic theory to describe an extremely simple way to construct a lattice-based public
key cryptosystem in Section 3. Finally, in Section 4 we discuss a fairly basic algorithm
for searching for short vectors, whose performance can be significantly improved by first
using the celebrated LLL algorithm.

This text is intended for a reader that is familiar with mathematical language,
basic algebra (groups, rings, fields and linear algebra) and elementary computer science
(algorithms).

This text is sometimes informal, in particular with respect to computational com-
plexity. Every informal claim in this text can be made precise, but the technical details
are out of scope for this note.

This text uses colour to indicate who is supposed to know what. When discussing
cryptography, red denotes secret information known only by Alice or Bob. Blue denotes
information that an eavesdropper will see. Information that is assumed to be known by
both Alice and Bob (as well as Eve) is not coloured.

We also colour for theorems about computation, where blue denotes information
that an algorithm gets as input and can use directly, while red denotes information that
exists, but has to be computed somehow before it can be used directly. Information
that is considered fixed (such as the specific group in use, group order, generator, etc.)
is not coloured.

2 Lattices

There are several common, equivalent ways to define lattices. We have chosen a variant
that is convenient for our purposes.

Definition 1. A lattice is a subgroup of Rn of the form

Λ = Zb1 + Zb2 + · · ·+ Zbr = {
r∑

i=1

aibi | a1, . . . , ar ∈ Z},

where b1, . . . ,br are linearly independent vectors in Rn.

A basis for Λ is any set of linearly independent vectors c1, c2, . . . , cr′ such that
Λ = Zc1 + · · ·+ Zcr′ .

From a basis b1, . . . ,br we get an r × n matrix B whose ith row is bi. Then

Λ = {aB | a ∈ Zn}.

The matrix B is called a basis matrix or just a basis. Since the rows of B are linearly
independent, the rank of the matrix is equal to the number of rows.

Proposition 1. Let Λ be a lattice, and let B and C be two bases for Λ. Then B and C
have the same rank r, and there exists an r × r invertible integer matrices U such that
UB = C and U−1 is an integer matrix.

2

Proof. Every row of B is in Λ which is a subset of the row space of C, so the row space
of B is a subspace of the row space of C. The converse also holds, so the matrices have
the same row space and therefore also the same rank.

For every row bi in B, there exists an integer vector ai ∈ Zr such that bi = aiC.
Combining these expression, we get an r × r integer matrix U such that B = UC. In
the same way, we get an r × r integer matrix V such that C = V B, and B = UV B.

Since B and C have maximal rank (and therefore have right-inverses) U and V must
be inverses.

Definition 2. The rank of a lattice is the number of vectors in a basis. If Λ in Rn has
rank n, we say that Λ is a full rank lattice.

2.1 The fundamental domain

Let b1, . . . ,br be a basis for a lattice Λ. The fundamental domain of the lattice is the
parallelepiped {

r∑
i=1

aibi | 0 ≤ ai < 1

}
.

When the lattice has full rank, it can be shown that the volume of the fundamental
domain is |det(B)|. When r < n, we define the volume of the fundamental domain to
be
√
|det(BBT)|.

Since any two bases are related by an invertible integer matrix, which has deter-
minant ±1, it is clear that the volume of the fundamental domain is independent of
the choice of basis. We call this volume the determinant or the volume of the lattice,
denoted by det(Λ), or sometimes by det(b1,b2, . . . ,br).

The Gram-Schmidt algorithm takes a vector space basis b1, . . . ,br as input and
constructs an orthogonal basis b∗1, . . . ,b

∗
r recursively, beginning with b∗1 = b1 and then

computing

µij =
〈bi,b

∗
j 〉

〈b∗j ,b
∗
j 〉
, 1 < i ≤ r, 1 ≤ j < i, and b∗i = bi −

i−1∑
j=1

µijb
∗
j . (1)

Since a determinant is unchanged by elementary row operations, if b1, . . . ,bn is a basis
for a full-rank lattice Λ, then

det(Λ) =
∏
i

‖b∗i ‖ ≤
∏
‖bi‖.

