
A Brief Introduction to Symmetric Cryptography

KG

October 24, 2019

Contents

1 Introduction 2

2 Basic Definitions 2

3 Confidentiality Against Eavesdroppers 3
3.1 Shift Cipher . 3

3.1.1 Attack: Exhaustive Search . 4
3.2 Affine Cipher . 5

3.2.1 Attack: Known Plaintext . 5
3.3 Substitution Cipher . 6

3.3.1 Attack: Frequency Analysis . 6
3.4 Towards Block Ciphers . 7

3.4.1 Attack: Distinguishing . 9
3.5 Block Ciphers . 9

3.5.1 Sketch: Feistel Ciphers . 10
3.5.2 Practical: Padding . 12
3.5.3 Attack: Block Repetitions . 12

3.6 A Correct Use of a Block Cipher . 13
3.7 Vigenère Cipher . 14

3.7.1 Attack: Frequency Analysis II 15
3.8 One Time Pad . 16
3.9 Stream Ciphers . 18

3.9.1 Key Stream Generators from Block Ciphers 19

4 Integrity 19
4.1 Polynomial evaluation MACs . 20
4.2 Block-cipher-based MACs . 21

5 Confidentiality and Integrity 22

1

1 Introduction

In this note, we consider the following problem. Alice wants to send messages to Bob via
some communications channel. Eve has access to the channel and she may eavesdrop
on and possibly tamper with anything sent over the channel.

Alice does not want Eve to be able to eavesdrop on her messages. She wants to
communicate confidentially. Also, when Bob receives a message that looks like it came
from Alice, then Bob wants to be sure that Alice really sent the message and that Eve
did not tamper with it. Alice and Bob want integrity.

Alice and Bob share a secret, called the key. Cryptography where the sender and the
receiver (the honest users) have the same knowledge is called symmetric cryptography,
where the word symmetry refers to the symmetry of knowledge.

We define what a symmetric cryptosystem is and what the security requirements are
for such cryptosystems in Section 2.

To illustrate standard attacks, it is useful to study some historic cryptosystems
and how those systems can be attacked. This is done in Section 3, which alternates
between discussing historical ciphers and discussing interesting attacks that apply to
the historical ciphers. (Note that Section 3 is no history of cryptography.)

Section 3 contains a few constructions that provide confidentiality against eavesdrop-
pers. These constructions do not provide integrity, nor do they provide confidentiality
if Eve is willing to tamper with ciphertexts.

The main tool for providing integrity is discussed in Section 4. How to combine the
constructions provided in Sections 3 and 4 into cryptosystems providing both integrity
and confidentiality even when Eve tampers with the ciphertexts is discussed in Section 5.

This text is intended for a reader that is familiar with mathematical language, basic
algebra (groups, rings, fields, linear algebra and polynomials), elementary probability
theory and elementary computer science (algorithms).

This text is very informal. Every concept and result mentioned in the text can be
made precise, but the technical details are out of scope for this text.

While modern high-level constructions are discussed in this note, low-level construc-
tions are out of scope. This explains why this note defines what a block cipher is and
gives an informal explanation of what it means for a block cipher to be secure, but does
not contain a single example of a modern block cipher.

Another topic that is out of scope is proving the security of the modern constructions
discussed. We only include proofs for information theoretically secure constructions.

This text uses colour to indicate who is supposed to know what. Red denotes secret
information (typically keys) known only by Alice and Bob. Green denotes information
that Alice and Bob want to protect, typically messages. Blue denotes information that
the eavesdropper will see.

2 Basic Definitions

We begin with the definition of a symmetric cryptosystem and what it means for a
cryptosystem to be secure.

2

d Definition 1. A symmetric cryptosystem consists of

• a set K of keys;

• a set P of plaintexts;

• a set C of ciphertexts;

• an encryption algorithm E that on input of a key and a plaintext outputs a ci-
phertext; and

• a decryption algorithm D that on input of a key and a ciphertext outputs either
a plaintext or the special symbol ⊥ (indicating an invalid ciphertext).

For any key k and any plaintext m, we have that

D(k, E(k,m)) = m.

The set P will usually be a set of finite sequences of letters from an alphabet.
We shall assume that the key Alice and Bob share has been chosen uniformly at

random from the set of keys.

3 Confidentiality Against Eavesdroppers

In this section we shall consider the situation where Eve is eavesdropping on Alice and
Bob. Eve’s goal is to understand what Alice is saying to Bob.

We shall briefly discuss some historic cryptosystems. We do this to give a gentle in-
troduction to the basic concepts in cryptograpy and provide some insight into important
attack strategies.

The presentation in this section alternates between describing a cryptosystem and
describing how to attack that cryptosystem, until we reach systems that will provide
confidentiality.

Informally: A symmetric cryptosystem provides confidentiality if it is
– without knowledge of the key – hard to learn anything at all about the
decryption of a ciphertext from the ciphertext itself, except possibly the
length of the decryption.

3.1 Shift Cipher

The shift cipher is also known as the Cæsar cipher.
Suppose first that we give our alphabet G some group structure. There is a natural

bijection between the English alphabet {a,b,c, . . . , z} and the group Z+
26, given by

0 ↔ a, 1 ↔ b, etc. We add f and g by applying the bijection to get 5 and 6, adding
them to 11, and then applying the inverse bijection to get l.

