
Diffie-Hellman and Discrete Logarithms

KG

September 18, 2018

Contents

1 Introduction 1

2 The Diffie-Hellman Protocol 2

3 Discrete Logarithms 6
3.1 An Unsuitable Group . 8
3.2 Pohlig-Hellman I . 9
3.3 Pohlig-Hellman II . 12
3.4 Shank’s Baby-step Giant-step . 14
3.5 Pollard’s rho . 16

4 Primality Testing 20
4.1 Fermat’s Test . 21
4.2 Soloway-Strassen Test . 22

5 Finite Fields 25
5.1 Group Operation . 26
5.2 Finding Suitable Primes . 26
5.3 Index Calculus . 27

6 Elliptic Curves 34
6.1 Group Operation . 40
6.2 Finding Suitable Curves . 43
6.3 Discrete Logarithms . 46

7 Active Attacks 47

1 Introduction

In this note, we consider the following problem. Alice and Bob wants to establish a
shared secret known only by them by communicating via some communications channel.
Eve has access to the channel and she may eavesdrop on anything sent over the channel.

1

Establishing a shared secret is a prerequisite for using the theory of symmetric
cryptography to communicate securely over insecure channels. Traditionally, this was
done by meeting in person, using couriers or relying on trusted third parties. But
as networks grow and the number of connections increase, the traditional approaches
become impractical or introduce unpleasant trust assumptions.

The Diffie-Hellman protocol is a cryptographic protocol for establishing a shared
secret. Conjecturally, if the underlying mathematical structure is carefully chosen,
running the protocol requires Alice and Bob to do relatively little work to establish a
shared value, but the eavesdropper Eve will have to do infeasibly much work to deduce
the shared value. In other words, the shared value will remain a secret known (fully)
only to Alice and Bob.

This note is an introduction to this protocol and the study of its security. Section 2
describes the protocol and its mathematical foundations, namely finite cyclic groups.

As shown in Section 3.1, not every finite cyclic group is suitable for use in the Diffie-
Hellman protocol. Section 3 discusses various necessary requirements for a cylic group
to be suitable. Two plausible families of cyclic groups based on finite fields and elliptic
curves are discussed in Section 5 and 6, while Section 4 show how to distinguish prime
numbers from composite numbers, something that we will need to do.

This text is intended for a reader that is familiar with mathematical language,
basic algebra (groups, rings, fields and linear algebra) and elementary computer science
(algorithms).

This text is sometimes informal, in particular with respect to computational com-
plexity. Every informal claim in this text can be made precise, but the technical details
are out of scope for this note.

This text uses colour to indicate who is supposed to know what. When discussing
cryptography, red denotes secret information known only by Alice or Bob. Blue denotes
information that the eavesdropper will see. Information that is assumed to be known
by both Alice and Bob (as well as Eve) is not coloured.

We also colour for theorems about computation, where blue denotes information
that an algorithm gets as input and can use directly, while red denotes information that
exists, but has to be computed somehow before it can be used directly. Information
that is considered fixed (such as the specific group in use, group order, generator, etc.)
is not coloured.

2 The Diffie-Hellman Protocol

The Diffie-Hellman protocol is a cryptographic protocol that allows Alice and Bob to
establish a shared value. Alice is the initiator in the sense that she sends the first
message in the protocol. Bob is the responder since he responds to Alice’s message.

We first prove that the protocol is complete, in the sense that running the protocol
without an adversary establishes a shared value. Next, we consider how much work
Alice and Bob must do to execute the protocol.

We want to use the protocol to establish a shared secret, in the sense that the
eavesdropper Eve should not know the shared value. The protocol is based on a finite

2

Alice

a
r← {0, 1, 2, . . . , n− 1}

x← ga

— wait for y from Bob —
zA ← ya

Bob

b
r← {0, 1, 2, . . . , n− 1}

y ← gb

zB ← xb

x

y

Figure 1: The Diffie-Hellman protocol.

cyclic group, and the study of its security turns out to involve the study of an interesting
computational problem in finite cyclic groups, computing so-called discrete logarithms.

Before we can describe the Diffie-Hellman protocol, we must establish the underlying
abstract mathematical structure. We begin with a bit of notation.

Definition 1. Exponentiation in a group is defined as

xa = x · x · · ·x︸ ︷︷ ︸
a terms

for any group element x and any integer a > 0. Then we define x0 to be the identity
element and xa = (x−1)−a when a < 0.

When using additive notation for the group operation, we get the notation

a · x = x+ x+ · · ·+ x︸ ︷︷ ︸
a terms

for any group element x and any integer a > 0, with 0 · x = 0 and a · x = (−a) · (−x)
for a < 0.

Definition 2. A group G is cyclic if there exists an element g ∈ G such that G = {ga |
a ∈ Z}.

Let G be a finite cyclic group of order n, and let g be a generator. The Diffie-Hellman
protocol works as follows (see also Figure 1).

Both Alice and Bob know the group G, the group order n and the generator g.

1. Alice chooses a number a uniformly at random from the set {0, 1, 2, . . . , n − 1}.
She computes x = ga and sends x to Bob.

2. Bob receives x from Alice. He chooses a number b uniformly at random from the
set {0, 1, 2, . . . , n− 1}, computes y = gb and zB = xb, and sends y to Alice.

3. Alice receives y from Bob. Alice computes zA = ya.

Remark. The structures Zn and Fp, which we will use for many examples, are typically
constructed as factor rings. As such, their elements are really cosets and should be
denoted as k + 〈n〉 or k + 〈p〉. In principle, any integer in the coset can be used to
represent the coset.

We now make two remarks;

3

1. In the interest of brevity, we will simply write k instead of k + 〈n〉 and k + 〈p〉
whenever the meaning is clear. So in Z+

13 we will write 3 · 10 = 4, instead of the
cumbersome (3 + 〈13〉)(10 + 〈13〉) = (4 + 〈13〉).

2. When Alice and Bob compute group elements, their choice of representatives
for the coset is usually important, especially that they make the same choice.
Typically, they choose the unique smallest non-negative integer in the coset. Other
choices are sometimes convenient, in particular for intermediate results.

e Example 1. Alice and Bob use Diffie-Hellman with the group G = Z+
13 and generator

g = 2. Note the additive notation.
Alice chooses a = 3 and computes x = a · g = 3 · 2 = 6. She sends 6 to Bob.
Bob receives 6. He chooses b = 5 and computes y = b · g = 5 · 2 = 10 and

zB = b · x = 5 · 6 = 4. He sends 10 to Alice.
Alice receives 10 from Bob. She computes zA = a · y = 3 · 10 = 4.

Remark. Note that for Z+
n , the exponentiation coincides with ring multiplication. As

we shall see, this means that Z+
n cannot be used safely with Diffie-Hellman.

e Example 2. Alice and Bob use Diffie-Hellman with the group G = F∗13 and generator
g = 2.

Alice chooses a = 3 and computes x = ga = 23 = 8. She sends 8 to Bob.
Bob receives 8. He chooses b = 5 and computes y = gb = 25 = 6 and zB = xb =

85 = 8. He sends 6 to Alice.
Alice receives 6 from Bob. She computes zA = ya = 63 = 8.

e Exercise (for groups) 1. Agree on a cyclic group and a generator for the group, then
use the Diffie-Hellman protocol to agree on a secret.

We begin by proving completeness, that is, Alice and Bob arrive at a shared value.

Proposition 1. In the above protocol zA = zB.

Proof. We compute that zA = ya = (gb)a = (ga)b = xb = zB .

We have shown that the Diffie-Hellman protocol establishes a single shared value,
which we shall denote by z.

Next, we must consider how much work Alice and Bob must do to execute the
protocol. It is clear that the only non-trivial computations involved are the two expo-
nentiations done by each of them. From the definition, it is clear that Alice and Bob
can do their two exponentiations using less than 2n group operations:

25 = 2 · 24 = 4 · 23 = 8 · 22 = 16 · 2 = 32.

However, there is a better way to do these computations.

Proposition 2. For any x ∈ G and integer a > 0, the group element xa can be computed
using at most 2 log2 a group operations.

4

Proof. Since

x2
i+1

= (x2
i

)2,

we can compute the l+ 1 group elements x = x2
0

, x2
1

, x2
2

, . . . , x2
l

using l group opera-
tions.

When these elements have been computed, we can write a in binary as

a =

l∑
i=0

ai2
i, ai ∈ {0, 1}

and compute the product

l∏
i=0

(x2
i

)ai = x
∑l

i=0 ai2
i

= xa.

Computing this product requires at most l group operations.
We have done at most 2l group operations. If a > 0, we may assume that al = 1,

and then we have that l ≤ log2 a. The claim follows.

e Example 3. We can compute 213 in Z by observing that 13 = 20 + 22 + 23, computing

22
0

= 2 22
1

= (22
0

)2 = 22 = 4

22
2

= (22
1

)2 = 42 = 16 22
3

= (22
2

)2 = 162 = 256

and
213 = 22

0+22+23 = 22
0

22
2

22
3

= 2 · 16 · 256 = 32 · 256 = 8192.

This required only 5 multiplications, while using the definition would require 12 multi-
plications.

e Example 4. We can compute 2257 in F∗19 by computing successively 22 = 4, 22
2

= 42 =

16, 22
3

= 162 = 9, 22
4

= 92 = 5, 22
5

= 52 = 6, 22
6

= 62 = 17, 22
7

= 172 = 15 and
22

8

= 152 = 16, and finally
2257 = 2 · 16 = 13.

Note that by choosing small coset representatives for the intermediate results, we
avoid computing with large integers.

e Exercise (algorithms) 2. The proof of Proposition 2 essentially describes an algorithm
for computing xa. Implement this algorithm and restate Proposition 2 as a statement
about the algorithm’s time complexity (in terms of group operations, ignoring any other
form of computation involved).

e Exercise 3. Use the algorithm from Exercise 2 to compute (by hand) 5582 in the cyclic
group F∗10007.

5

Alice Bob

Eve

x

y

Figure 2: Eve is listening and learns x and y, but cannot see Alice’ and Bob’s secret
values or computations. She already knows G, g and n.

e Exercise 4. Note that we can define xa for a ≥ 0 using the rules that x0 = 1 and

xa =

{
(xa/2)2 when a is even, and

(x(a−1)/2)2x when a is odd.

Use this fact to give an alternative proof of Proposition 2 leading to an alternative
algorithm.

We have shown that as long as group operations can be computed in reasonable
time, Alice and Bob can execute the Diffie-Hellman protocol in reasonable time, even
when the group order is very large.

3 Discrete Logarithms

Our goal is for Alice and Bob to establish a shared secret. We must consider what the
eavesdropper Eve can do to learn the established shared value.

The Diffie-Hellman protocol is supposed to work even when Alice and Bob have had
no previous communication. We must therefore assume that Eve knows both the group
G, the generator g and the group order n. When Alice and Bob run the protocol, Eve
additionally learns x and y. She wants to know z.

Definition 3. The Diffie-Hellman problem in a cyclic group G of order n with generator
g is to find z = gab given x = ga and y = gb, when a and b has been chosen independently
and uniformly at random from {0, 1, 2, . . . , n− 1}.

To use Diffie-Hellman, Alice and Bob need to choose a cyclic group. They want
to spend as little effort as possible to establish the shared secret, both with respect
to computation and communication. Which means that computing the group opera-
tion should be reasonably fast, and group elements should have a reasonably compact
representation.

At the same time, Alice and Bob want the established shared value to be secret. It
cannot be secret unless solving the Diffie-Hellman problem for the group Alice and Bob
use requires more computational effort than Eve can manage.

6

It is clear that if Eve can find a or b, then she can easily compute z = ya = xb.

Definition 4. The discrete logarithm of x to the base g is the smallest non-negative
integer a such that x = ga. We write logg x = a.

The discrete logarithm problem in a cyclic group G is to find the discrete logarithm
of x to the base g, when x has been chosen uniformly at random from the group.

As we see, if Eve can compute discrete logarithms, she can easily compute the shared
value established by Alice and Bob. Conversely, it is generally believed (and there is
evidence to suggest that this is the case) that if Eve can compute the shared value, she
will be able to compute discrete logarithms as well. Under this assumption, the study
of the security of the Diffie-Hellman protocol reduces to the study of how easy it is to
compute discrete logarithms in the group we want to use.

We first begin with the observation that no choice of generator will make discrete
logarithm computations harder.

e Exercise 5. Let x be a group element of order m and a, b be integers. Prove that xa = xb

if and only if a ≡ b (mod m).

Proposition 3. Let g1 and g2 be generators, and suppose logg1 g2 = a. Then logg2 g1 ≡
a−1 (mod n).

Proof. It is given that g2 = ga1 , and since g2 is a generator, there exists an integer b
such that g1 = gb2. We get that g1 = gab1 . Exercise 5 then says that

ab ≡ 1 (mod n),

and our claim follows.