The value ∏
‖bi‖

det(Λ)

is called the orthogonality defect of the basis.

e Exercise 1. Let b1,b2, . . . ,br ∈ Rn be a lattice basis. Show that we can compute the
Gram-Schmidt basis b∗1,b

∗
2, . . . ,b

∗
r and coefficients µij , 1 ≤ j < i ≤ r using 2nr2 − 1

arithmetic operations.

3

e Exercise 2. Let b1,b2, . . . ,br be a basis for a lattice Λ, let B be the corresponding
matrix, and let b∗1, . . . ,b

∗
r be the corresponding Gram-Schmidt orthogonal basis.

a. Show that b∗1, . . . ,b
∗
r can be extended to an orthogonal basis b∗1, . . . ,b

∗
r , c
∗
1, . . . , c

∗
n−r

for Rn.

b. Let e1, e2, . . . , er be an orthonormal basis for Rr. Let P be the linear map from
Rn to Rr that takes b∗i to ‖b∗i ‖ei, 1 ≤ i ≤ r, and c∗i to 0, 1 ≤ i ≤ n − r. Show
that for any vector v ∈ span{b∗1, . . . ,b

∗
r}, ‖v‖ = ‖vP‖.

c. Show that the image ΛP of Λ under P is a full-rank lattice, and b1P,b2P, . . . ,brP
is a basis for ΛP .

d. Show that det(Λ) = det(ΛP).

e. Show that det(Λ) =
∏r

i=1 ‖b
∗
i ‖.

Another interesting property of the fundamental domain of a full-rank lattice is that
any point in space can be expressed uniquely as the sum of a lattice point and a point
in the fundamental domain.

e Exercise 3. Let Λ be a lattice with basis b1,b2, . . . ,bn and let z ∈ Rn. Show that
unique integers a1, a2, . . . , an and real numbers α1, α2, . . . , αn ∈ [0, 1) exist such that

z =
∑
i

aibi +
∑
i

αibi.

2.2 Short vectors

From now on, we shall assume that we only work with full rank lattices.

Definition 3. Let Λ be a lattice. The ithe successive minimum λi(Λ) is the minimal
real number such that there are i linearly independent vectors of length at most λi(Λ)
in Λ.

It is immediately clear that there are n successive minima, that 0 < λ1(Λ) ≤ λ2(Λ) ≤
· · · ≤ λn(Λ), and that λ1(Λ) is the shortest length of a non-zero vector in Λ. (Note that
λ2(Λ) does not have to be the second shortest length of a non-zero vector.)

Fact 2. There exists a constant γn, depending only on n, such that for any lattice Λ

λ1(Λ)2 < γn det(Λ)2/n.

A natural question related to lattices is to ask what λ1(Λ) is, or if a lattice vector
of length λ1(Λ) can be found.

Definition 4. The shortest vector problem for a lattice Λ is to find a vector x ∈ Λ such
that ‖x‖ = λ1(Λ).

4

Sometimes, there will be more than one non-zero vector of minimal length, so the
shortest vector problem may not have a unique answer. For some applications, merely
finding a short vector is sufficient.

Definition 5. The γ-approximate shortest vector problem for a lattice Λ is to find a
vector x ∈ Λ such that ‖x‖ ≤ γλ1(Λ).

A slightly different problem is to find a lattice vector close to some given point. It
also has an approximate version.

Definition 6. The closest vector problem for a lattice Λ ⊆ Rn and z ∈ Rn is to find
x ∈ Λ such that for any y ∈ Λ, ‖x− z‖ ≤ ‖y − z‖.

The γ-approximate closest vector problem for a lattice Λ ⊆ Rn and z ∈ Rn is to find
x ∈ Λ such that for any y ∈ Λ, ‖x− z‖ ≤ γ‖y − z‖.

An exhaustive search for short or close vectors will quickly become infeasible as the
lattice dimension grows. There is evidence that these lattice problems are hard in a
very fundamental way. However, the hardness depends on the lattice and on how the
lattice is described.

e Exercise 4. Suppose Λ has a given orthogonal basis b1,b2, . . . ,bn. Show how to find a
shortest vector in Λ and all the successive minima, essentially without any arithmetic.