The plaintext m is a sequence of letters m1m2 . . .mL from the alphabet. The key is
an element k from G. We encrypt the message by adding the key to each letter, that

3

is, the ith ciphertext letter is

ci = mi + k, 1 ≤ i ≤ L. (1)

The ciphertext c is the sequence of letters c1c2 . . . cL.
To decrypt a ciphertext c = c1 . . . cL, we subtract the key from each ciphertext letter,

that is, the ith plaintext letter is

mi = ci − k, 1 ≤ i ≤ L.

e Exercise 1. The above is an informal description. Write down carefully what the
three sets K, P and C are, and implement the two algorithms E and D. Show that
(K,P, C, E ,D) is a symmetric cryptosystem.

e Exercise 2. How many different keys are there for the shift cipher when the alphabet
has 26 elements?

e Example 1. If we want to encrypt baboonsarefunny using the shift cipher with the
key k = d (d corresponds to the number 3), we get the following computations:

b

e

+d

a

d

+d

b

e

+d

o

r

+d

o

r

+d

n

q

+d

s

v

+d

a

d

+d

r

u

+d

e

h

+d

f

i

+d

u

x

+d

n

q

+d

n

q

+d

y

b

+d

The ciphertext is then ederrqvduhixqqb.

3.1.1 Attack: Exhaustive Search

The easiest attack on the shift cipher is an exhaustive search for the key, or a brute force
attack. The two assumptions required for this attack is that only one key will give a
reasonable decryption, and that we will be able to recognize that decryption. Both of
these assumptions are almost always true.

If there are few keys, we can decrypt with all possible keys in reasonable time. The
correct key will be the one that gives a reasonable decryption.

e Exercise 3. Find all the possible decryptions of hghuut. How many are English words?
What about the possible decryptions of mbq?

e Exercise (for groups) 4. Choose a key for the Shift cipher at random and encrypt some
message. Give the ciphertext to someone else in the group and have them decrypt it
without knowing the key.

4

3.2 Affine Cipher

Now we give our alphabet R a ring structure, say like Z26. We add as before. We
multiply f and g by applying the bijection to get 5 and 6, multiplying them to get 30
which is 4 modulo 26, and then applying the inverse bijection to get e.

The plaintext m is a sequence of letters m1m2 . . .mL from the alphabet. The key
is a pair (k1, k2) of ring elements, the first of which must be invertible. We encrypt the
message letterwise using the formula

ci = k1mi + k2, 1 ≤ i ≤ L. (2)

The ciphertext c is the sequence of letters c1c2 . . . cL.
To decrypt a ciphertext c = c1 . . . cL, we compute the ith plaintext letter using the

formulas
mi = k−11 (ci − k2), 1 ≤ i ≤ L.

e Exercise 5. The above is an informal description. Write down carefully what the three
sets K, P, C are, and implement the two algorithms E and D. Show that (K,P, C, E ,D)
is a symmetric cryptosystem.

e Exercise 6. How many different keys are there for the affine cipher when the alphabet
has 26 elements?

3.2.1 Attack: Known Plaintext

Suppose Eve knows that Alice always begins her messages with hi. One ciphertext
starts with the letters ub. When the attacker knows the plaintext corresponding to a
piece of ciphertext, that is called known plaintext.

Eve knows that Alice used the affine cipher, which means that equation (2) was used
to encrypt h to u and i to b. She gets the following two equations:

u = k1h + k2,

b = k1i + k2.
(3)

This is a linear system of equations with two equations and two unknowns. As long as
the difference h − i is invertible in the ring (which it is), we can solve the system and
recover the key (k1, k2).

e Exercise 7. Solve the linear system of equations given in (3) to find the key.

e Exercise (for groups) 8. Choose a key for the affine cipher at random and encrypt some
message. Give the ciphertext along with some known plaintext to someone else in the
group and have them decrypt it without knowing the key.

e Exercise 9. Develop a similar known plaintext attack for the Shift cipher from Sec-
tion 3.1.

5

3.3 Substitution Cipher

The formulas (1) and (2) define bijections on the alphabet. We can generalize these
schemes by using any bijection or permutation on our alphabet. Let our alphabet be a
set S.

The plaintext m is a sequence of letters m1m2 . . .mL from the alphabet. The key
is a permutation π on S. We encrypt the message letterwise using the formula

ci = π(mi), 1 ≤ i ≤ L. (4)

The ciphertext c is the sequence of letters c1c2 . . . cL.
To decrypt a ciphertext c = c1 . . . cL, we compute the ith plaintext letter using the

formula
mi = π−1(ci), 1 ≤ i ≤ L.

e Exercise 10. The above is an informal description. Write down carefully what the three
sets K, P, C are, and implement two algorithms E and D. Show that (K,P, C, E ,D) is
a symmetric cryptosystem.

e Exercise 11. How many different keys are there for the substitution cipher when the
alphabet has 26 elements?

e Exercise 12. Explain how we can recover part of the key (a partial key) from known
plaintext, but not necessarily the full key.

3.3.1 Attack: Frequency Analysis

Known plaintext will reveal part of the key. But there are stronger attacks on the
substitution cipher, based on the number of times the various ciphertext letters appear.

If the permutation takes the plaintext letter a to the ciphertext letter z, the number
of z’s in the ciphertext will be the same as the number of a’s in the plaintext. This
means that the relative frequencies of the ciphertext letters will be the same as the
relative frequencies of the plaintext letters, up to permutation.