The following exercise will justify that we do not much care about which base we
use and often omit it from theorems.

e Exercise 6. Show that if you can compute discrete logarithm with some generator g as
base, then you can compute discrete logarithms with any generator as base, at roughly
twice the cost.

e Exercise 7. Any cyclic group G of order n is isomorphic to Z+
n . Let λ : G → Z+

n be
a group isomorphism taking a generator g to 1 + 〈n〉. Show that computing discrete
logarithms to the base g is essentially the same as computing the group isomorphism λ.

We now begin by establishing a level of effort that will certainly be sufficient to
compute discrete logarithms. This will lead to our first requirement for a group to be
suitable for Diffie-Hellman.

Proposition 4. Let G be a cyclic group of order n. The discrete logarithm of a group
element x ∈ G can be computed using less than n group operations.

Proof. Let g be a generator. Since gag = ga+1, we can compute the elements of the
sequence g0, g1, g2, . . . , gn−1 using n − 1 group operations. Clearly, we can also keep
track of the discrete logarithm of each element as we compute it, simply by counting
how many group operations we have done.

Since g is a generator, x must be one of the elements in the sequence, and we can
recognize it when we reach it. The claim follows.

7

The algorithm for computing discrete logarithms implied by the proof of the propo-
sition does more than just group operations, it also compares group elements and counts
how many group operations it has done. But the group operations will dominate the
computational effort. It therefore makes sense to focus on the number of group opera-
tions. This will be the case for all the algorithms in this section.

e Exercise 8. The proof of Proposition 4 essentially describes an algorithm for computing
logg x. Write out this algorithm carefully and restate Proposition 4 as a statement about
the algorithm’s time complexity (in terms of group operations, ignoring everything else).

e Example 5. Consider the group G = F∗13 with generator g = 2. We want to compute
the discrete logarithm of x = 6.

We compute 20 = 1, 21 = 2, 22 = 2 · 2 = 4, 23 = 4 · 2 = 8, 24 = 8 · 2 = 3 and
25 = 3 · 2 = 6. We find that log2 6 = 5.

e Exercise 9. Use the algorithm from Exercise 8 to compute (by hand) the discrete loga-
rithm of 3972 to the base 5 in the group F∗10007.

The structure of our study of the discrete logarithm computation is to study various
ways of solving or simplifying the computation. Every time we improve our ability to
compute discrete logarithms in various groups, we better understand what kind of group
Alice and Bob can use for Diffie-Hellman.

Based on Proposition 4, we arrive at the following requirement.

Requirement 1. If n is the group order, n group operations must be an infeasible
computation.

3.1 An Unsuitable Group

It is easy to find cyclic groups with large group order. If n is any large number, then
Z+
n is a cyclic group of order n. A natural generator is 1 + 〈n〉, but the coset of any

integer relatively prime to n will do.
Note that this group is written additively. The Diffie-Hellman protocol then looks

like:

1. Alice chooses a number a uniformly at random from the set {0, 1, 2, . . . , n − 1}.
She computes x = a · (1 + 〈n〉) = a+ 〈n〉 and sends x to Bob.

2. Bob receives x from Alice. He chooses a number b uniformly at random from the
set {0, 1, 2, . . . , n − 1}, computes y = b · (1 + 〈n〉) and z = b · x, and sends y to
Alice.

3. Alice receives y from Bob. Alice computes z = a · y.

From the description, we see that x is essentially a, and it is immediately obvious
that this group is unsuitable for Diffie-Hellman.

e Exercise 10. Show that the Extended Euclidean algorithm can be used to compute
multiplicative inverses modulo n quickly (in time roughly proportional to log2 n integer
divisions and multiplications). Implement this algorithm.

8

e Exercise 11. Alice’s x is essentially equal to a since we used 1 + 〈n〉 as a generator.
Use Proposition 3 and the previous exercise to show that any other generator would be
equally insecure.

e Exercise 12. In Example 1, Alice and Bob use the group G = Z+
13 and generator g = 2.

Alice sends x = 6 to Bob, and Bob replies with y = 10. Use only this information,
together with the result from the previous exercise, to compute Alice’s secret value a,
Bob’s secret value b and the shared secret z.

This example shows us that a large group is necessary, but not sufficient for our
purposes.

3.2 Pohlig-Hellman I

There are many ways to describe and analyse the first part of the Pohlig-Hellman
algorithm for computing discrete logarithms. We shall rely on the algebraic structure
of cyclic groups, and begin with the observation that computing a discrete logarithm
in G is the same as computing the isomorphism from G to Z+

n taking g to 1 + 〈n〉. If
G has a suitable group structure, we can use that to simplify the computation of the
isomorphism.

Suppose for the remainder of this section that n = n1n2 with gcd(n1, n2) = 1. Define
the two sets

H1 = {xn2 | x ∈ G} and H2 = {xn1 | x ∈ G}.
e Exercise 13. Prove that the sets H1, H2 are subgroups of G of order n1, n2, respectively.

Next, define π1 : G→ H1, π2 : G→ H2 and π : G→ H1 ×H2 by

π1(x) = xn2 , π2(x) = xn1 and π(x) = (π1(x), π2(x)).

e Exercise 14. Prove that the maps π1, π2 are well-defined, that they are group homo-
morphisms and that they are surjective.

e Exercise 15. Prove that the map π is a group isomorphism by giving an inverse homo-
morphism.

It is interesting to compare the above results with the situation for Z+
n . We begin

by stating a version of the Chinese remainder theorem without proof.

Theorem 5. Let n = n1n2 with gcd(n1, n2) = 1. Then as rings

Zn ' Zn1 × Zn2 ,

and the unique ring isomorphism and its inverse are easy to compute.

The map Z+
n → Z+

n1
× Z+

n2
corresponding to π above is given by k + 〈n〉 7→ (kn2 +

〈n1〉, kn1 + 〈n2〉). This map is a group isomorphism, but not a ring isomorphism, unlike
the Chinese remainder theorem ring isomorphism which takes k + 〈n〉 to (k + 〈n1〉, k +
〈n2〉).

Let λ : G → Z+
n , λ1 : H1 → Z+

n1
and λ2 : H2 → Z+

n2
be the group isomorphisms

satisfying λ(g) = 1 + 〈n〉, λ1(π1(g)) = 1 + 〈n1〉 and λ2(π2(g)) = 1 + 〈(n2〉. Note that λ1
and λ2 are carefully chosen, and correspond to discrete logarithms to the bases π1(g)
and π2(g).

9

Proposition 6. The diagram

G Z+
n

H1 ×H2 Zn1
× Zn2

λ

π

λ1 × λ2

CRT

is commutative. (Here λ1×λ2 is the group isomorphism taking (x1, x2) to (λ1(x1), λ2(x2)).

Proof. It is sufficient to consider what happens to a group generator.
By definition, we have that λ1(π1(g)) = 1 + 〈n1〉 and λ2(π2(g)) = 1 + 〈n2〉.
Since gcd(n1, n2) = 1, the Chinese remainder theorem says that Z+

n1
×Z+

n2
is isomor-

phic to Z+
n . Moreover, the ring isomorphism given by the Chinese remainder theorem

takes the ring identity (1 + 〈n1〉, 1 + 〈n2〉) to the ring identity 1 + 〈n〉, which concludes
the proof.

Now that we have established the suitable group structure, all we need to do is to
ensure that we can use it.

Proposition 7. Let G be a cyclic group of order n = n1n2, gcd(n1, n2) = 1. Let H1

and H2 be the subgroups of order n1 and n2, respectively. The discrete logarithm of any
group element x ∈ G can be computed by computing one discrete logarithm in H1 and
one discrete logarithm in H2, and also two exponentiations of x and two exponentiations
of g.

Proof. Consider the diagram from Proposition 6. Computing the maps π1 and π2 costs
one exponentiation each, and we need to apply the maps to g and x in order to know
what the λ1 and λ2 maps are. Computing discrete logarithms in H1 and H2 is the same
as computing the maps λ1 and λ2. Computing the ring isomorphism described by the
Chinese remainder theorem is cheap, so we can ignore that cost.

Computing discrete logarithms in G is equivalent to computing λ. Our claim follows
by Proposition 6 and the above accounting.

e Exercise 16. The proof of Proposition 7 essentially describes an algorithm for computing
discrete logarithms, using a different algorithm for computing discrete logarithms in
subgroups. Implement this algorithm and restate Proposition 7 as a statement about
the algorithm’s time complexity (in terms of group operations and computing discrete
logarithms in subgroups, ignoring any other form of computation involved).

e Example 6. Consider the group G = Z+
72 with generator g = 1, and let x = 23. We

want to compute logg x. (The answer is of course obvious, but we do not actually care
about the answer, we just want to understand how the algorithm works.)

Since n = 72 = 8 · 9, we let n1 = 8 and n2 = 9.
We compute π1(g) = 9 · 1 = 9 and π1(x) = 9 · 23 = 63. We can now observe that

π1(x) = 63 = 7 · 9 = 7 · π1(g), so λ1(π1(x)) = 7.

10

Next, we compute π2(g) = 8 · 1 = 8 and π2(x) = 8 · 23 = 40. Again, we observe that
π1(x) = 40 = 5 · 8 = 5 · π2(g), so λ2(π2(x)) = 5.

Finally, the canonical CRT map takes (7, 5) to 23, as expected.

e Exercise 17. Observe that 72 = 8 · 9. Use the algorithm from Exercise 16 to compute
(by hand) the discrete logarithm of 70 to the base 5 in the group F∗73.

An alternative, more computational approach to proving the theorem is to observe
that if logg x = a then

xn2 = gan2 = (gn2)a,

which by Exercise 5 means that

a ≡ loggn2 x
n2 (mod n1).

In the same way, we get that

a ≡ loggn1 x
n1 (mod n2).

It follows that if we can compute the discrete logarithms to the bases gn1 and gn2 , we
can use the Chinese remainder theorem to recover the logarithm to the base g.

e Example 7. We redo Example 6.
We compute n2 · g = 9 · 1 = 9 and n2 ·x = 9 · 23 = 63. We compute that log9 63 = 7,

which means that a ≡ 7 (mod 8).
Next, we compute n1 · g = 8 · 1 = 8 and n1 · x = 8 · 23 = 40. We compute that

log8 40 = 5, which means that a ≡ 5 (mod 9).
Finally, we use CRT to find that a = 23.

e Exercise 18. State a variant of Proposition 7 and prove it using the above computational
approach.

Theorem 8 (Pohlig-Hellman I). Let G be a cyclic group of order n =
∏l
i=1 `

ri
i , where

`i 6= `j when i 6= j. The discrete logarithm of a group element x ∈ G can be computed
by computing one discrete logarithm in each of the subgroups of order `rii , and also l
exponentiations of x and l exponentiations of g.

Proof. We apply Proposition 7 repeatedly and the theorem follows.

e Exercise 19. The proof of Theorem 8 essentially describes an algorithm for computing
discrete logarithms. Implement this algorithm and restate Theorem 8 as a statement
about the algorithm’s time complexity (in terms of group operations and computing
discrete logarithms in subgroups, ignoring any other form of computation involved).

You may use the algorithm and statement from Exercise 16 as a subroutine and
lemma, respectively.

Based on Proposition 4 and Theorem 8, we arrive at the following requirement.

Requirement 2. If n =
∏l
i=1 `

ri
i is the group order and `rll is the largest prime power

dividing n, `rll group operations must be an infeasible computation.

11

3.3 Pohlig-Hellman II

In the previous section, we saw how computing discrete logarithms can be reduced to
computing discrete logarithms in subgroups whose orders are prime powers. We shall
now see how computing discrete logarithms in a group whose order is a prime power
can be reduced to computing discrete logarithms in a prime-ordered subgroup.

Suppose for the remainder of this section that the group order n is a prime power
`r for some prime `.

Define the sets
Hi = {x`

i

| x ∈ G}, 0 ≤ i ≤ r.

Note that Hr = {1}.
e Exercise 20. Prove that the sets H0, H1, . . . ,Hr are subgroups of G such that H0)
H1) · · ·) Hr. Prove also that Hr−1 is isomorphic to Z+

` .

Now we consider the maps πi : Hi → Hr−1 defined by

πi(y) = y`
r−i−1

, 0 ≤ i ≤ r − 1.

e Exercise 21. Prove that the πi maps are surjective group homomorphisms.

e Exercise 22. Show that if y ∈ Hi, then y`
j ∈ Hi+j for any j ≥ 0. Show also that

πi+j(y
`j) = πi(y).

e Exercise 23. Prove that the kernel of πi is Hi+1.

Proposition 9. Let g be a generator for G, let y ∈ Hi and let a = logπ0(g) πi(y). Then

yg−`
ia ∈ Hi+1.

Proof. Note first that g`
i ∈ Hi, and that πi(y) = π0(g)a. Using Exercise 22, we compute

πi(yg
−`ia) = πi(y)πi(g

`i)−a = π0(g)aπ0(g)−a = 1.

The claim now follows from Exercise 23.

This suggests a recursive algorithm for computing discrete logarithms.

Theorem 10 (Pohlig-Hellman II). Let G be a cylic group of order n = `r, where ` is
prime. The discrete logarithm of a group element x ∈ G can be computed by computing
r discrete logarithms in the subgroup of order ` (all to the same base), and also r − 1
exponentiations of group elements, r − 1 group operations and r exponentiation of g.