If the basis is nearly orthogonal, the same approach as in the exercise will find short
vectors and make it easier to find a shortest vector.

e Exercise 5. Let B be an invertible n × n matrix and let b1,b2, . . . ,bn correspond to
the n rows of B. Let z ∈ Rn and let

(α1, α2, . . . , αn) = zB−1.

Show that
z = α1b1 + α2b2 + · · ·+ αnbn.

For the following exercise, it is convenient to introduce the following notation: bαe
is the nearest even integer to α, and for a vector α = (α1, α2, . . . , αn),

bαe = (bα1e , bα2e , . . . , bαne).

e Exercise 6. Suppose Λ has a given orthogonal basis B, and let z ∈ Rn. Suppose
a =

⌊
zB−1

⌉
. Explain why aB is the closest vector in Λ to z.

If the basis is nearly orthogonal, the same approach as in the exercise will tend to
find the closest vector if z was reasonably close to a lattice point.

3 GGH

One idea for a symmetric encryption scheme based on lattices is to have a lattice Λ
with a nearly orthogonal basis B as a secret key. To encrypt we somehow encode the
message as a lattice vector x ∈ Λ and then add random noise r to that vector to get a

5

ciphertext z = x + r. To decrypt, we can use our nearly orthogonal basis to find the
closest vector x to z (using the technique from Exercise 6), and then decode to recover
the message.

It is clear that we need to limit the magnitude of the random noise, since if it is
too big, we will no longer be able to recover x as the closest vector. This could happen
because x is no longer the closest vector to z, or because our basis is not orthogonal
and so does not perfectly solve the closest vector problem).

e Exercise 7. Let B be a basis for a lattice Λ. Show that with x ∈ Λ and z = x + r, then⌊
zB−1

⌉
B = x if and only if

⌊
rB−1

⌉
= 0.

e Exercise 8. Recall that for a real vector α = (α1, α2, . . . , αn), we have the norms
‖α‖1 =

∑
i |αi| and ‖α‖∞ = maxi |αi|.

Let B be a basis for a lattice Λ, let ρ be a bound on the ‖ · ‖1 norm of the columns
of B−1. Show that for any vector r, we have that

‖rB−1‖∞ ≤ ρ‖r‖∞.

Explain how this can be used to find a bound on the random noise when encrypting, to
ensure decryption still works.

It is tempting to turn this idea into a public key encryption scheme by publishing a
basis for the lattice. Obviously, we cannot publish our nearly orthogonal basis B, since
this is essentially the decryption key.

Recall that any lattice Λ with basis matrix B, if U is an integer matrix with deter-
minant ±1, then C = UB is another basis matrix for Λ.

One idea is then to create and publish a different basis for the lattice, one that is
not nearly orthogonal, and therefore cannot be used to find the closest vector using the
approach from Exercise 6.

As usual, while we could attempt to embed the message in the vector x, it makes
more sense to use x and r as keys for a symmetric cryptosystem.

The public key encryption scheme (K, E ,D) is based on lattices in Rn and a sym-
metric cryptosystem (Rn × Rn,P, C, Es,Ds).

• The key generation algorithm K chooses a lattice Λ by choosing a basis matrix B
that is nearly orthogonal. It chooses an integer matrix U with determinant ±1
and computes C = UB. It then outputs ek = C and dk = B.

• The encryption algorithm E takes as input an encryption key ek = C and a
message m ∈ P. It chooses a random vector a ∈ Zn and random noise r. Then it
computes x = aC, z = x + r, and encrypts the message as w = Es((x, r),m). It
outputs the ciphertext c = (z, w).

• The decryption algorithm D takes as input a decryption key dk = B and a ci-
phertext c = (z, w). It computes x =

⌊
zB−1

⌉
B and r = z − x, and decrypts

the message as m = Ds((x, r), w). If Ds outputs the special symbol ⊥ indicating
decryption failure, then D outputs ⊥, otherwise it outputs m.

6

e Exercise 9. The above is an informal description of a public key encryption scheme.
Write down carefully (except for how to choose B, U , a and r) what the three algorithms
K, E and D are. Show that the triple (K, E ,D) is a public key encryption scheme.