For most long English texts, the relative frequency of the various letters is constant.
This means that for encryptions of long English texts, the relative frequencies of ci-
phertext letters is a simple permutation of the relative frequencies of letters in English
text. It will be a simple matter of matching plaintext letters and ciphertext letters and
thereby recovering the key and thus the plaintext.

For English texts of moderate length, the relative frequencies of the less common
letters will vary a lot, and reliable matching of plaintext letters to ciphertext letters will
be impossible. However, some letters, e in particular, are so common in English that
they will usually be the most common letters, even for fairly short texts.

e Exercise 13. Gather a collection of English texts of varying topic and length. Compute
the frequency distributions. Use these distributions to estimate how long a text must
be before we can expect to identify with reasonable certainty (a) e, (b) the five most
frequent letters, and (c) the ten most frequent letters.

6

This means that even though we cannot reliably match every plaintext letter to
every ciphertext letter, we can match a few plaintext letters to a few ciphertext letters.
This gives us a partial key and a partial decryption.

The next step is to pretend that this partial decryption is a crossword puzzle, and
guess some plaintext words that fit with the partial decryption. We then treat these
guesses as known plaintext and recover more of the key. This gives us a better partial
decryption. If the new partial decryption does not make sense or is impossible, we
guessed wrong. We backtrack and guess again.

If, on the other hand, the new partial decryption makes sense, we probably guessed
right. Now we treat the new partial decryption as a crossword puzzle. We repeat this
process of guessing and verifying until we have the complete decryption.

e Exercise (for groups) 14. Choose a key for the substitution cipher and encrypt some
sufficiently long message. Give the ciphertext to someone else in the group and have
them decrypt it without knowing the key. You may also give them a small amount of
known plaintext.

3.4 Towards Block Ciphers

One approach to preventing frequency analysis is to use a permutation on pairs of
letters. That is, our permutation acts on the set S of all pairs of letters, not the set of
letters.

e Exercise 15. For a substitution cipher based on permutations on pairs, write down
carefully what the three sets K, P, C are, and implement the two algorithms E and D.
Show that (K,P, C, E ,D) is a symmetric cryptosystem.

Unfortunately, the frequencies of pairs are uneven, which means that frequency
analysis still works, although it is less effective. A permutation on triples of letters
would be better, but still not perfect.

Even better would be l-tuples. The number l is called the block length. Unfor-
tunately, representing a random permutation over a large set is impractical. (Merely
writing down a permutation requires at least log2(|S|l!) ≈ |S|l(ln |S|l − 1)/ ln 2 binary
digits.)

One idea would be to use not a random permutation, but instead use a random
member of some family of permutations.

The Hill cipher is an example of such a family of permutations, namely the permu-
tations described by invertible matrices. We give our alphabet R a ring structure, say
like Z26. We denote a l-tuple of letters as m ∈ Rl. An invertible l × l matrix K acts
upon such l-tuples in the obvious fashion, and we denote this action by Km.

The plaintext m is a sequence of l-tuples of letters m1m2 . . .mL. The key is an
invertible l × l matrix K. We encrypt the message using the formula

ci = Kmi, 1 ≤ i ≤ L.

The ciphertext c is the sequence of l-tuples c1c2 . . . cL.

7

To decrypt a ciphertext c = c1 . . . cL, we compute the ith plaintext tuple using the
formula

mi = K−1ci, 1 ≤ i ≤ L.

e Exercise 16. The above is an informal description. Write down carefully what the three
sets K, P, C are, and implement the two algorithms E and D. Show that (K,P, C, E ,D)
is a symmetric cryptosystem.

e Exercise 17. How many different keys are there for the Hill cipher with block length 2
when the alphabet has 29 elements?

e Exercise 18. How many blocks of ciphertext-plaintext correspondences do you need to
recover K with reasonable probability, when the block length is 2 and the alphabet has
29 elements? (For the purposes of this exercise only, you may assume that the known
plaintext consists of random letters from the alphabet.)

e Example 2. If we want to encrypt ababoonisfunny using Hill cipher encryption with

the key K =

(
b d
a f

)
, we get the following computations:

ab

df

K·
ab

df

K·
oo

es

K·
ni

lo

K·
sf

hz

K·
un

hn

K·
ny

hq

K·

The ciphertext is then dfdfeslohzhnhq. Observe the repetition in the first two plain-
text blocks reflecting in the ciphertext, while the final three blocks all start with h,
which is not correlated to any particular plaintext feature.

e Exercise (for groups) 19. Choose a key for the Hill cipher and encrypt some message.
Give the ciphertext along with some known plaintext to someone else in the group and
have them decrypt it without knowing the key.

A second example of a family of permutations is the Pohlig-Hellman exponentiation
cipher. This time, we do not consider tuples of letters, but rather a very large alphabet.
We give our large alphabet G the structure of a cyclic group of order n.

The plaintext m is a sequence of group elements m1m2 . . .mL. The key is an integer
k between 0 and n that is relatively prime to n. We encrypt the message using the
formula

ci = kmi, 1 ≤ i ≤ L.

The ciphertext c is the sequence of group elements c1c2 . . . cL.
To decrypt a ciphertext c = c1c2 . . . cL, we compute the i plaintext tuple using the

formula
mi = k−1ci, 1 ≤ i ≤ L,

where the inverse k−1 of k is computed modulo n.