Proof. We construct a sequence of group elements y0, y1, . . . , yr and integers a0, a1, . . . , ar−1
as follows. We begin with y0 = x, and compute

ai = logπ0(g) πi(yi) and yi+1 = yig
−`iai , for 0 ≤ i < r.

By Proposition 9, this sequence is well-defined and yr = 1. Which means that

1 = yr−1g
−`r−1ar−1 = · · · = xg−

∑r−1
i=0 ai`

i

.

12

Note that 0 ≤ ai < ` for 0 ≤ i < r, which means that 0 ≤
∑r−1
i=0 ai`

i < `r. By
Exercise 5, we get that

logg x =

r−1∑
i=0

ai`
i,

Each iteration requires the computation of one discrete logarithm in the subgroup
Hr−1, and also one evaluation of πi (one exponentiation of a group element), one ex-
ponentiation of g and one group operation. The latter can be ignored for the final
iteration, of course.

There is a total of r iterations. We also have to compute π0(g) (one exponentiation
of g) once.

e Exercise 24. The proof of Theorem 10 essentially describes an algorithm for computing
discrete logarithms. Implement this algorithm and restate Theorem 10 as a statement
about the algorithm’s time complexity (in terms of group operations and computing
discrete logarithms in subgroups, ignoring any other form of computation involved).

e Example 8. Consider the group G = Z+
27 with generator g = 1, and let x = 23. We

want to compute logg x.
Since n = 27 = 33, we find that the subgroup H1 is all the multiples of 3, while

H2 = {0, 9, 18} is the multiples of 9 = 32. The map π0 then maps y ∈ G = H0 to
32 · y ∈ H2, while π1 maps y ∈ H1 to 3 · y ∈ H2.

First we see that π0(g) = 9 · 1 = 9.
With y0 = x = 23, we get π0(x) = 9 · 23 = 18 = 2 · 9, so a0 = 2.
We compute y1 = x0−a0 ·g = 23−2 ·1 = 21. We then get π1(21) = 3 ·21 = 9 = 1 ·9,

so a1 = 1.
Finally, we compute y2 = y1 − (3a1) · g = 21− (3 · 1) · 1 = 18 = 2 · 9, so a2 = 2.
We get log1 23 = 2 + 1 · 3 + 2 · 32 = 23.

e Exercise 25. Use the algorithm from Exercise 24 to compute the discrete logarithm
of 85 to the base 11 in the group Z+

125. (Note that we are talking about the additive
group here, where the group operation is addition modulo 125 and exponentiation is
multiplication modulo 125.)

e Exercise 26. Observe that 72 = 2332.

a. In F∗73, 2 generates a subgroup of order 32. Use the algorithm from Exercise 24
to compute (by hand) the discrete logarithm of 64 to the base 2 in the subgroup
of F∗73.

b. In F∗73, 10 generates a subgroup of order 23. Use the algorithm from Exercise 24
to compute (by hand) the discrete logarithm of 27 to the base 10 in the subgroup
of F∗73.

c. Use the algorithm from Exercise 16 together with the algorithm from Exercise 24
to compute (by hand) the discrete logarithm of 70 to the base 5 in the group F∗73.
You should use the results of the previous two exercises in your computation.

13

An alternative, more computational approach to proving Proposition 10 begins by
writing a =

∑
ai`

i and then observing that if

y = g
∑r−1

i=j ai`
i

,

then
y`

j−1

= gaj`
r−1

.

e Exercise 27. Give a proof of Theorem 10 using the above computational approach.

e Example 9. Consider the group G = Z+
27 with generator g = 1, and let x = 23. We

want to compute logg x.
We write logg x = a0 + 3a1 + 32a2.
First we compute 9 · g = 9 · 1 = 9.
Let y0 = x = (a0 + 3a1 + 32a2) · 1. We compute 9 · 23 = 18 = 2 · 9, which tells us

that
9(a0 + 3a1 + 32a2) ≡ 9 · 2 (mod 27) ⇒ a0 = 2.

We get y1 = y0− 2 · 1 = 21 = (3a1 + 32a2) · 1. We compute 3 · y1 = 3 · 21 = 9 = 1 · 9,
which tells us that

3(3a1 + 32a2) ≡ 9 · 1 (mod 27) ⇒ a1 = 1.

We get y2 = y1 − (3 · 1) · 1 = 18 = (32a2) · 1. We compute y2 = 2 · 9, which tells us
that

32a2 ≡ 9 · 2 (mod 27) ⇒ a2 = 2.

We get that logg 23 = 2 + 3 · 1 + 32 · 2 = 23.

Based on Proposition 4, Theorem 8 and Theorem 10, we arrive at the following
requirement.

Requirement 3. If n =
∏l
i=1 `

ri
i is the group order and `l is the largest prime dividing

n, `l group operations must be an infeasible computation.

3.4 Shank’s Baby-step Giant-step

In this section, we shall improve on Proposition 4 by trading reduced computational
effort for increased memory use. Let G be a cyclic group of order n. We must assume
that there is some total order � on the group elements, such that the following two
claims hold when L≪ n:

Sorting With effort comparable to computing L group operations, a list of pairs of
group elements and integers (x1, a1), (x2, a2), . . . , (xL, aL) can be rearranged into
a new list (y1, b1), (y2, b2), . . . , (yL, bL) satisfying yi � yj when i ≤ j.

Searching With effort comparable to computing one group operation, we can decide
if a group element x is present in a list of pairs of group elements and integers
(y1, b1), (y2, b2), . . . , (yL, bL) satisfying yi � yj when i ≤ j. If the element is
present, we also learn what its corresponding number b is.

14

The algorithm we are interested in begins with the observation that logg x = bL+b′,
where 0 ≤ b′ < L.

Theorem 11. Let G be a cyclic group of order n. For any positive integer L≪ n, the
discrete logarithm of an element x ∈ G can be computed using memory to hold L group
elements and L+ dn/Le group operations.

Proof. First we construct a list of pairs of group elements and their discrete logarithms

(1, 0), (g, 1), (g2, 2), (g3, 3), . . . , (gL−1, L− 1).

Computing this list requires less than L group operations and memory to hold L group
elements. By assumption, we can sort the list into the list

(y1, b1), (y2, b2), (y3, b3), . . . , (yL, bL)

using effort comparable to what it took to create the list. Note that we can now quickly
decide if the discrete logarithm of any group element is less than L, and if so, what its
discrete logarithm is.

Recall that we can write logg x = bL+ b′, where 0 ≤ b′ < L. Therefore

0 ≤ logg x(g−L)b < L.

We can find b and b′ by computing successively

x, xg−L, x(g−L)2, x(g−L)3, . . .

and for each element check if it is in our list. Note that computing the next element
requires one group operation, while the check requires comparable effort.

We know that we will find an element in our list before computing dn/Le elements.
It follows that we will find the discrete logarithm of x with at most L + dn/Le group
operations.

e Exercise 28. The proof of Theorem 11 essentially describes an algorithm for computing
discrete logarithms. Write out this algorithm carefully and restate Theorem 11 as a
statement about the algorithm’s time complexity (in terms of group operations, ignoring
any other form of computation involved).

e Example 10. Consider the group G = Z+
29 with generator g = 1, and let x = 23. We

want to compute logg x.
We first compute the list of group elements, choosing L = 5. Sorting is easy for this

group.
i · g 0 1 2 3 4
i 0 1 2 3 4

We also compute −5 · g = 24.
We see that 23 is not in the table, so we compute 23 + 24 = 18. This is not in the

table, so we compute 18 + 24 = 13. This is not in the table, so we compute 13 + 24 = 8.
Again, this is not in the table, so we compute 8 + 24 = 3.

15

We find that 3 is in the table, with discrete logarithm 3. We have added −5 · g to
23 four times. It follows that

logg 23 = 4 · 5 + 3.

e Exercise 29. What value of L minimizes computational effort?

e Exercise 30. Using the algorithm from Exercise 28 to compute (by hand) the discrete
logarithm of 51 to the base 2 in the group F∗59.

e Exercise 31. Decide the optimal value of L if we need to compute the discrete logarithm
of k group elements x1, x2, . . . , xk.

e Exercise 32. Suppose we know that logg x < k. Show that for any L > 0 we can
compute this discrete logarithm using at most L+ dk/Le group operations.

e Exercise 33. Suppose we know that k1 ≤ logg x < k2. Show that for any L > 0 we can
compute this discrete logarithm using at most L+ d(k2 − k1)/Le group operations.

Based on Theorems 8, 10 and 11, we arrive at the following requirement.

Requirement 4. If n is the group order and ` is the largest prime dividing n, then
L + d`/Le group operations using memory for L group elements must be an infeasible
computation.

3.5 Pollard’s ρ

In this section, we shall consider a group G with a prime n number of elements. In
the previous section, we saw that we could trivially recover the discrete logarithm of x
given an equation of the form x(g−L)b = gb

′
. Pollard’s ρ method will try to generate

an equation of the form
gaxb = ga

′
xb
′
, (1)

with b 6≡ b′ (mod n), after which it is easy to see that logg x ≡ (a − a′)(b′ − b)−1

(mod n).
Pollard’s ρ method relies on connecting two separate ideas with a conjecture to arrive

at an algorithm for finding a relation like (1) above. The first idea is that in sequences
of randomly chosen elements we will quickly see repetitions. The second idea is that
in certain sequences we can quickly find cycles. The conjecture is that, with respect to
repetitions, certain non-random sequences “look random”. It is the repetitions in this
sequence that will cause cycles, which we can quickly find and which will give us the
required relation.

We begin with the first idea and a sequence of elements chosen at random. What is
the probability that there are no repetitions within the first L elements of the sequence?

Proposition 12. Suppose we have a sequence of elements s1, s2, s3, . . . , the elements
chosen independently and uniformly at random from a set S with n elements. Let E be
the event that the L first elements are all distinct. Then

1− L(L− 1)

2n
≤ Pr[E] ≤ exp

(
−L(L− 1)

2n

)
.

16

Proof. If L ≥ n, then Pr[E] = 0 and the claim holds. So we may assume L < n.
Choosing elements one after another, we see that we have n choices for the first

element, n− 1 choices for the second element, n− 2 choices for the third element, and
so forth. By independence and uniformity, we get that

Pr[E] = (1− 1/n)(1− 2/n) · · · (1− (L− 1)/n).

Note that 1− ε ≤ exp(−ε) for any ε, so

Pr[E] ≤ e−1/ne−2/n · · · e−(L−1)/n = exp

(
−
L−1∑
i=1

i/n

)
= exp

(
−L(L− 1)

2n

)
.

For the lower bound, we consider the complementary event. Let Fi be the event
that the ith chosen element coincides with at least one of the previous elements. Then
Pr[Fi] ≤ (i− 1)/n, and we get that

1− Pr[¬E] = 1− Pr[F1 ∨ F2 ∨ · · · ∨ FL]

≥ 1−
L∑
i=1

Pr[Fi] ≥ 1−
L∑
i=1

i− 1

n
≥ 1− L(L− 1)

2n
,

which concludes the proof.

Note that the sequence we shall consider next is far from random, and this propo-
sition and its proof do not apply. But many non-random sequences are still “random-
looking” with respect to repetitions in the sequence, which means that the bounds in
the proposition apply in practice. This will be sufficient for our purposes.

Now we shall consider the problem of finding cycles in the special kind of infinite
sequences generated by a starting point s1 ∈ S, a function f : S → S and the rule
si+1 = f(si). The sequence eventually becomes cyclic (for some integers i, j, k, sj+k = sj
when j ≥ i) when S is finite.

Proposition 13. Let s1, s2, . . . be the sequence defined by s1 and the rule si+1 = f(si).
Suppose k is the smallest integer such that sk = sk′ for some k′ < k. Then distinct
indexes i, j can be found such that si = sj using at most 3k evaluations of f .

Proof. We consider the sequence t1, t2, . . . given by tj = s2j . It is clear that for some i,
ti = si, and that this i is at most k.

We can compute successively the pairs (s1, t1), (s2, t2), . . . using the rule

(si+1, ti+1) = (f(si), f(f(ti))).

We will notice when si = ti, at which point we have found si = s2i. Computing each
new pair requires evaluating f three times. The claim follows.

e Exercise 34. The proof of Proposition 13 essentially describes an algorithm for finding
two integers. Write out this algorithm carefully and restate Proposition 13 as a state-
ment about the algorithm’s time complexity (in terms of evaluations of the function
f).

17

Now we are ready to construct a sequence that should allow us to find an equation
like (1) and thereby compute discrete logarithms.

Our set will be the group G, of course. Suppose {S1, S2, S3} is a partition of G – S1,
S2 and S3 are pairwise disjoint sets whose union is G – where the three subsets have
approximately the same cardinality. Suppose also that it is easy to check which subset
an element is in.

Finally, we are ready to construct a sequence y1, y2, . . . based on S1, S2, S3, a gen-
erator g and a group element x. We let y1 = x and

yi+1 =


yig yi ∈ S1,

y2i yi ∈ S2, or

yix yi ∈ S3.