4 Finding closest vectors

4.1 Enumerating short vectors

We would like to find a short vector in a lattice. One idea would simply be to enumerate
all linear combinations of the basis vectors with some bound on the coefficients. Un-
fortunately, short vectors could in principle come from linear combinations with large
coefficients. Instead, we shall use the Gram-Schmidt basis to bound the size of the
coefficients.

We shall find all points x in a lattice with ‖x‖2 ≤ A2 for some bound A2.
Let b1,b2, . . . ,bn be a basis for Λ, and let b∗1, . . . ,b

∗
n be the corresponding Gram-

Schmidt basis. Note that for any vector x ∈ Λ, we can write it as a linear combination
of the Gram-Schmidt basis vectors x =

∑
i αib

∗
i and then

‖x‖2 =

n∑
i=1

α2
i ‖b
∗
i ‖2.

Recall that b∗n is the part of bn that is orthogonal to all the earlier basis vectors.
This means when x =

∑
i aibi =

∑
i αib

∗
i , then an = αn. Therefore, if α‖b∗n‖ > A

then ‖x‖ > A.
We therefore begin by enumerating vectors with n-th coordinate an between−bA/‖b∗n‖c

and +bA/‖b∗n‖c.
Given an, we can now consider the possibilities for an−1. Of course, this time, the

contribution in the direction of b∗n−1 is that given by an−1bn−1 and anbn, where the
latter’s contribution is anµn,n−1‖b∗n−1‖. So given an, we want to enumerate all the
(n− 1)-th coordinates an−1 such that

(an−1 + anµn,n−1)2‖b∗n−1‖2 + a2n‖b
∗
n−1‖2 ≤ A2.

In general, given ai+1, . . . , an, we consider the possibilities for ai. Again, we want
to enumerate all ai such that

(ai +

n∑
j=i+1

ajµji)
2‖b∗i ‖2 +

n∑
j=i+1

(aj +

n∑
k=j+1

akµk,j)
2‖b∗j‖2 ≤ A2.

For some choices of ai+1, . . . , an there may be no possible choices for ai, in which case
we stop and continue with other choices for ai+1, . . . , an.

Whenever we find a non-empty region for a1 and enumerate those values, we enu-
merate lattice vectors of length less than A. It is clear that for any lattice point x of
length less than A, this point must be among the lattice point eventually enumerated.

7

This enumeration algorithm must enumerate a large number of possible coordinates.
For the ith coordinate, we can upper-bound the number of possibilities for ai by A/‖b∗i ‖,
so the total number of coordinates enumerated is bounded by

n∏
i=1

A

‖b∗i ‖
=

An

det(Λ)
.

We can also solve the closest vector problem if we can first find an estimate for the
closest vector and a reasonable upper bound on how far the estimate is from the closest
point. Given this, we can enumerate all the short vectors and thereby all the lattice
points close to the estimate, one of which must be closest.

There are faster algorithms for finding a shortest or closest vector.

4.2 LLL Algorithm

As we saw, if we have an orthogonal basis, we can solve the closest vector problem, and
if we have a nearly orthogonal basis, we can solve closest vector problem if the closest
vector is close enough to a lattice point.

The natural question is how to find a reasonably good basis that will allow us to
solve the closest vector problem. The first goal should be to be precise about what we
mean by “reasonably good”.

Definition 7. Let b1,b2, . . . ,bn be a lattice basis, with corresponding orthogonal basis
b∗1, . . . ,b

∗
n and Gram-Schmidt coefficients µij for 1 ≤ j < i ≤ n, as defined in (1). Let

1
4 < δ < 1 be a real number. We say that the basis is δ-LLL-reduced if

|µij | ≤
1

2
for all 1 ≤ j < i ≤ n, and (2)

δ‖b∗i−1‖2 ≤ ‖b
∗
i ‖2 + µ2

i,i−1‖b
∗
i−1‖2 for all 2 ≤ i ≤ n. (3)

When a basis satisfies (2) we cannot easily make the basis vectors more orthogonal.
When the basis satisfies (3), the basis vectors of the Gram-Schmidt orthogonalization
will be ordered roughly according to length.

e Exercise 10. A common choice for δ is 3/4. Show that in this case (3) becomes

‖b∗i−1‖2 ≤ 2‖b∗i ‖2 for all 2 ≤ i ≤ n.