8

Note that the expression kmi where k is an integer and mi is a group element is very
different from the expression kmi when k and mi are elements in a ring. The former
notation is short for mi +mi + · · ·+mi, where the sum contains k terms.

e Exercise 20. The above is an informal description. Write down carefully what the three
sets K, P, C are, and implement the two algorithms E and D. Show that (K,P, C, E ,D)
is a symmetric cryptosystem.

It is generally believed that if the group G is carefully chosen, it is hard to find the
key, even with known or chosen plaintext.

3.4.1 Attack: Distinguishing

The permutations used in the Hill cipher (linear, invertible maps) are very different
from most permutations. For any two l-tuples m,m′ of letters from the alphabet, an
invertible matrix K satisfies the equation

Km + Km′ = K(m + m′).

The same observation holds for the permutations used in the Pohlig-Hellman cipher.
For any two elements m,m′ ∈ G, we get that

km+ km′ = k(m+m′).

Most permutations would not satisfy these equations. This means that the permu-
tations do not look like randomly chosen permutations. It is easy to distinguish the Hill
cipher and Pohlig-Hellman cipher permutations from random permutations.

We can use this property to make simple deductions about plaintext based only on
ciphertext properties.

e Exercise 21. Consider the Hill cipher. Suppose c, c′ and c′′ are ciphertexts such that
ci + c′i = c′′i for one or more indexes i. What can you say about the corresponding
plaintexts?

3.5 Block Ciphers

We shall now work with a set S, typically the set of l-tuples of letters from our alphabet.

d Definition 2. A block cipher is a pair of maps π, π−1 : K × S → S such that for all
k ∈ K and s ∈ S we have that

π(k, π−1(k, s)) = s and π−1(k, π(k, s)) = s.

In other words, a block cipher is a family of permutations on a set S indexed by a
key set K.

e Exercise 22. The Hill cipher is based on a block cipher. Identify the block cipher by
explaining what the key set K, the set S and the functions π, π−1 are.

9

e Exercise 23. The Pohlig-Hellman cipher is based on a block cipher. Identify the block
cipher by explaining what the key set K, the set S and the functions π, π−1 are.

Despite the name, a block cipher by itself is not a cryptosystem. But we construct
a cryptosystem based on a block cipher.

The plaintext m is a sequence of elements m1m2 . . .mL from the set S. The key is
an element k in K. We encrypt the message elementwise using the formula

ci = π(k,mi), 1 ≤ i ≤ L.

The ciphertext c is the sequence of set elements c1c2 . . . cL.
To decrypt a ciphertext c = c1 . . . cL, we compute the ith plaintext element using

the formula
mi = π−1(k, ci), 1 ≤ i ≤ L.

e Exercise 24. The above is an informal description of a block cipher used in electronic
code book (ECB) mode. Write down carefully what the three sets K, P, C are, and
implement the two algorithms E and D. Use the block cipher from Exercise 16. Show
that (K,P, C, E ,D) is a symmetric cryptosystem.

Our hope is that this scheme will be both practical and as good as the substitution
cipher when used on l-tuples. But as we have seen, the Hill cipher is easy to attack.

Informally: A block cipher is secure if it is hard to distinguish a pair of
randomly chosen inverse permutations (π, π−1) from the pair of inverse per-
mutations (π(k, ·), π−1(k, ·)), where k has been chosen uniformly at random
from K.

Note that whoever is trying to distinguish is only allowed to see the func-
tions evaluated at various points. He is never allowed to see the permutation
π or the key k.

The idea is that if it is hard to distinguish the block cipher’s permutations from
“average” permutations, we may as well use the block cipher with a random key instead
of a random permutation. If there is an attack on the block cipher cryptosystem that
does not work on the substitution cipher, that will be one way to distinguish the block
cipher.

We note that for a block cipher to be secure, the key set must be very large. Oth-
erwise, one can recognize the block cipher permutations with high probability by enu-
merating all the keys and observing how the corresponding permutation affects one or
two elements of the set.

3.5.1 Sketch: Feistel Ciphers

How to construct secure block ciphers is out of scope of this note. However, we shall
very briefly discuss one popular design for block ciphers, the Feistel cipher.

Block ciphers are typically built by repeatedly applying one or more simple block
ciphers called rounds. A single round will be very easy to break, but the composition

10

ρ1 ρ2 · · · ρnm c

key schedulek

k1 k2 kn

ρ−11ρ−12
· · ·ρ−1n mc

key schedulek

k1k2kn

Figure 1: Typical high-level block cipher design.

L′ R′

L R

F

−

k

L R

L′ R′

F

+

k

Figure 2: The Feistel round and its inverse.

of sufficiently many rounds may be hard to break. Given the rounds ρ1, ρ2, . . . , ρn with
corresponding inverse rounds, we get a block cipher π by composition:

π(k,m) = ρn(kn, · · · ρ2(k2, ρ1(k1,m)) · · ·) and

π−1(k,m) = ρ−11 (k, · · · ρ−1n−1(kn−1, ρ
−1
n (kn,m)) · · ·)

The round keys k1, k2, . . . , kn are derived from the key k. Using the same key for each
round is problematic. Using independent keys such that k = (k1, k2, . . . , kn) leads to
impractically large keys. Instead, a key schedule is usually used to derive round keys
from the block cipher key. This high-level design is shown in Figure 1. We note that
for good ciphers, the key schedule and the rounds are highly dependent on eachother.