(2)

Based on the sequence y1, y2, . . . , we can define a sequence of integer pairs (a1, b1), (a2, b2), . . .
starting with (a1, b1) = (0, 1) and using the rule

(ai+1, bi+1) =


(ai + 1 mod n, bi) yi ∈ S1,

(2ai mod n, 2bi mod n) yi ∈ S2, or

(ai, bi + 1 mod n) yi ∈ S3.

(3)

e Exercise 35. Show that the above two sequences defined by (2) and (3) satisfy yi =
gaixbi .

e Example 11. Consider G = Z+
31 with generator g = 1, x = 7 and the (randomly chosen)

partition:
S1 4, 9, 11, 14, 15, 16, 21, 24, 29, 30
S2 1, 6, 7, 8, 10, 18, 19, 20, 25, 27
S3 0, 2, 3, 5, 12, 13, 17, 22, 23, 26, 28

Given the starting point y1 = x = 7, we get the sequences

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j 1 2 3 4 5 6 7 8
yi 7 14 15 16 17 24 25 19 7 14 15 16 17 24 25 19

S2 S1 S1 S1 S3 S1 S2 S2 S2 S1 S1 S1 S3 S1 S2 S2

ai 0 0 1 2 3 3 4 8 16 1 2 3 4 4 5 10
bi 1 2 2 2 2 3 3 6 12 24 24 24 24 25 25 19

By inspection, we see that y9 = y1 = 7, while the algorithm from Exercise 34 finds the
repetition y8 = y2·8.

e Exercise 36. Consider the subgroup G of F∗107 with 53 elements. Use the generator
g = 11 and x = 85. Also use the partition where y ∈ Si ⇔ y ≡ i− 1 (mod 3).

a. Compute (by hand) the 20 first terms of the sequences from (2) and (3).

b. Find by inspection the first repetition in the sequence y1, y2,

18

c. Use the algorithm from Exercise 34 to find a repetition in this sequence.

e Exercise 37. Let y1, y2, . . . and (a1, b1), (a2, b2), . . . be the above sequences defined by
(2) and (3) and suppose k is the smallest integer such that yk = yk′ for some k′ < k.
Prove that distinct indexes i, j along with corresponding pairs (ai, bi) and (aj , bj) can
be found such that yi = yj using at most 3k group operations and 6k additions and
multiplications modulo n.

Let E be the event that the L first elements of y1, y2, . . . are all distinct, and let E′

be the event that the L first pairs of (a1, b1), (a2, b2), . . . are all distinct. Then we can
define the two functions

θ(L, n) = Pr[E] and γ(L, n) = 1− Pr[E′].

We can now prove the following result.

Theorem 14. Let G be a cyclic group of order n. The discrete logarithm of an element
x ∈ G can be computed using 3L group operations and 6L + 3 arithmetic operations
modulo n, except with probability at most θ(L, n) + γ(L, n).

Proof. Some element will appear twice among the L first elements of the sequence
described by (2) except with with probability θ(L, n).

The corresponding pairs (ai, bi) and (aj , bj) will be distinct except with probability
γ(L, n).

This repetition yi = yj gives us an equation of the form (1), namely

gaixbi = gajxbj .

When bi 6= bj , we can compute the discrete logarithm of x, since n is prime.
By Exercise 37 we can find the indexes of the repetition, while at the same time

keeping track of the sequence described by (3), using at most 3L group operations and
6L arithmetic operations modulo n. The claim follows.

e Exercise 38. The proof of Theorem 14 essentially describes an algorithm for comput-
ing discrete logarithms. Write out this algorithm carefully and restate the claim in
Theorem 14 as a statement about the algorithm’s time complexity (in terms of group
operations and arithmetic operations modulo n) and success probability (in terms of
θ(L, n) and γ(L, n)).

e Example 12. Continuing from Example 11, we use the algorithm from Exercise 37 to
find a repetition in the sequence y1, y2, . . . , and find that y16 = y8.

From the already computed values, we find that

8 · 1 + 6 · x = 10 · 1 + 19 · x ⇒ logg x ≡
8− 10

19− 6
≡ (−2)(12) ≡ 7 (mod 31).

e Exercise 39. Use the algorithm from Exercise 38 to compute (by hand) the discrete
logarithm of 85 to the base 11 in the group F∗107.

19

When we choose a reasonable partition {S1, S2, S3}, it seems plausible that some-
thing similar to the claims of Proposition 12 should hold for the two sequences, and in
practice, this seems to be true. We phrase this in terms of a conjecture. Note that in
this conjecture the probability is taken over the choice of the element x.

Informal conjecture 15. For reasonable partitions {S1, S2, S3}, the function θ(L, n)
is roughly similar to

exp

(
−L(L− 1)

2n

)
and γ(L, n) is roughly similar to

L(L− 1)

2n2
.

Based on Conjecture 15 and Theorems 8, 10 and 14, we arrive at the following
requirement.

Requirement 5. If n is the group order and ` is the largest prime dividing n, then
√
`

group operations must be an infeasible computation.

4 Primality Testing

Throughout this section, we shall take n to be a large odd integer.
We want to be able to distinguish prime integers from composite integers. The

following proposition is obvious, since a composite integer must have a proper divisor
smaller than the square root of the integer and we can in principle check every possible
divisor.

Proposition 16. We can decide if a number n is prime using at most
√
n integer

divisions.

Unfortunately, the algorithm implied by this proposition is useless for large inte-
gers, and therefore for our purposes. However, having divisors is just one difference in
behaviour between composite and prime integers.

To distinguish primes from composites, we shall find a subset S of Z∗n with three
properties:

1. It is easy to check if an element is in S or not.

2. If n is prime, then S = Z∗n.

3. If n is composite, then S contains at most half of all the elements of Z∗n.

If our three properties are satisfied, we can recognize primes as follows. First, we
choose k elements from Z∗n uniformly and independently at random. Then we check if
all of these elements are in the subset S. If any element is not in the subset, we conclude
that n is composite. Otherwise, we conclude that n may be prime.

20

If one or more of the elements are not in the subset, we have proved that S is a
proper subset, from which it follows that n is composite. Any element that is not in
the subset is a witness for the fact that n is not prime.

The probability that all of the random elements lie inside S is of course (|S|/|Z∗n|)k.
For moderately large k, if |S|/|Z∗n| < 1/2, this probability will be very small. It follows
logically that if all of the random elements lie inside S, it is most likely that n is prime.
Note that it is not certain that n is prime, just likely.

4.1 Fermat’s Test

Our first attempt is based on Fermat’s little theorem.

Theorem 18. If n is prime, then for any integer a not divisible by n,

an−1 ≡ 1 (mod n). (4)

We now define our subset, which turns out to also be a subgroup.

e Exercise 40. Let Gn ⊆ Z∗n be the set

Gn = {x ∈ Z∗n | xn−1 = 1}. (5)

Show that Gn is a subgroup of Z∗n, and that if n is prime then Gn = Z∗n.

e Exercise 41. Show that there is an algorithm that can decide if an element x ∈ Z∗n is
in Gn or not using at most one exponentiation.

We have now shown that we have a subset Gn and that we can distinguish its mem-
bers easily. Fermat’s little theorem says that if n is prime, then Gn = Z∗n. Furthermore,
if Gn is a proper subgroup, then it will contain at most half of all the elements of Z∗n.

e Exercise 42. Exercise 41 together with the strategy described above informally describes
an algorithm that decides if the subgroup Gn is a proper subgroup of Z∗n. Implement
this algorithm. Formulate and prove a statement about the algorithm’s time complexity
(in terms of exponentiations) and success probability (the probability that the algorithm
decides correctly).

Note the careful phrasing. The exercise only says that the algorithm can decide if
Gn is likely to be a proper subgroup, not if n is likely to be prime. Of course, if Gn is a
proper subgroup, we know that n is composite, so we can attempt to use this to prove
that numbers are composites.

e Example 13. Consider n = 55. First we try 34 and compute that

3454 ≡ 1 (mod 55).

This means that 34 does not disprove that 55 is prime. Next we try 21 and compute
that

2154 ≡ 1 (mod 55).

Again, this means that 21 does not disprove that 55 is prime. Next we try 27 and
compute that

2754 ≡ 9 (mod 55),

which proves that 55 is composite. Note that we have not found any factors of 55.

21

e Exercise 43. Use the algorithm from Exercise 42 to prove two of the three numbers 767,
13457 and 83693 composite.

Unfortunately, our strategy will fail for some composite numbers.

Definition 5. A Carmichael number is a composite integer n such that Gn = Z∗n.

The algorithm from Exercise 42 does not distinguish prime numbers from composite
numbers, but rather prime and Carmichael numbers from non-Carmichael composites.

e Exercise 44. Use the algorithm from Exercise 42 to prove one of the two numbers 294409
and 951253 composite. What about the other number?

Carmichael numbers not only exist, but there are infinitely many of them. Fortu-
nately, Carmichael numbers are rare, in the sense that we are unlikely to run into one
in most cryptographic applications. This means that for most cryptographic purposes,
this test would be good enough. But it is easy to do better.

4.2 Soloway-Strassen Test

The Soloway-Strassen test relies on a simple way to decide if a number is a square
modulo a prime. Before we can explain the test, we require a bit of number theory.

Definition 6. Let p be a prime. For any integer a, the Legendre symbol is defined to
be

(
a

p

)
=


1 if there exists b 6≡ 0 (mod p) such that b2 ≡ a (mod p),

0 p divides a, and

−1 otherwise.

Let n be an integer with prime factorization n =
∏
i p
ri
i . For any integer a, the Jacobi

symbol is defined to be (a
n

)
=
∏
i

(
a

pi

)ri
.

Note that if n is prime, the Jacobi symbol coincides with the Legendre symbol.
We can consider the Legendre symbol to be a map from F∗p to its subgroup {±1}.

The inverse image of 1 is the set of all group elements that are squares.
Likewise, we can consider the Jacobi symbol

(·
n

)
to be a map from Z∗n to its subgroup

{±1}.
e Exercise 45. Let Hn ⊆ Z∗n be the set

Hn =
{
x ∈ Z∗n | x

n−1
2 =

(x
n

)}
Show that Hn is a subgroup of Z∗n.

We have defined our subset. We now need to be able to decide if an element lies in
Hn or not, which means that we need to be able to compute the Jacobi symbol quickly.
We can do this using quadratic reciprosity as well as other properties of the Jacobi
symbol. We state the properties of the Jacobi symbol without proof.

22

Fact 19. Let n be an odd integer and let a, b be integers that are relatively prime to n.
For the final point, a should also be odd. Then the following hold:

1.
(
a
n

)
=
(
b
n

)
if a ≡ b (mod n).

2.
(
ab
n

)
=
(
a
n

) (
b
n

)
.

3.
(
2
n

)
=

{
1 if n is congruent to 1 or 7 modulo 8,

−1 otherwise.

4.
(
a
n

)
=

{
−
(
n
a

)
if n and a are both congruent to 3 modulo 4,(

n
a

)
otherwise.

e Exercise 46. Show that using the above properties of the Jacobi symbol, we can con-
struct an algorithm for quickly computing the Jacobi symbol. Implement this algorithm.

e Example 14. We want to compute the Jacobi symbol
(
34
55

)
. We get(

34

55

)
=

(
2

55

)(
17

55

)
=

(
17

55

)
=

(
55

17

)
=

(
4

17

)
= 1.

We use the second, third, fourth, first and third properties of the Jacobi symbol, re-
spectively.

e Example 15. We want to compute the Jacobi symbol
(

34
385

)
. We get(

34

385

)
2.
=

(
2

385

)(
17

385

)
3.
=

(
17

385

)
4.
=

(
385

17

)
1.
=

(
11

17

)
4.
=

(
17

11

)
1.
=

(
6

11

)
2.
=

(
2

11

)(
3

11

)
3.
= −

(
3

11

)
4.
=

(
11

3

)
1.
=

(
2

3

)
3.
= −1.

The Jacobi symbol property used is marked above each equality sign.

e Exercise 47. Compute the Jacobi symbol
(

7
294409

)
.

The next theorem shows that Hn = Z∗n when n is prime.

Theorem 20. Let n be an odd prime and let a ∈ Z∗n. Then(a
n

)
= a

n−1
2 . (6)

Proof. Recall that the Legendre symbol of a group element is 1 if and only if that
element is a square in the group.

When n is prime, Proposition 22 says that Z∗n is cyclic of order n− 1. Let g be any
generator. When the group order n−1 is even, the squares are the elements of the form
g2i for integers i, while the non-squares are of the form g2i+1. We see that

(g2i)
n−1
2 = (gn−1)i = 1 and (g2i+1)

n−1
2 = (gn−1)ig

n−1
2 = −1,

which proves the theorem.

23

We are now very close to an algorithm that decides if a number is prime or not. All
that remains is to show that whenever n is composite, Hn is a proper subgroup of Z∗n.

Theorem 21. Let n be an odd composite number. Then there exists a ∈ Z∗n such that
(6) does not hold.