Hint: You may use the fact that (2) also must hold.

That an LLL-reduced basis is somehow a good basis can be seen from the following
fact, which we state without proof.

Fact 3. Suppose b1,b2, . . . ,bn with corresponding basis matrix B is a 3/4-LLL-reduced
basis for a lattice Λ. Then ‖b1‖ ≤ 2(n−1)/2λ1(Λ). Also, if z ∈ Rn, then

‖z−
⌊
zB−1

⌉
B‖ ≤ (1 + 2n(9/2)n/2)‖z− x‖ for any x ∈ Λ.

8

We know that λ1(Λ) ≤ √γ det(Λ)1/n, which means that if we have an LLL-reduced
basis and use ‖b1‖ as our search bound, the enumeration approach from the previous
section will have to enumerate at most

(2(n−1)/2γ1/2 det(Λ)1/n)n

det(Λ)
= 2n(n−1)/2γn/2.

While it does not affect the upper bound we deduced, having the Gram-Schmidt vectors
not too small will decrease the total number of points the algorithm will iterate over.

We also note that the LLL-reduced basis will give us an estimate for the closest
vector problem. (There are better ways to use the LLL-reduced basis.)

Having an LLL-reduced basis is therefore very useful. The question is how to find
an LLL-reduced basis.

We will now discuss two ways to modify a lattice basis. The first is to use the initial
basis vectors to modify the later basis vectors. This clearly results in a new basis for the
same lattice, but the new basis will have the same Gram-Schmidt orthogonalization.

e Exercise 11. Let b1,b2, . . . ,bn be a lattice basis, and let c1, . . . , cn be another basis
for the lattice defined by

ci = bi −
i−1∑
j=1

αijbj , αij ∈ Z. (4)

Let b∗1, . . . ,b
∗
n and c∗1, . . . , c

∗
n be the corresponding Gram-Schmidt orthogonalization.

Show that b∗i = c∗i for i = 1, 2, . . . , n.

e Exercise 12. Let b1,b2, . . . ,bn be a lattice basis, let b∗1,b
∗
2, . . . ,b

∗
n be the Gram-

Schmidt orthogonalization with coefficients µij , 1 < i ≤ n.

Suppose |µij | ≤ 1/2 for 1 ≤ j < i < k for some k ≤ n. Define b
(i)
k for 1 ≤ i ≤ k by

b
(k)
k = bk and

b
(i)
k = b

(i+1)
k −

⌊
〈b(i+1)

k ,b∗i 〉
〈b∗i ,b

∗
i 〉

⌉
bi.

Consider now the new basis b1, . . . ,bk−1,b
(1)
k ,bk+1, . . . ,bn.

a. Show that the new basis has the same Gram-Schmidt orthogonalization as the old
basis.

b. Let µ′ij be the Gram-Schmidt coefficients of the new basis. Show that |µ′ij | ≤ 1/2
for 1 ≤ j ≤ i ≤ k.

a. Show that the above procedure essentially gives us an algorithm that for any
lattice basis computes a new, equivalent basis with the same Gram-Schmidt or-
thogonalization that also satisfies (2).

b. Show that the resulting algorithm will compute the new basis using at most 2n3

arithmetic operations.

9

This result tells us that we can always modify a lattice basis such that (2) holds
without changing the Gram-Schmidt orthogonalization. We can also do this relatively
quickly.

Next, we want to modify our basis by changing the order of the basis vectors. Unlike
the previous modification, this will change the resulting Gram-Schmidt orthogonal basis.

Before we describe and analyse this change, we need to define a new kind of volume
for lattices that weights the basis vectors differently. For a basis b1,b2, . . . ,bn with
corresponding Gram-Schmidt orthogonalization b∗1,b

∗
2, . . . ,b

∗
n, define

d(b1,b2, . . . ,bn) =

n∏
i=1

i−1∏
j=1

‖b∗j‖ =

n∏
i=1

‖b∗i ‖n−i+1.