One convenient way to design rounds is the Feistel round. The construction assumes
that S = G × G for some finite group G. It uses a round function F : K × G → G to
construct the the permutation

ρ(k, (L,R)) = (R,L+ F (k,R)).

It is easy to see that the inverse permutation is

ρ−1(k, (L′, R′)) = (R′ − F (k, L′), L′).

Choosing a suitable round function is a hard problem, especially when the goal is to find
a round function that can be computed very quickly and that does not require many
rounds. Again, this problem is out of scope for this note.

11

3.5.2 Practical: Padding

The plaintext set for the cryptosystem from Exercise 24 is the set of finite sequences
of elements from S, where each set element is typically an l-tuple of letters from the
alphabet. In other words, the plaintext set is the set of letter sequences whose length
is divisible by l.

But when l is large, it is unreasonable to expect message lengths to be a multiple of
l. We usually need to encrypt arbitrary sequences of letters. Since we need to decrypt
correctly, we cannot just append some fixed letter until the sequence length is a multiple
of l.

We extend a cryptosystem to accept sequences of any length by constructing a
suitable injective function, a so-called padding scheme.

d Definition 3. Let P and P ′ be sets. A padding scheme for P and P ′ consists of two
functions ι : P → P ′ and λ : P ′ → P ∪ {⊥} satisfying

λ(ι(m)) = m for all m ∈ P.

e Exercise 25. Suppose you have a cryptosystem (K,P ′, C, E ′,D′) and a padding scheme
(ι, λ) for P and P ′. Based on the padding scheme and the cryptosystem, construct a
new cryptosystem (K,P, C, E ,D). Show that it is indeed a cryptosystem.

Typically, the alphabet will be {0, 1} and our set is S = {0, 1}l, bit strings of length
l. The plaintext set P ′ will then be bit strings of length divisible by l.

One padding scheme is the following: We first add one 1-bit, then we add 0-bits
until the total length is divisible by l. If the block size l is 8, the bit string 10 10 1 will
become 10 10 11 00. If the block size l is 5, the bit string 01 01 0 becomes 01 01 01 00 00.

To remove the padding, we remove up to l−1 trailing 0-bits and exactly one 1-bit. If
the block size l is 8, the string 01 01 01 01 01 becomes the bit string 01 01 01 01 0. If the
block size l is 5, the string 01 01 0 becomes 01 0, while the string 10 10 10 00 00 cannot
be decoded and therefore becomes ⊥.

If decoding fails as in the last example, we have a padding error. Padding errors
have subtle effects on the security of cryptographic protocols.

3.5.3 Attack: Block Repetitions

We make two observations about ECB mode (the cryptosystem from Exercise 24):

• Any repetition among plaintext blocks will cause corresponding repetitions among
ciphertext blocks.

• If we encrypt the same message twice, we get the same ciphertext.

Both of these observations allow an eavesdropper to learn something about the message
from the ciphertext, and thereby break confidentiality. Both observations are indepen-
dent of which block cipher we use. The problem is not with the concept of block cipher,
but with how we use the block cipher.

12

c0 c1

π k

+

m1

c2

π k

+

m2

c3

π k

+

m3

Figure 3: Cipherblock chaining (CBC) mode encryption diagram using the block cipher
(π, π−1). To get the decryption diagram, reverse the direction of the vertical arrows,
replace + by − and π by π−1.

e Exercise 26. Suppose a message has been encrypted with ECB mode using a block
cipher with block length 4, and that you know that the message is either

sell the house nowdonot sell the cabin

or

sell the house and everything else now.

(Ignore spaces and punctuation.) Explain how you can decide which message is the
decryption by only looking at the ciphertext.

3.6 A Correct Use of a Block Cipher

We now allow our block cipher to operate on a group G instead of a set. (Note that our
permutations will still act on the set of group elements. Since most permutations on G
do not respect the group operation, neither should the block cipher permutations.)

The plaintext m is a sequence of elements m1m2 . . .mL from the group G. The key
is an element k in K. We encrypt the message elementwise by first choosing a random
group element c0 and then using the formula

ci = π(k,mi + ci−1), 1 ≤ i ≤ L.

The ciphertext c is the sequence of set elements c0c1c2 . . . cL.
To decrypt a ciphertext c = c0c1 . . . cL, we compute the ith plaintext element using

the formula
mi = π−1(k, ci)− ci−1, 1 ≤ i ≤ L.

e Exercise 27. The above is an informal description of a block cipher used in cipherblock
chaining (CBC) mode. Write down carefully what the three sets K, P, C are, and
implement the two algorithms E and D. Show that (K,P, C, E ,D) is a symmetric cryp-
tosystem.

What happens when we encrypt is that we start at a random group element. This
random element is added to the first message block, which is then permuted, resulting in

13

essentially a random-looking group element. This element is added to the second mes-
sage block, which is again permuted, resulting in essentially a second random-looking
group element. This process continues, producing a ciphertext that consists of a se-
quence of random-looking group elements.

Remark. The initial random group element c0 is often called an initialization vector.

It is possible to prove a precise variant of the following statement. Its proof is out
of scope for this note.