Proof. We consider two cases, whether or not n is square-free.
First, suppose there is a prime p such that p2 divides n. Let n2 = n/p, and let a be

the integer 1 +n2, which is not congruent to 1 modulo n, but is congruent to 1 modulo
n2 and p. The Jacobi symbol is(a

n

)
=

(
a

p

)(
a

n2

)
=

(
1

p

)(
1

n2

)
= 1.

We shall show that a has order p modulo n. Since p does not divide n− 1, it will follow
that a(n−1)/2 is not congruent to 1 modulo n, and therefore that a+〈n〉 does not satisfy
(6).

From the binomial theorem, it follows that

ap ≡ (1 + n2)p ≡
p∑
i=0

(
p

i

)
ni2 (mod n).

It is clear that n divides every other term of the sum except the first term (which is 1)
and possibly the second term. But since p divides

(
p
1

)
, n divides the second term too,

and ap has order p modulo n.
Next, suppose that no square of any prime divides n. Let p be any prime dividing

n and let n2 = n/p. Let also b be any integer that is not a square modulo p with
gcd(b, n) = 1. By the Chinese remainder theorem, we can find an integer a satisfying

a ≡ 1 (mod n2),

a ≡ b (mod p).

Note that the first equation implies that

a(n−1)/2 ≡ 1(n−1)/2 ≡ 1 (mod n2),

which means that a(n−1)/2 6≡ −1 (mod n). Finally, we compute the Jacobi symbol of a
as (a

n

)
=

(
b

p

)(
1

n2

)
= (−1) · 1 = −1.

It follows that (6) does not hold for a+ 〈n〉.

It is now clear that our strategy will work.

e Exercise 48. Exercise 45, Exercise 46 and our strategy can be combined into an al-
gorithm that decides if the subgroup Hn is a proper subgroup of Z∗n. Implement this
algorithm and formulate and prove a statement about the algorithm’s time complexity
(in terms of exponentiations) and success probability.

24

Exercise 48 allows us to decide if Hn is a proper subgroup of Z∗n or not. By Theo-
rems 20 and 21, we know that it is a proper subgroup if and only if n is a composite
number. In other words, we have an efficient way to decide if a number is prime or not.

e Example 16. Consider n = 55. First we try 34 and compute that

3427 ≡ 34 6≡ ±1 (mod 55),

which proves that 55 is composite. Note that we have not found any factors of 55.

e Example 17. Consider n = 385. First we try 309 and compute that

309192 ≡ 1 ≡
(

309

385

)
(mod 385).

This means that 309 does not disprove that 385 is prime. Next, we try 34 and compute
that

34192 ≡ 1 6≡
(

34

385

)
(mod 385),

which proves that 385 is composite. Note that we have not found any factors of 385.

e Exercise 49. Use the algorithm from Exercise 48 to prove the two numbers 294409 and
951253 composite.

e Exercise 50. Choose several random numbers between 106 and 107. Use the algorithm
from Exercise 48 to decide primality for each number with reasonable certainty. For
the composites, how many random numbers do you need to test before disproving their
primality.

Redo the exercise for random numbers between 1020 and 1021.
Are the results surprising? Should they be?

5 Finite Fields

The non-zero elements of a finite field with q form an abelian group under multiplication,
and we denote this group by F∗q . The question we shall now investigate is if this group
is suitable for use in Diffie-Hellman.

We begin by showing that this group is cyclic. Note that we may still want to use
a subgroup and not the whole group.

Proposition 22. The group F∗q is cyclic.

Proof. Let n be the maximal order of any element in F∗q . We know that the order of
any element in a group divides the group order, so specifically n ≤ q− 1. Furthermore,
the order of any element in F∗q must divide n.

For any x ∈ F∗q we therefore have that xn = 1 or xn − 1 = 0.
Now consider the polynomial Xn − 1. As we have just seen, every non-zero field

element is a zero of this polynomial. We know that a polynomial of degree d > 0 over
any field has at most d zeros, so n ≥ q − 1. We can conclude that n = q − 1.

Since we have an element of order q − 1, the group order, the group is cyclic.

25

Requirement 5 says that the order of any group we use in Diffie-Hellman should be
divisible by a large prime. In other words, we need a large prime power q such that
q − 1 is divisible by a large prime.

It turns out (for reasons that we shall not investigate) that computing discrete
logarithms in extension fields is easier than in prime fields of comparable size. Therefore
we restrict our study to prime fields.

Before we go on to discuss how we can find suitable primes, we first discuss the
details of the group operation.

5.1 Group Operation

Let p be a prime. Mathematically, the finite field Fp consists of a set of p elements, two
of which are distinguished (0 and 1), along with two binary operations + and ·.

The field is isomorphic to the factor ring Z/〈p〉, where it is easy to compute. To
add, subtract or multiply, we simply add, subtract or multiply representatives of the
cosets to get new representatives. To divide by ξ + 〈p〉, we first find an inverse ζ of ξ
modulo p, then multiply by ζ + 〈p〉 (again by multiplying representatives).

This is unproblematic mathematically, but computationally it is awkward because
the size of the representatives tends to grow very quickly, making arithmetic very slow.
However, we know that two integers represent the same coset if and only if they are
congruent modulo p. Which means that after we do some arithmetic operation on the
representatives, we may divide the (possibly large) new representative by p and use the
remainder as our representative for the result coset.

What happens is that we represent the field elements using the integers {0, 1, . . . , p−
1} and do arithmetic as integer arithmetic followed by taking the remainder after divi-
sion by p.

It follows that a group operation costs two arithmetic operations, while finding an
inverse in the group is somewhat more expensive.

e Exercise 51. Find reasonable algorithms for addition, subtraction, multiplication, di-
vision. We can use the Extended Euclidian algorithm to compute inverses. Compare
these algorithms in terms of run-time.

5.2 Finding Suitable Primes

The prime number theorem says that in any given range of integers, primes are fairly
common (inversely proportional to the number of digits). Since we can efficiently rec-
ognize primes, we can fairly quickly find large primes simply by choosing random large
numbers until we find a prime.

By Requirement 5, we need a cyclic group such that the group order is divisible by
a large prime. This means that we are not just looking for primes, we are looking for a
prime p such that p− 1 is divisible by a large prime.

We can do this by first choosing a sufficiently large prime ` and then choosing random
numbers k until 2k`+1 is prime. In practice, this algorithm performs as well as a search
for an arbitrary prime.

26

e Example 18. Testing integers sequentially starting at 2000, we find that ` = 2003 is
prime. We then test multiples starting with 101 and find that when k = 103 the
number p = 2k`+ 1 = 412619 is prime.

Sometimes, we want the p− 1 to be twice a prime `. In this case, p is called a safe
prime and ` is called a Sophie-Germain prime. This time, the need for ` and 2`+ 1 to
be prime simultaneously means that we need to look at many more candidates before
we find a suitable prime. This will be slow, but there are techniques to speed up the
search.

e Example 19. Again, testing integers sequentially starting at 2003, we find that ` = 2039
is prime at the same time as p = 2`+ 1 = 4079.

e Exercise 52. About one third of all candidates will be divisible by 3. Checking that a
number is not divisible by 3 is much faster than using the primality testing algorithms
from Section 4. Expand on this idea and explain how we can use so-called trial division
by small primes to exclude most candidate primes before finally using the algorithms
from Section 4.

e Exercise 53. The Sieve of Eratosthenes can be used to quickly find the first small primes.
Adapt the sieving idea to quickly find the most likely prime candidates from an integer
range.

5.3 Index Calculus

All of the algorithms from Section 3 will work for F∗p. But it turns out that we can do
very much better. We shall develop the ideas of index calculus in a general setting, and
then show how the properties of prime fields allow us to apply the ideas to get a more
efficient algorithm for computing discrete logarithms.

We begin with an observation about abstract cyclic groups, which is an extension of
(1). Let G be a cyclic group of order n. Let g be some generator and let x be a group
element. Suppose we have ν pairs of integers (r1, t1), (r2, t2), . . . , (rν , tν) and integers
α1, α2, . . . , αν (not all congruent to zero modulo n) such that

ν∏
i=1

(
xtigri

)αi
= 1. (7)

This will give us the equation

x
∑

i αitig
∑

i αiri = 1,

which is of the same form as (1). As long as
∑
i αiti is invertible modulo n, we can

recover logg x from the equation using 2ν+2 arithmetic operations (ν+1 multiplications,
ν additions and one inversion).

We first consider the case when the group order n is prime.

e Example 20. Consider the prime p = 1019 with the elements g = 3, generating a
subgroup G of F∗p of order 509. Let x = 11.

27

With the relations

y1 = g112x239 = 576 y2 = g477x274 = 70 y3 = g378x248 = 180 y4 = g80x66 = 42

y5 = g331x488 = 720

and integers α1 = 145, α2 = 436, α3 = 72, α4 = 73 and α5 = 1, we get that

y1451 x4362 y723 y
73
4 y5 = 1.

This means that

logg x ≡ −
145 · 112 + 436 · 477 + 72 · 378 + 73 · 80 + 331

145 · 239 + 436 · 274 + 72 · 180 + 73 · 66 + 488
≡ − 45

149
≡ 191 (mod 509).

A quick calculation proves that this is the correct discrete logarithm.

e Exercise 54. Suppose n is prime. Consider (7). Let

yi = xtigri , i = 1, 2, . . . , ν.

Suppose further that the coefficients r1, r2, . . . , rν , t1, t2, . . . , tν have been chosen uni-
formly at random, but the coefficients α1, α2, . . . , αν only depend on the group elements
y1, y2, . . . , yν . Show that

∑
i αiti is divisible by n with probability 1/n.

Proposition 23. Suppose n is prime and that ¯̀
1, ¯̀

2, . . . , ¯̀
l are elements of G. Given

l + 1 distinct, non-trivial relations of the form

yi =

l∏
j=1

¯̀sij
j , i = 1, 2, . . . , l + 1,

we can compute α1, α2, . . . , αl+1 satisfying

l+1∏
i=1

yi = 1

using at most (l + 1)3 arithmetic operations.

Proof. Let S be the (l+ 1)× l matrix (sij), where each of the relations defines one row.
If we consider S as a matrix over Fn, it has rank at most l, so there exists a non-zero
vector α such that αS = 0. Given such a vector, we get

l+1∏
i=1

yαi
i =

l+1∏
i=1

 l∏
j=1

¯̀sij
j

αi

=

l∏
j=1

¯̀
∑l+1

i=1 αisij
j = 1.

Gaussian elimination will find a vector in the kernel of S using at most (l + 1)3

arithmetic operations.

28

e Example 21. Continuing with the discrete logarithm problem and relations from Ex-
ample 20, we have the elements 2, 3, 5 and 7 in the subgroup of F∗p and the relations:

y1 = 576 = 26 · 32 y2 = 70 = 2 · 5 · 7 y3 = 180 = 22 · 32 · 5
y4 = 42 = 2 · 3 · 7 y5 = 720 = 24 · 32 · 5

This gives us the matrix

S =


6 2 0 0
1 0 1 1
2 2 1 0
1 1 0 1
4 2 1 0

 .

The Gaussian elimination in F509 proceeds as follows:
6 2 0 0 1
1 0 1 1 1
2 2 1 0 1
1 1 0 1 1
4 2 1 0

 ∼


6 2 0 0 1
339 1 1 424 1
171 1 0 339 1
340 0 1 424 1
340 1 0 169



∼


6 2 0 0 1

339 1 1 424 1
5 4 508 4 1
2 3 254 2 1
3 2 508 2



∼


6 2 0 0 1

339 1 1 424 1
5 4 508 4 1

205 458 204 305 1
305 305 305 203



∼


6 2 0 0 1

339 1 1 424 1
5 4 508 4 1

205 458 204 305 1
145 436 72 73

 .

We find (α1, α2, α3, α4) in the bottom row of the right half of the matrix.

Proposition 24. Suppose n is prime and that ¯̀
1, ¯̀

2, . . . , ¯̀
l are elements of G. Suppose

further that for a group element y chosen uniformly at random from G we can find a
relation of the form

y =

l∏
j=1

¯̀sj
j (8)

with probability σ, using at most τ arithmetic operations.

29

Then, except with probability 1/n, we can compute logg x using an expected

σ−1(l + 1)(τ + 2χ) + (l + 1)3 + 2l + 3

arithmetic operations, where χ is the number of arithmetic operations required for an
exponentiation in G.

Proof. We shall choose random group elements and for each element use at most τ
arithmetic operations to try to find a relation of the form (8). When we have found
l + 1 relations, we shall stop.

We choose random elements of the form xtgr, ensuring that the coefficients sj will
be independent of the exact random numbers t, r chosen, satisfying the requirements of
Exercise 54.

Now we can apply Proposition 23 to compute a relation among the random group
elements, which by Exercise 54 will allow us to compute the discrete logarithm except
with probability 1/n.