Suppose b1, . . . ,bn satisfies (2), but not (3), and i is the first index where the latter
condition fails. Now suppose we change the order of the ith and i + 1th basis vectors,
so instead of considering the basis b1,b2, . . . ,bi,bi+1, . . . ,bn, we instead consider the
basis c1, . . . , cn given by

cj =


bi+1 j = i

bi j = i+ 1

bj otherwise.

e Exercise 13. Let b1, . . . ,bn and c1, . . . , cn be as above, and let b∗1, . . . ,b
∗
n and c∗1, . . . , c

∗
n

be the corresponding Gram-Schmidt orthogonalizations. Let µij be the Gram-Schmidt
coefficients for b∗1, . . . ,b

∗
n.

a. Show that b∗j = c∗j when j 6= i, i+ 1.

b. Show that c∗i = c∗i+1 + µi+1,ib
∗
i .

c. Show that
k∏

j=1

‖b∗j‖ =

k∏
j=1

‖c∗j‖

when i 6= k.

d. Show that
d(c1, . . . , cn)

d(b1, . . . ,bn)
≤
√
δ.

e Exercise 14. Show that for any lattice Λ ∈ Zn, then regardless of basis, there is a lower
bound to d(b1, . . . ,bn) that is strictly larger than zero.

We are now ready to prove that a basis satisfying (2) and (3) can be computed
relatively quickly.

Theorem 4. Let B be a basis for a lattice Λ ∈ Zn. Then a δ-LLL-reduced basis C can
be computed using less than 10n3 log d(B)/ log δ−1 arithmetic operations.

10

Proof. We begin by constructing a sequence of lattice bases B1, B2, . . . as follows.
The initial basis is B1 = B.
We construct the (k+1)th basis from the kth basis Bk using the following two steps.

1. Use the algorithm from Exercise 12 to create a basis B′k.

2. If the basis B′k does not satisfy (3), and i is the first index where this condition
fails we change the order of the ith and the (i+ 1)th basis vectors.

It is clear that if Bk satisfies (2) and (3), then Bk+1 = Bk.
Furthermore, unless we changed the order of two basis vectors when creating Bk+1,

then Bk+1 satisfies (2) and (3).
Every time we do change the order of two basis vectors, Exercise 13 says that

d(Bk+1)

d(Bk)
≤
√
δ,

from which we get that
d(Bk+1) ≤ δk/2d(B1).

Since d(Bk+1) ≥ 1, it follows that when k > 2 log d(B1)/ log δ−1 there can be no more
changes of order, and we have computed a δ-LLL-reduced basis.

By Exercise 12 the first step requires at most 2n3 arithmetic operations. To do the
second step, we need the Gram-Schmidt coefficients which we can compute using at
most 2n3 arithmetic operations by Exercise 1. Finally, we can find the first index for
which (3) does not hold using less than 3n2 arithmetic operations. This means that
we can compute Bk+1 from Bk using less than 5n3 arithmetic operations. The claim
follows.

e Exercise 15. The proof of Theorem 4 essentially describes an algorithm for computing
an LLL-reduced basis for a lattice. Write out this algorithm carefully and restate
Theorem 4 as a statement about the algorithm’s time complexity (in terms of arithmetic
operations, ignoring any other form of computation involved).

We must make two remarks about this theorem and its proof. The first remark is
about measuring complexity in terms of arithmetic operations. Often, this is safe, but in
this case we will need to do arithmetic with rational numbers, and in some computations
the size (number of digits) of the rational numbers involved will increase exponentially,
even when the number of operations is limited. Fortunately, it can be proved that the
size of the rational numbers involved do not grow too badly, although it significantly
affects the time required to run the algorithm.

The second remark is about the implied algorithm, which is extremly inefficient. In
practice, there is no need to constantly recompute all the Gram-Schmidt coefficients.
In other words, there is significant scope for optimization in the algorithm. Also, the
proof significantly overestimates the cost of the implied algorithm.

11

	Introduction
	Lattices
	The fundamental domain
	Short vectors

	GGH
	Finding closest vectors
	Enumerating short vectors
	LLL Algorithm