Informally: A secure block cipher used in CBC mode provides confiden-
tiality against eavesdroppers.

e Exercise 28. Consider the attacks discussed in previous sections. Explain why they fail
against a secure block cipher used in CBC mode.

e Exercise 29. CBC mode is insecure if the initialization vector c0 is predictable. Suppose
the group G is Z+

2128 . We play the following game.

1. You get an encryption c∗ = c∗0c
∗
1 of a known plaintext m∗ ∈ Z+

2128 .

2. You choose m ∈ Z+
2128 .

3. You are given an encryption c of m + ∆, ∆ ∈ {0, 1}, where the initial random
element c0 was not chosen at random, but rather as c∗1. That is, c = c0c1 with
c0 = c∗1.

Show how you can play this game and be able to determine ∆ by choosing m carefully.

3.7 Vigenère Cipher

Frequency analysis worked very well against the substitution cipher from Section 3.3.
One approach to preventing frequency analysis might be to encrypt different plaintext
letters with different substitution ciphers.

The idea is that the frequencies produced by the encryption will be the average of the
frequencies produced by the different substitution ciphers, which should tend towards
a uniform distribution, thereby preventing frequency analysis.

Again, we let our alphabet be a group G, such as Z+
26.

The plaintext m is a sequence of elements m1m2 . . .mL from the group G. The key
is a sequence of elements k1, k2, k3, . . . , kl from G. We encrypt the message elementwise
with the formula

ci = mi + kj , where 1 ≤ i ≤ L, 1 ≤ j ≤ l and j ≡ i (mod l).

The ciphertext c is the sequence of elements c1c2 . . . cL.
To decrypt a ciphertext c = c1c2 . . . cL, we compute the ith plaintext element using

the formula

mi = ci − kj , where 1 ≤ i ≤ L, 1 ≤ j ≤ l and j ≡ i (mod l).

14

b

+j

k

a

+a

a

b

+p

q

o

+e

s

o

+j

x

n

+a

n

s

+p

h

a

+e

e

r

+j

a

e

+a

e

f

+p

u

u

+e

y

n

+j

w

n

+a

n

y

+p

n

Figure 4: Example of Vigenère cipher encryption with the key k = jape.

e Exercise 30. The above is an informal description. Write down carefully what the three
sets K, P, C are, and implement the two algorithms E and D. Show that (K,P, C, E ,D)
is a symmetric cryptosystem.

e Exercise (for groups) 31. Choose a key for the Vigenère cipher and encrypt some mes-
sage. Give the ciphertext along with sufficient known plaintext to someone else in the
group and have them decrypt it without knowing the key.

3.7.1 Attack: Frequency Analysis II

There is an easy attack against the Vigenère cipher if we have known plaintext. If we
subtract the known plaintext from the corresponding ciphertext, we get the key repeated
over and over. However, there are stronger attacks based on frequency analysis.

We begin with an English text and create a subsequence of letters by starting at the
ith letter and then adding every lth letter. It so happens that such subsequences tend
to have the same frequency distribution as the entire text.

e Exercise 32. In Exercise 13, you gathered a collection of English texts. Extract subse-
quences as above and compute the frequency distributions. Compare these distributions
to the frequency distribution of the whole text, and estimate how long subsequences
must be before we can expect to identify with reasonable certainty (a) e, (b) the five
most frequent letters, and (c) the ten most frequent letters.

What happens to such subsequences when we encrypt the text with the Vigenère
cipher using a key of length l? The letters in the subsequence are encrypted by adding
the same letter from the key to it. In other words, the subsequence is encrypted using
a shift cipher.

Earlier, we attacked the shift cipher by exhaustive search, but recognizing subse-
quences of English text is more difficult than recognizing English text. A better ap-
proach is to use frequency analysis. We know that e will likely be the most common
letter in the plaintext subsequence, which corresponds to the most common letter in
the ciphertext subsequence.

To recover a key of length l, all we have to do is run l frequency analysis attacks
against the shift cipher.

e Exercise (for groups) 33. Choose a key for the Vigenère cipher and encrypt some suffi-
ciently long message. Give the ciphertext along with key length to someone else in the
group and have them decrypt it without knowing the key.

15

There is one minor problem: The key length may vary and we do not know it. The
simplest approach is to try every possible length, beginning with l = 1. When we have
the wrong key length, the attack will fail to produce a sensible decryption.

If everything has to be done by hand, there are faster ways to determine the key
length. The oldest method relies on repetitions in the plaintext affecting the ciphertext.
A newer method uses the so-called index of coincidence.

e Exercise (for groups) 34. Choose a key for the Vigenère cipher and encrypt some suffi-
ciently long message. Give the ciphertext to someone else in the group and have them
use the index of coincidence to determine the key length.

3.8 One Time Pad

Suppose the key for the Vigenère cipher is completely random, that is, each key letter
is sampled from the uniform distribution and each letter is independent of the other
letters. What happens if the key is at least as long as the message and used for only
one message? When used like this, the cipher is known as the one time pad.

Again, our alphabet is a group G, such as Z+
26.

The (single) plaintext m is a sequence of L group elements m1m2 . . .mL ∈ GL. The
key k is a sequence of L group elements k1k2 . . . kL ∈ GL. We encrypt the message
elementwise using the formula

ci = mi + ki, where 1 ≤ i ≤ L.