We expect to find l + 1 relations after choosing σ−1(l + 1) random group elements.
Sampling a random element costs 2χ arithmetic operations, and trying to find rela-

tions costs τ arithmetic operations per group element tested.
The linear algebra will require (l+ 1)3 arithmetic operations, and computing logg x

will cost at most 2l + 3 arithmetic operations. The claim follows.

If n is a prime power qk then Proposition 23 does not apply. If q is small, the
algorithms from Section 3 suffice to compute the discrete logarithm quickly. The case
where q is not small can be handled as well, but since this is almost never the case in
cryptography, we do not discuss the details.

Finally, we consider the case of a more general group order.

Proposition 25. Let n = n1n2, such that n1 is a large prime that does not divide n2,
let g be a generator of G, let ¯̀

1, ¯̀
2, . . . , ¯̀

l be elements of G, and let H be the subgroup
of G of order n1. Also, let d be an inverse of n2 modulo n1.

Suppose that for a group element y chosen uniformly at random from G, we can find
a relation of the form

y =

l∏
j=1

¯̀sj
j

with probability σ, using at most τ arithmetic operations.
Then for a group element y′ chosen uniformly at random from H, we can find a

relation of the form

y′ =

l∏
j=1

(¯̀n2d
j)sj

with probability σ, using at most τ + χ arithmetic operations, where χ is the number of
arithmetic operations required for an exponentation in G.

30

Proof. If y′ has been chosen uniformly at random from H, and b has been chosen
uniformly at random from {0, 1, . . . , n2 − 1}, then

y = y′gn1b

has been chosen uniformly at random from G.
By assumption, with probability σ we can find s1, s2, . . . , sl such that

y =

l∏
j=1

¯̀sj
j . (9)

Then

y′ = yn2d =

l∏
j=1

¯̀sjn2d
j =

l∏
j=1

(¯̀n2d
j)sj .

We have a relation of the required form, and we succeed with probability σ.
Generating y requires χ arithmetic operations. Finding (9) requires τ arithmetic

operations.

This result says that if we can find relations in the big group, we can move that
relation into a subgroup. By Proposition 24 we can then compute discrete logarithms
in the subgroup. Theorem 8 now applies. (In fact, we can do even better by reusing
relations that we find in the big group for each of the subgroups, and not finding new
relations for each subgroup.)

Now we let G = Fp. We want a way to find relations of the form (8) for randomly
chosen group elements.

Let `1, `2, . . . , `l be the l smallest primes (listed in order, so that `1 = 2, `2 = 3,
etc.), and let ¯̀

1, ¯̀
2, . . . , ¯̀

l be the corresponding group elements in F∗p. Define the sets

P =


l∏

j=1

`
sj
j < p

∣∣∣∣∣∣ s1, s2, . . . , sl ≥ 0

 and P̄ = {k + 〈p〉 | k ∈ P}.

It is clear that for any y ∈ F∗p, we can choose a smallest non-negative coset representative

and test if y ∈ P̄ by repeated trial division.

e Exercise 55. Show that we can decide if a group element is in P̄ or not using at most
τ = bl + log2 pc integer divisions.

e Exercise 56. Show that we can use the trial division algorithm implied by the previous
exercise to find relations of the form (8) for a fraction σ = |P̄ |/(p − 1) of all elements
in F∗p using at most τ = bl + log2 pc arithmetic operations.

e Exercise 57. A group operation in F∗p requires two arithmetic operations (one multipli-
cation and one division). Use Proposition 2 to show that we can compute an exponen-
tiation (with an exponent smaller than the group order) in F∗p using at most 4 log2 p
arithmetic operations.

31

e Example 22. Consider p = 272003 and the subgroup of F∗p of order 307, generated by
g = 231904, and the group element x = 4644. We want to compute logg x. (Note that
p = 2 · 443 · 307 + 1.)

We find that h = 255754 has order 2 · 443 modulo p. We choose to use the small
primes 2, 3, 5, 7 and 11. There are 1647 integers between 1 and p who have no other
prime factors, so we expect to find the 6 relations we need after about 1000 tries. A
computer-aided search quickly finds:

g238x4h20 = 1089 = 32 · 112

g217x264h142 = 180075 = 3 · 52 · 74

g206x305h355 = 128 = 27

g259x261h464 = 26244 = 2238

g303x231h64 = 4158 = 2 · 33 · 7 · 11

g106x125h793 = 13122 = 2 · 38

We get the matrix

S =


0 2 0 0 2
0 1 2 4 0
7 0 0 0 0
2 8 0 0 0
1 3 0 1 1
1 8 0 0 0

 .

It is now easy to see that with α = (0, 0, 1,−7, 0, 7), we have αS = 0.
We quickly verify by checking that 128 · 26244−7 · 131227 = 1.
We then compute

logg x ≡ −
206− 7 · 259 + 7 · 106

305− 7 · 261 + 7 · 125
≡ 11 (mod 307).

For simplicity, we consider a single large prime divisor q of p− 1 such that q2 does
not divide p − 1. With the above results, Proposition 24 and Exercises 55 and 57 say
that we can compute logarithms modulo q using

σ−1(l + 1)(l + log2 p+ 8 log2 p) + (l + 1)3 + 2l + 3

arithmetic operations, where σ = |P̄ |/(p − 1). We expect l to be much larger than
log2 p, so we get an approximate cost

σ−1l2 + l3. (10)

It is now clear that while we can make the fraction σ large by making l large, that
will increase the cost of generating relations and may actually increase the total cost.
Making l too large may be counterproductive, and we need to find a good value.

32

We must estimate σ−1 = (p− 1)/|P | ≈ p/|P |. We begin by taking logarithms in the
equation

∏
j `
sj
j < p and observing that the number of integers in P is the same as the

number of non-negative integer solutions to the inequality

l∑
j=1

sj log `j < log p.

Observing that most of our small primes have approximately the same logarithm, we
can instead count the number of non-negative integer solutions to the inequality

l∑
j=1

sj <
log p

log `l
.

Letting u = log p/ log `l, we get that

|P | ≈
(
buc+ l

l

)
=

(buc+ l)!

buc!l!
.

Taking logarithms, using Stirling’s approximation and replacing buc by u, we get that

log |P | ≈ (u+ l) log(u+ l)− (u+ l)− (u log u− u)− (l log l − l).

If we additionally assume that u is much smaller than l, we get

log |P | ≈ (u+ l) log l − u− l − u log u+ u− l log l + l = u log l − u log u.

The prime number theorem says that l ≈ `l/ log `l, so we get that

log σ−1 ≈ log p− log |P | ≈ u log `l − u log l + u log u

= u log `l − u log `l + u log log `l + u log log p− u log log `l

=
log p

log `l
log log p.

We get the rough estimate

σ−1 ≈ exp

(
log p

log `l
log log p

)
.

The prime number theorem says that

l ≈ `l/ log `l = exp (log `l − log log `l) ,

which means that (10) gives us an approximate cost of

exp

(
log p log log p

log `l
+ 2 log `l − 2 log log `l

)
+ exp (3 log `l − 3 log log `l) .

33

Ignoring the log log `l terms, we want to choose `l so as to make the sum

exp

(
log p log log p

log `l
+ 2 log `l

)
+ exp (3 log `l)

as small as possible. The sum is dominated by the exponential with the biggest expo-
nent. The second exponent increases monotonously with increasing `l. Since the first
exponent has its minimum

√
8
√

log p log log p at

log `l =
√

log p log log p/2

where the second exponent takes the smaller value
√

9/2
√

log p log log p, we see that
taking this value for log `l should approximate a minimum. In particular, by using this
value we should be able to compute discrete logarithms using approximately

exp
(√

8
√

log p log log p
)

arithmetic operations.
We have arrived at the following requirement.

Requirement 6. If G is any subgroup of F∗p, then exp(
√

8 log p log log p) arithmetic
operations must be an infeasible computation.

Today, we have much better algorithms for computing discrete logarithms in finite
fields. While we shall not study these algorithms, we note that the above requirement
is not the final requirement.

e Exercise 58. Suppose we want to compute a number (say hundreds) of discrete log-
arithms in a prime-order subgroup of F∗p. That is, suppose we have x1, . . . , xν ∈ G,
G ⊆ Fp, and want to compute logg x1, . . . , logg xν .

First, show that given ν relations

gvi
∏
i

xui
i = 1,

you can compute the discrete logarithms. Next, show that the above index calculus
algorithms can be adapted to find such relations. Finally, show that this computation
is much faster than computing the ν discrete logarithms separately.

Hint: You may make optimistic assumptions about linear independence when needed.

6 Elliptic Curves

Elliptic curves have been studied for a long time by number theorists and a rich and
varied theory has been developed. We are interested in elliptic curves because the
points on an elliptic curve over a finite field forms a group that is suitable for use in
cryptography.

From a mathematical point of view, studying elliptic curves over any field is inter-
esting. From a cryptographic point of view, our groups come from elliptic curves over

34

Figure 3: Four cubic curves. From left to right: Y 2 = X3− 6X − 1, Y 2 = X3− 2X + 2,
Y 2 = X3 and Y 2 = X3 − 3

4X + 1
4 .

finite fields, which must therefore be our main interest. To simplify our presentation, we
shall restrict ourselves to elliptic curves of a special form defined over prime fields. We
note that essentially all of the theory we discuss works equally well for elliptic curves
defined over other fields, though sometimes with minor modifications.

Even though we only discuss curves over finite prime fields, it is still convenient to
use drawings of curves over the real numbers to illustrate ideas.

We begin by considering the algebraic curve C defined over the field Fp, p a large
prime, given by the polynomial equation

Y 2 = X3 +AX +B, A,B ∈ Fp. (11)

The points on the curve are the points in the plane that satisfy the curve equation.
However, we cannot restrict the coordinates of the points to be elements of Fp. We fix
an algebraic closure F̄ of Fp and consider the points on the curve to be all the pairs
(x, y) ∈ F̄2 satisfying the curve equation.

A point on a curve is Fp-rational (or just rational) if its coordinates lie in Fp.
e Example 23. Consider the curve over F13 defined by Y 2 = X3 +X + 2. The points in

F2
p satisfying the equation are

(1, 2), (1, 11), (2, 5), (2, 8), (6, 4), (6, 9), (7, 1), (7, 12), (9, 5), (9, 8), (12, 0).

Observe that 11 = −2, 8 = −5, etc.

A curve is smooth if its partial derivatives never vanish all at the same time for
points on the curve. Figure 3 shows four cubic curves, of which two are smooth.

e Example 24. Consider the curve over F13 defined by Y 2 = X3 +X+ 3. The point (2, 0)
is on the curve. Since both partial derivatives vanish at (2, 0), there is no well-defined
tangent at that point.

The slope of a line passing through two distinct points on the curve is well-defined.
Over a finite field, the tangent line no longer has a natural definition in terms of limits,
but we can still use formal partial derivatives to define tangent lines.

e Exercise 59. Show that a smooth curve has a well-defined, unique tangent line at any
point on the curve.

35

Figure 4: Intersection of lines and elliptic curves. From left to right: three distinct
intersection points, possibly with complex Y -coordinates; tangent lines with one or
two distinct intersection points; two distinct intersection points, possibly with complex
Y -coordinates; and a tangent line with one intersection point.

Proposition 26. An algebraic curve defined by (11) is smooth if and only if the poly-
nomial X3 +AX +B has three distinct zeros.

Proof. We first compute the partial derivative with respect to Y to get

2Y = 0.

Any point on the curve where both partial derivatives vanish must therefore have Y -
coordinate 0.

It follows that the X-coordinate of a point where both partial derivatives vanish
will be a zero of both X3 + AX + B and its derivative 3X2 + A. The only way a
polynomial and its derivative can have a common zero is if the polynomial has a double
or triple zero. We may conclude that the curve is smooth if and only if the polynomial
X3 +AX +B has three distinct zeros.

Fact 27. A polynomial aX3 + bX2 + cX + d has three distinct zeros if and only if its
discriminant b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd is non-zero.

In general, an elliptic curve is a smooth cubic curve with one chosen point, but we
shall restrict attention to curves of the form we have already discussed.

Definition 7. An elliptic curve E over the field Fp is a cubic curve over Fp given by
(11) with 4A3 + 27B2 6= 0.

e Example 25. Over F13, it is easy to verify that the curve defined by Y 2 = X3 +X + 2
is an elliptic curve, while the curve defined by Y 2 = X3 +X + 3 is not.

We need to study the points of intersection between elliptic curves and straight lines.
The situation can be neatly illustrated over the real numbers as in Figure 4. We see
that lines can intersect the curve in zero, one, two or three points. This is untidy, and
we want a better understanding of what is going on.

Proposition 28. Let E be an elliptic curve defined by Y 2 = X3 +AX +B.
If L is a line defined by Y = αX + β, then the zeros of the polynomial

X3 − α2X2 + (A− 2αβ)X +B − β2 (12)

36

are the X-coordinates of the points of intersection.
If L is a line defined by X = β, then the zeros of the polynomial

Y 2 − β3 −Aβ −B (13)

are the Y -coordinates of the points of intersection.

Proof. We begin with a line L of the form Y = αX + β. We want to compute the
intersection of this line and an elliptic curve defined by Y 2 = X3 +AX +B. Using the
line equation to eliminate Y from the curve equation, we find

α2X2 + 2αβX + β2 = X3 +AX +B.

The solutions to this equation corresponds to the zeros of the cubic polynomial (12). If
x is any zero of this polynomial, we know that the point (x, αx+ β) is on both the line
and the curve and therefore a point of intersection.

Next we consider a line L′ of the form X = β. This time, we use the line equation
to eliminate X from the curve equation and get

Y 2 = β3 +Aβ +B.

The solutions to this equation corresponds to the zeros of the quadratic polynomial
(13). If y is any zero of this polynomial, we know that the point (β, y) is on both the
line and the curve, and therefore a point of intersection.

e Example 26. Consider the elliptic curve over F13 defined by Y 2 = X3 +X + 2, and the
six lines X = 2, X = 3, X = 12, Y = X + 3 and Y = X + 4 and Y = 2X.

The line X = 2 gives us the equation Y 2 = 23+2+2 = 12. We see that 52 = 25 = 12,
so the zeros of this polynomial equation are Y = ±5, giving us the intersection points
(2, 5) and (2,−5) = (2, 8).

The line X = 3 gives us the equation Y 2 = 33 + 3 + 2 = 6, but 6 is not a square
modulo 13, so the line does not intersect the curve in any rational points.

The line X = 12 gives us the equation Y 2 = 123 + 12 + 2 = 0, so 0 is a double zero
of the polynomial. This gives us a single intersection point (12, 0).

The line Y = X+ 3 gives us the equation X2 + 6X+ 9 = X3 +X+ 2, or X3−X2−
5X − 7 = 0. A quick search tells us that the left hand side is (X − 2)(X − 6)2, which
means that there are two intersection points, (2, 5) and (6, 9), where (6, 9) is a double
zero and the line is a tangent.

The line Y = X + 4 gives us the equation X2 + 8X + 3 = X3 + X + 2, or X3 −
X2− 7X − 1 = 0. A quick computation tells us that this equation has no rational zeros
(solutions in Fp).

The line Y = 2X gives us the equation 4X2 = X3 +X+2, or X3−4X2 +X+2 = 0.
A quick search tells us that the left hand side factors as (X − 1)(X − 7)(X − 9), which
gives us the intersection points (1, 2), (7, 1) and (9, 5).

Fact 29. Let F be a field and let F̄ be an algebraic closure of F. Counting multiplicities,
a polynomial of degree d over F has d zeros in F̄.

37

Definition 8. Let E be an elliptic curve, P a point on E and L a line intersecting E in
P . The multiplicity of the point of intersection P is the multiplicity of the corresponding
zero of the polynomials in (12) or (13).

e Exercise* 60. Let E be an elliptic curve, P a point on E and L a line intersecting E
in P . Show that the multiplicity of the intersection point is greater than 1 if and only
if L is tangent to E at P .

e Exercise 61. Let E be an elliptic curve. Show that E has 0, 1 or 3 rational points with
vertical tangents.

e Example 27. The elliptic curve over F13 defined by Y 2 = X3 + X + 2 has just one
rational point with vertical tangent, namely (12, 0).

The elliptic curve over F13 defined by Y 2 = X3 + 2X + 6 has three rational points
with vertical tangents, namely (3, 0), (4, 0) and (6, 0).

The elliptic curve over F13 defined by Y 2 = X3 +2X+4 has no rational points with
vertical tangents.

Returning to Figure 4, in the left drawing we see two lines, one of which clearly
has three real points of intersection. In this case, the polynomial (12) has three real
solutions. The second line seemingly has only one point of intersection. In this case, (12)
has only one real zero. But it also has two complex zeros, and these zeros correspond to
points of intersection, points with complex coordinates. Over a general field, all three
points of intersection may have X-coordinates in an extension field.

The second drawing in Figure 4 again has two lines, one of which has two points
of intersection and one which has a single point of intersection. The corresponding
cubic polynomial (12) does not have complex zeros, but double or triple zeros. The
intersection point has multiplicity equal to the multiplicity of the corresponding zero.
We do not have three distinct points of intersection, but if we count multiplicity, we
have three points of intersection.

In the third drawing in Figure 4, by considering complex coordinates, we see that
both lines have two distinct points of intersection. In the fourth drawing, by count-
ing multiplicity, we get two points of intersection. But we never get three points of
intersection, because (13) is a polynomial of degree two.

It is very inconvenient that vertical lines have only two points of intersection, while
non-vertical lines have three points of intersection. It would have been nice if every
line intersected the curve in three points, counting multiplicity. The proper solution to
this issue lies in projective geometry, but in this text we shall choose a much simpler
solution.

We declare that one extra point O exists with the following properties:

O-1. The point O does not lie in the plane (hence has no coordinates), but lies on the
curve and is a rational point.

O-2. Any line of the form X = β intersects the elliptic curve in O with multiplicity
one. No line of the form Y = αX + β intersects the curve in O.

O-3. The curve has a tangent line in O, and that line intersects the curve only in O,
with multiplicity three.

38

The special point O is often called the point at infinity.
As we saw in the discussion of Figure 4, considering coordinates in an algebraic

closure and the notion of multiplicity somewhat simplifies the situation with regard
to intersection points. Now that we have introduced the point at infinity, we get the
following nice results.

Proposition 30. Let E be an elliptic curve defined over Fp, and let L be a line. Count-
ing multiplicities, L intersects E in exactly three points. If two of the intersection points
are rational, then the third point is also rational.

Proof. The first claim follows trivially from Proposition 28 and the properties of O.
If the two points are both O, then by O-2 and O-3 the line must be the tangent

line to E at O, which means that the third point of intersection is again O, which is
rational.

If only one point is O, then by O-2 the line takes the form X = β. By (13), the
other two points of intersection must be (β,±y) for some y ∈ F̄p. It is then clear that
either both or none of these points are rational.

Finally, suppose neither of the two rational points is O. We consider two cases. If
the line is of the form X = β, then by O-2 the third point of intersection is O, which is
rational.

Otherwise, the line is of the form Y = αX+β. If the line passes through two distinct
rational points, we know that α, β ∈ Fp. If the multiplicity of the intersection point is
2 or greater, Exercise 60 says that the line is a tangent, which means that α, β ∈ Fp.

This means that the polynomial (12) has coefficients in Fp. Furthermore, two of
its zeros lie in Fp, which means that the third zero also is in Fp. This means that the
X-coordinate of the third point of intersection lies in Fp, and since it lies on the line
Y = αX + β, the third point of intersection is rational.

Proposition 31. Let P,Q be points (not necessarily distinct) on an elliptic curve E.
Then there exists a unique line L and a unique point R such that P , Q and R are the
points of intersection of E and L.

Proof. If P = Q = O then O-2 and O-3 say that R = O.
If P and Q are distinct points and one of them is O, then the vertical line through

the other point is determined by that point. By Proposition 30 this line intersects the
curve in one more point, though not necessarily distinct.

If P and Q are distinct points and neither of them is O, the line through the points
is uniquely determined. By Proposition 30 this line intersects the curve in one more
point, though not necessarily distinct.

If P = Q 6= O, then the line we are looking for must be a tangent line. By Exercise 59
the tangent line is unique, and by Proposition 30 this line intersects the curve in one
more point, though not necessarily distinct.

e Example 28. Consider the elliptic curve over F13 defined by Y 2 = X3 +X + 2.
The points (1, 2) and (7, 1) both lie on the curve. The line Y = 2X is uniquely

determined by the two points. The line also intersects the curve in a third point (9, 5).

39

The point (6, 9) lies on the curve. The line Y = X + 3 is the unique tangent to the
curve at (6, 9). The line also intersects the curve in the point (2, 5).

The points O and (2, 5) both line on the curve. The line X = 2 is, by O-2, the
unique line determined by the two points. The line also intersects the curve in a third
point (2,−5).

We conclude this section by saying precisely what the points on an elliptic curve are.

Definition 9. The points on an elliptic curve E over Fp defined by

Y 2 = X3 +AX +B, 4A3 + 27B2 6= 0,

are the points with coordinates in the algebraic closure F̄ of Fp satisfying the curve
equation, plus the special point O:

E(F̄) = {(x, y) ∈ F̄2 | y2 = x3 +Ax+B} ∪ {O}.

The Fp-rational (or just rational) points on E are the points with coordinates in Fp,
plus the special point O:

E(Fp) = {(x, y) ∈ F2
p | y2 = x3 +Ax+B} ∪ {O}.

e Example 29. Consider the elliptic curve over F13 defined by Y 2 = X3 + X + 2. The
rational points on the curve are

(1, 2), (1, 11), (2, 5), (2, 8), (6, 4), (6, 9), (7, 1), (7, 12), (9, 5), (9, 8), (12, 0).

Except for O, this is exactly as in Example 23

Since the rational points on an elliptic curve will form a group that we will use for
cryptography, we are very interested in how many rational points there are on an elliptic
curve.

Fact 32 (Hasse’s theorem). Let E be an elliptic curve defined over Fp. The number of
rational points on E is

|E(Fp)| = p+ 1− t,

where |t| ≤ 2
√
p.

6.1 Group Operation

We are now ready to turn the set of points on an elliptic curve into a group. We begin
by defining a binary operation on the points of the elliptic curve, and then define the
actual group operation in terms of the binary operation.

Definition 10. Let E be an elliptic curve. We define two binary operations ∗ and +
on E as follows: P ∗Q is the unique point identified by Proposition 31, and P + Q =
(P ∗Q) ∗O.

40

P Q

P ∗Q

P +Q

P

P ∗P

P + P

Figure 5: The group operation on elliptic curves. Addition of distinct points is shown
on the left, point doubling is shown on the right.

e Example 30. Consider the elliptic curve over F13 defined by Y 2 = X3 +X + 2.
Since the unique line through (1, 2) and (7, 1) intersects the curve in a third point

(9, 5), we find that (1, 2) ∗(7, 1) = (9, 5).
The line through (9, 5) and O intersects the curve in (9,−5), so according to the

definition (1, 2) + (7, 1) = ((1, 2) ∗(7, 1)) ∗O = (9,−5).
The unique line through (6, 9) that is tangent to the curve intersects the curve in

the point (2, 5), so (6, 9) ∗(6, 9) = (2, 5).
The line through (2, 5) and O intersects the curve in (2,−5), so (6, 9) + (6, 9) =

(2,−5).
The unique line through (2, 5) and (2,−5) intersects the curve inO. The line through

O and O is the tangent at O, which intersects only there with multiplicity 3. In other
words, (2, 5) + (2,−5) = O.

We shall show that there exists an identity element for +, there exists inverses for
+ and that it is commutative. There are many ways to show that + is associative, but
they are either tedious or advanced, so we do not prove associativity.

e Exercise 62. Let E be an elliptic curve and let P,Q be points on E. Show that P ∗Q =
Q ∗P , and consequently that P +Q = Q+ P .

Proposition 33. Let E be an elliptic curve and let P be a point on E. Then P +O =
O + P = P .

Proof. First suppose P = O. By O-2 and O-3, we see that the third point of intersection
identified by Proposition 31 must be O. It follows that O∗O = O and that O+O = O.

Next, suppose P 6= O. By O-2 the line through O and P intersects the curve in
some point Q 6= O and P ∗O = Q. It then follows that the line through P and Q has
O as its third point of intersection, which means that P +O = P .

Proposition 34. Let E be an elliptic curve and let P = (x, y) be a point on E. Let
Q = (x,−y). Then Q is also on the curve, P ∗O = Q and P +Q = O.

Proof. It is immediately clear that if P is on the curve, then so is Q.

41

If y = 0, then P = Q and the tangent in that point is a vertical line, which intersects
the curve in O by O-2, so P ∗Q = O and P +Q = O.

If y 6= 0, the line through P and Q is vertical, so by O-2 intersects the curve in O.
It follows that P ∗Q = O, that P +Q = O and that P ∗O = Q.

Fact 35. Let E be an elliptic curve and let P,Q,R be points on E. Then (P +Q)+R =
P + (Q+R).

Theorem 36. Let E be an elliptic curve. The set of points on E is a commutative
group under +. The set of rational points is a subgroup.

Proof. The fact that the set of points is a group follows from Propositions 33 and 34
and Fact 35. Commutativity follows from Exercise 62.

That the rational points form a subgroup follows from Proposition 31.

We conclude this section by developing explicit formulas for computing P +Q.
By Proposition 33, if either point to be added is O, the answer is the other point.

Otherwise, we may assume that P = (x1, y1) and Q = (x2, y2).
By Proposition 34, if x1 = x2 and y1 = −y2, then the answer is O.
If the answer has not been found, we need to find the third point of intersection of

the line through P and Q. We begin by finding the slope α of the line. If x1 = x2, then
P = Q and we must use the tangent. The tangent line has slope

α =
3x21 +A

2y1
.

If x1 6= x2, then the slope is

α =
y2 − y1
x2 − x1

.