The ciphertext c is the sequence of L group elements c1c2 . . . cL.
To decrypt a ciphertext c = c1c2 . . . cL, we compute the ith plaintext element using

the formula
mi = ci − ki, where 1 ≤ i ≤ L.

e Exercise 35. The above is an informal description. Write down carefully what the three
sets K, P, C are, and implement the two algorithms E and D. Show that (K,P, C, E ,D)
is a symmetric cryptosystem.

We shall prove that Eve’s knowledge about the message after she saw the ciphertext,
is the same as the knowledge she had before she saw the ciphertext.

Even before Alice has sent her ciphertext, Eve has some information about what
Alice’s plaintext will be. We can model this information as a random variable M ,
which means that from Eve’s point of view, we assign a probability for Alice’s plaintext
being a specific message m. We denote this probability by Pr[M = m].

Likewise, we model Eve’s information about the ciphertext as a random variable
C. Again, from Eve’s point of view, we can now assign a probability to the likelihood
of seeing a given ciphertext. We denote that probability by Pr[C = c]. We can also
consider, from Eve’s point of view, the conditional probability of seeing a particular
ciphertext, given a particular plaintext. We denote that conditional probability by
Pr[C = c |M = m].

16

Once Eve has seen the ciphertext, she has perfect knowledge of it, so there is no
longer any uncertainty. Now, however, her information about the message may have
changed. We denote the probability of Alice’s message being a specific message condi-
tioned on the observed ciphertext by Pr[M = m | C = c].

t Theorem 1. If the above scheme has been used to encrypt exactly one message, then

Pr[M = m1m2 . . .mL | C = c1c2 . . . cL] = Pr[M = m1m2 . . .mL].

Proof. The assumption on the key means that from Eve’s point of view before seeing
the ciphertext, the key letters are uniformly and independently distributed, which is
expressed as the statement

Pr[K = k1k2 . . . kL] = |G|−L.

Again, K is a random variable describing Eve’s knowledge about the key.
We first compute the probabilities

Pr[C = c1c2 . . . cL |M = m1m2 . . .mL]

= Pr[K = (c1 −m1)(c2 −m2) . . . (cL −mL)] = |G|−L

and

Pr[C = c] =
∑

m

Pr[C = c |M = m]Pr[M = m]

= |G|−L
∑

m

Pr[M = m] = |G|−L.

Then we compute the a posteriori probability

Pr[M = m | C = c] =
Pr[M = m ∧ C = c]

Pr[C = c]

=
Pr[C = c |M = m]Pr[M = m]

Pr[C = c]

= Pr[M = m],

which completes the proof.

The a posteriori probability is the same as the a priori probability, which means
that Eve has learned nothing new by observing the ciphertext. We have proved that
the one time pad provides confidentiality against eavesdroppers.

Informally: If the key is used to encrypt only once, the one time pad
provides confidentiality against eavesdroppers.

Note that this claim is unconditional, unlike the corresponding claim for CBC mode
in Section 3.6, which is conditional on the use of a secure block cipher. This is good.
Unfortunately, we must note that the one time pad is impractical in almost every
application.

17

e Exercise (for groups) 36. The one time pad is not secure if the key is used more than
once. Choose a key of sufficient length for the one time pad and encrypt two different
messages using the same key. Give the ciphertext along with part of one message to
someone else in the group and have them decrypt it without knowing the key. To ease
decryption, the messages should consist of mostly long words.

3.9 Stream Ciphers

There are many possible definitions of stream ciphers, but we shall consider only the
notion of synchronious or additive stream ciphers. The idea is that a key stream gen-
erator expands a key and an initialization vector into something that looks like a key
for the one time pad, which is then used to encrypt the message.

d Definition 4. A key stream generator is a function f : K × I → GN .

Informally: A key stream generator is secure if it is hard to distinguish the
function values f(k, iv1), f(k, iv2), . . . , f(k, ivn) from random values when k
has been chosen uniformly at random from K and the values iv1, iv2, . . . , ivn
have been chosen uniformly at random from I.

Again, our alphabet is a group G, such as Z+
26.

The plaintext m is a sequence of group elements m1m2 . . .mL of length L ≤ N . The
key k is an element in K. We encrypt the message by first choosing iv uniformly at
random from I, then computing the L first elements z1z2 . . . zL of f(k, iv) = z1z2 . . . zN .
We encrypt the plaintext elementwise using the formula

wi = mi + zi, where 1 ≤ i ≤ L.

The ciphertext c is the pair (iv , w1w2 . . . wL).
To decrypt a ciphertext c = (iv , w1w2 . . . wL), we first compute the L first elements

z1z2 . . . zL of f(k, iv) and then compute the ith plaintext element using the formula

mi = wi − zi, where 1 ≤ i ≤ L.

e Exercise 37. The above is an informal description of a stream cipher based on a key
stream generator. Write down carefully what the three sets K, P, C are, and implement
the two algorithms E and D. Show that (K,P, C, E ,D) is a symmetric cryptosystem.

It is possible to prove a precise variant of the following statement. Its proof is out
of scope for this note.

Informally: A stream cipher using a secure key stream generator provides
confidentiality against eavesdroppers.

18

3.9.1 Key Stream Generators from Block Ciphers

Let π, π−1 : K×G→ G be a block cipher. Suppose the set I ×{1, 2, . . . , N} is a subset
of the set of group elements of G. We shall use this block cipher to construct two key
stream generators, fOFB/π : K ×G→ GN and fCTR/π : K × I → GN .