In either case, the line’s constant term is β = y1 − αx1.
The X-coordinates of the intersection points of this line and the elliptic curve are

zeros of (12). We know two of the zeros, namely x1 and x2, and we need to find
the third zero x3. The monic polynomial in (12) should be equal to the polynomial
(X − x1)(X − x2)(X − x3). Comparing the coefficients of the X2 term, we get that
−α2 = −x1 − x2 − x3, or

x3 = α2 − x1 − x2.

The Y -coordinate of the third point of intersection is αx3 + y1−αx1 = α(x3−x1) + y1.
By Proposition 34, the Y -coordinate of P +Q is the negative of this, which is

y3 = α(x1 − x3)− y1.

We summarize the above in the following result.

Proposition 37. Let E be an elliptic curve and P,Q be points on E.

• If P = O, then P +Q = Q.

• If Q = O, then P +Q = P .

42

If neither point is O, then let P = (x1, y1) and Q = (x2, y2).

• If x1 = x2 and y1 = −y2, then P +Q = O.

• Otherwise, P +Q = (x3, y3) with

x3 = α2 − x1 − x2 and y3 = α(x1 − x3)− y1,

where

α =

{
3x2

1+A
2y1

x1 = x2,
y2−y1
x2−x1

x1 6= x2.

e Example 31. Consider the elliptic curve over F13 defined by Y 2 = X3 +X + 2.
We want to add (1, 2) and (7, 1). We compute the slope as −1/6 = 2, and then

x3 = 22 − 1− 7 = 9 and y3 = 2(1− 9)− 2 = 8, that is

(1, 2) + (7, 1) = (9,−5).

We want to add (6, 9) to itself (doubling). We compute the slope as (3·62+1)/(2·9) =
1, and then x3 = 12 − 6− 6 = 2 and y3 = 6− 2− 9 = −5, that is

(6, 9) + (6, 9) = (2,−5).

We conclude by noting that the exponentiation we have studied in Section 2 and 3
now corresponds to a point multiplication

aP = P + P + · · ·+ P︸ ︷︷ ︸
a terms

,

since the group of points on an elliptic curve is written additively instead of multiplica-
tively.

Even though the notation we have chosen for the elliptic curve group operation
suggests addition and not multiplication, we use the words from Definition 4 and say
that the discrete logarithm of a point Q to the base P is the smallest non-negative
integer a such that Q = aP . We write logP Q = a.

e Exercise 63. Redo Exercise 2 for point multiplications. Is anything different? What
about Exercise 4?

6.2 Finding Suitable Curves

We have shown that the points on an elliptic curve form a commutative group, and the
set of rational points is a finite commutative group. As we saw in Section 3, we need a
cyclic group whose order is divisible by a large prime.

e Exercise 64. Show that an elliptic curve has 0, 1 or 3 rational points of order 2.
Hint: Use Exercise 61.

43

e Exercise 65. Let E be the curve defined by Y 2 = X3 + 12 over the field F13. Show that
E is not cyclic.

In general, the group of rational points is not cyclic, but it must contain a large
cyclic subgroup.

Fact 38. Let E be an elliptic curve defined over Fp. Then there exists n1, n2, where n1
divides both n2 and p− 1, such that

E(Fp) ' Z+
n1
× Z+

n2
.

But a large cyclic subgroup is not sufficient for our purposes, we also need to know
that its order is divisible by a large prime.

Proposition 39. Let p be a prime congruent to 2 modulo 3, and let E be an elliptic
curve defined by Y 2 = X3 +B over Fp. Then |E(Fp)| = p+ 1.

Proof. Since p ≡ 2 (mod 3), 3 will be invertible modulo p− 1. Then the map ζ 7→ ζ3 is
invertible. If k is an inverse of 3 modulo p− 1, then ζ 7→ ζk is the inverse map.

This means that for any value γ, the equation γ = X3 +B has a unique solution in
Fp, and that solution is (γ −B)k. We conclude that for every possible Y -coordinate y,

((y2 −B)k, y)

is a point on the curve, and it is the only point with that Y -coordinate. There are p
such points and these are all the points with coordinates, which when counting O makes
for p+ 1 points on the curve.

Unfortunately, curves of the form Y 2 = X3 + B are so-called supersingular, which
for reasons we shall not consider are less suitable for our purposes than ordinary elliptic
curves.

For a randomly chosen curve, the number of points is close to evenly distributed
within the range given by Hasse’s theorem. Since a curve with a prime (or close to
prime) number of points would be reasonable, if we can determine the number of rational
points on a curve, we could easily find a suitable curve.

We shall briefly sketch Schoof’s algorithm for counting points on an elliptic curve.
The story begins with the Frobenius map. Let E be an elliptic curve defined over Fp
and define a map φ : E(F̄)→ E(F̄) by

φ(P) =

{
O P = O, and

(xp, yp) P = (x, y).

e Exercise 66. Show that φ is a well-defined map.

e Exercise 67. Show that φ is a group homomorphism.

The fixed field of the map F̄ → F̄ given by α 7→ αp is Fp. It follows that the set of
fixed points of φ is the set of rational points on E.

Hasse’s theorem (Fact 32) says that there is a number t such that the number of
rational points is p + 1 − t. It turns out that this number is closely related to the
Frobenius map.

44

Fact 40. Let E be an elliptic curve defined over Fp, and let t be the integer such that
the number of rational points on E is p+ 1− t. Then

φ2(P)− tφ(P) + pP = O (14)

for any point P ∈ E(F̄).

It turns out that the action of the Frobenius map on points of small order is impor-
tant.

Definition 11. Let ` be an integer greater than 0. The set of `-torsion points is

E[`] = {P ∈ E(F̄) | `P = O}.

If P ∈ E[`], then (14) becomes

φ2(P)− t`φ(P) + pP = O,

where t` = t mod `. Reordering terms, we get

φ2(P) + pP = t`φ(P).

This is nothing more than a discrete logarithm problem, but note that the subgroup
generated by φ(P) has order `. If ` is not too big and computations on `-torsion points
are not too expensive, it will be possible to recover t`.

Note that t ≡ t` (mod `). If we can recover t` for many different, small primes `
whose product is greater than 4

√
p, we can recover t and thereby the group order.

It still remains to show that we can find `-torsion points and compute with them.

Fact 41. Let E be an elliptic curve. There exists an efficiently computable sequence of
polynomials (called division polynomials) ψ1(X,Y), ψ2(X,Y), . . . such that

• for any P = (x, y) ∈ E(F̄), ψ`(x, y) = 0 if and only if P ∈ E[`]; and

• for odd `, ψ`(X,Y) is a polynomial in X only, and has degree `2 − 1.

Fact 42. Let E be an elliptic curve over Fp. If p does not divide `, then E[`] ' Z+
` ×Z

+
` .

We now have a polynomial that characterizes all the X-coordinates of the `-torsion
points. Suppose that ` is an odd prime and smaller than p.

We can decide if ψ`(X) has rational zeros by computing gcd(Xp − X,ψ`(X)). It
must either have 0, (` − 1)/2 or (`2 − 1)/2 rational zeros. Since each X-coordinate
gives rise to two points, for the latter two cases we immediately know that p+ 1− t is
congruent to 0 modulo ` or `2, respectively.

More usually, ψ`(X) will not have any rational zeros. But it will usually not be irre-
ducible. Let f(X) be an irreducible factor of ψ`(X) of degree d. Then by constructing
the extension field

Fpd ' Fp[X]/〈f(X)〉,

45

we know that the element x ∈ Fpd corresponding to X + 〈f(X)〉 is a zero of f(X) and
hence of ψ`(X) and hence the X-coordinate of an `-torsion point.

We now have the X-coordinate of an `-torsion point, but we do not have a Y -
coordinate. We can find a Y -coordinate by computing a square root of x3 + Ax + B.
Note that sometimes, we have to go to yet another field extension to find a square root,
but this is unproblematic.

Factoring ψ`(X) is possible, but costly. Instead of finding an irreducible factor of
ψ`(X), we can compute in the factor ring

Fp[X]/〈ψ`(X)〉.

If ψ`(X) factors into irreducibles as f1(X)f2(X) · · · fl(X), then

Fp[X]/〈ψ`(X)〉 ' Fp[X]/〈f1(X)〉 × · · · × Fp[X]/〈fl(X)〉.

Computing in this ring is just a simultaneous computation in every possible field exten-
sion where we could have found X-coordinates for `-torsion points.

Since our computations involve divisions, and our ring contains non-invertible ele-
ments, the computation may not be possible to complete. However, when we cannot
find an inverse of some element, we find a divisor of ψ`(X). If this happens, we simply
restart the computation using one of the factors of ψ`(X). Eventually, we must either
complete the computation or find an irreducible factor of ψ`(X).

Going into an extension of these rings to find the Y -coordinate of the `-points is
also unproblematic.

The above algorithm sketch works, but is very inefficient and mostly impractical. A
more careful algorithm will work significantly faster.

The most important improvement to the algorithm is that for some small primes
it is relatively easy to find an irreducible factor of ψ`(X). Since this factor has much
smaller degree, we can work in a small field extension where arithmetic is much faster
than in Fp[X]/〈ψ`(X)〉. The resulting algorithm is significantly faster.

The upshot is that there are feasible algorithms that are able to compute the number
of points on an elliptic curve. We will not have to count the number of points of many
curves until we find one with a suitable number of points.

6.3 Discrete Logarithms

In the group F∗p the group operation requires two arithmetic operations (one integer
multiplication and one integer division), while finding inverses is much more costly
(using the extended Euclidian algorithm). Note that division in a finite field is usually
done by multiplying with inverses.

In the group E(Fp), Proposition 37 says that adding distinct non-inverse points
requires one inversion, three multiplications and six additions. Adding a point to itself
requires one inversion, two multiplications by small constants, four multiplications, one
addition of a constant and four additions.

At first glance, it would seem odd to consider the elliptic curve group, since the
group operation there is much more complicated than the group operation in F∗p. But

46

there is one more variable to consider: the size of the underlying field. Recall that we
choose the size of the group such that the discrete logarithm problem in the group is
sufficiently difficult.

The methods in Section 3 work for essentially any group. For F∗p we also have index
calculus methods, which become significantly better than the methods in Section 3 as
p grows. For most elliptic curves, there are no equivalents of the small primes, so there
are no obvious, useful index calculus methods.

We briefly summarize the state of the art in elliptic curve discrete logarithm com-
putations.

• For so-called anomalous elliptic curves, curves defined over Fp with p elements,
there are very efficient algorithms for computing discrete logarithms. These curves
are completely unsuitable for use in cryptography.

• For certain subgroups G,H of E(F̄), there are so-called bilinear maps e : G×H →
F∗pd satisfying

e(aP, bQ) = e(P,Q)ab.

When the field extension degree d is small, these maps can be computed easily
and can sometimes be used to move a discrete logarithm problem from an elliptic
curve into a finite field. Since index calculus methods can be used in finite fields,
curves with low extension degree must be defined over larger finite fields, making
arithmetic slower.

So-called supersingular curves is one class of curves with very low extension degree.

Note that bilinear maps can sometimes be used constructively in cryptography.
But unless we need easily computable bilinear maps, curves with such maps are
not useful for cryptography.

• For many other small families of elliptic curves, there are algorithms capable of
computing discrete logarithms faster than the methods from Section 3.

For most elliptic curves, the best algorithms for computing discrete logarithms are
those from Section 3. Compared to F∗p, our elliptic curves can therefore be defined over
much smaller fields where arithmetic is much faster, so even if we have to do more
arithmetic operations, each group operation may be faster.

We should mention that elliptic curves over non-prime finite fields have been studied
extensively. In certain cases, such fields may be more convenient than prime fields, but
there have been many more advances in computing discrete logarithms for such curves.
Usually, the advantage gained is outweighed by the uncertainty.

7 Active Attacks

The only attackers we have considered so far are eavesdroppers. For some communica-
tions channels, this is correct. But for most channels in use today, an attacker that can
eavesdrop can also tamper with communications.

47

Alice

a
r← {0, 1, . . . , n− 1}

x← ga

— wait for u —
zA ← ua

Eve

r
r← {0, 1, . . . , n− 1}

u← gr

— wait for y —
zA ← xr, zB ← yr

Bob

b
r← {0, 1, . . . , n− 1}

y ← gb

zB ← ub

x u

yu

Figure 6: A man-in-the-middle attack on the Diffie-Hellman protocol, where Eve estab-
lishes separate shared secrets with Alice and Bob, who do not notice the attack.

As we see in Figure 6, Diffie-Hellman on its own will not be secure in practice. We
shall consider how Diffie-Hellman can be secured later.

48

	Introduction
	The Diffie-Hellman Protocol
	Discrete Logarithms
	An Unsuitable Group
	Pohlig-Hellman I
	Pohlig-Hellman II
	Shank's Baby-step Giant-step
	Pollard's rho

	Primality Testing
	Fermat's Test
	Soloway-Strassen Test

	Finite Fields
	Group Operation
	Finding Suitable Primes
	Index Calculus

	Elliptic Curves
	Group Operation
	Finding Suitable Curves
	Discrete Logarithms

	Active Attacks