For any iv ∈ G and k ∈ K, let

z1 = π(k, iv) and zi = π(k, zi−1), where 2 ≤ i ≤ N .

Then fOFB/π(k, iv) = z1z2 . . . zN .
For any iv ∈ I and k ∈ K, let

zi = π(k, (iv , i)), where 1 ≤ i ≤ N .

Then fCTR/π(k, iv) = z1z2 . . . zN .
It is possible to prove a precise variant of the following statement. Its proof is out

of scope for this note.

Informally: Output feedback mode fOFB/π and counter mode fCTR/π using
a secure block cipher are secure key stream generators.

From a practical point of view, counter mode is very easy to parallelize and can
therefore be made very fast. Output feedback mode is inherently unparallelizable.

4 Integrity

In this section we shall consider the situation where Eve controls the communications
channel between Alice and Bob. Eve’s goal is to tamper with the messages sent by Alice
so that Bob receives a different message, without noticing. For the moment, we shall
not care about confidentiality.

The main tool we shall use is the message authentication code, where Alice adds
an authentication tag to her message that allows Bob the verify that the message is
unchanged.

d Definition 5. A message authentication code is a function µ : K × P → T .

Informally: A message authentication code is secure if it is hard to
guess the function value µ(k,m) for any m, even after seeing the values
µ(k,m1), µ(k,m2), . . . , µ(k,mn) for any m1,m2, . . . ,mn ∈ P. Here, k has
been chosen uniformly at random from K, and m 6= mi for i = 1, 2, . . . , n.

When Alice wants to send a message m to Bob, she sends the pair (m,µ(k,m)).
When Bob receives the pair (m′, t), he checks that µ(k,m′) = t. If it is, he accepts that
the message came from Alice. Otherwise, he discards the message.

Informally: A secure message authentication code used as above provides
integrity.

19

Note that nothing prevents Eve from replaying old messages by sending them to
Bob. Defending against such attacks is out of scope for this note.

One of the most popular MAC constructions – HMAC – is based on so-called hash
functions, which are out of scope for this note. We shall discuss two constructions of
message authentication codes.

4.1 Polynomial evaluation MACs

We begin our discussion with a one-time polynomial-evaluation MAC. This MAC is
insecure if it is used on more than one message. Such a MAC is impractical, so we shall
also discuss how a block cipher can be used to make a more practical variant.

Our alphabet is a finite field F, say a field with a prime p number of elements.
The plaintext m is a sequence of field elements m1m2 . . .mL. The key (k1, k2) is a

pair of field elements. The function µOTPE is computed as

µOTPE(k1, k2,m) = k2 +

L∑

i=1

mik
i
1 + kL+1

1 . (5)

e Exercise 38. The above is an informal description. Write down carefully what the three
sets K, P, T are, and implement an algorithm computing the function µOTPE. Show
that µOTPE is a message authentication code.

We shall first prove the following statement.

t Theorem 2. Let m,m′ be two messages of length at most L. Let t, t′ ∈ F. The
probability that µOTPE(k1, k2,m

′) = t′ given that µOTPE(k1, k2,m) = t is at most (L+
1)/p.

Proof. For simplicity, we shall assume that both messages have length exactly L. We
want to compute the probability

Pr[µOTPE(k1, k2,m
′) = t′ | µOTPE(k1, k2,m) = t].

We can do that by computing how many pairs (k1, k2) satisfy

t = k2 + kL+1
1 +

L∑

i=1

mik
i
1 (6)

and how many also satisfy

t′ = k2 + kL+1
1 +

L∑

i=1

m′ik
i
1. (7)

It is clear that for every value of k1, there is exactly one value of k2 that satisfies
(6), so there are exactly p pairs that we need to consider.

20

Combining the two equations, we get that k1 must satisfy the equation

t′ − t =
L∑

i=1

(m′i −mi)k
i
1.

A solution to this equation is a zero of a polynomial equation of degree at most L, which
means that there are at most L solutions.

The conclusion is that out of p possible keys (k1, k2) satisfying (6), there are at most
L pairs that also satisfy (7). It now follows that we have a bound on the probability.

When the messages have different length, the exact same argument applies, but the
polynomial we consider has degree at most L+ 1.

Note that this means that when Alice sends a single message m to Bob with the
tag t = µOTPE(k1, k2,m), and Bob receives the message m′ 6= m and the tag t′, the
probability that Bob accepts that message as coming from Alice is at most (L + 1)/p.
This proves the following claim.

Informally: If the key is used to create a MAC tag only once, the one-time
polynomial evaluation MAC is a secure message authentication code.

e Exercise 39. Show that the scheme is not secure if we

1. replace ki1 with ki−11 in the sum in (5);

2. remove the term k2 from (5); or

3. remove the term kL+1
1 from (5).

The above construction is just a one-time MAC, which is usually impractical. How-
ever, if we use a block cipher π, π−1 : K′ × S → S with F ⊆ S, we can construct an
alternative polynomial-evaluation MAC that can be used more than once, using

µPE/π(k1, k2,m) = π(k2, k
L+1
1 +

L∑

i=1

mik
i
1).

e Exercise 40. The above is an informal description. Write down carefully what the three
sets K, P, T are, and implement an algorithm computing the function µPE/π. Show
that µPE/π is a message authentication code.

4.2 Block-cipher-based MACs

One simple MAC based on a block cipher π, π−1 : K ×G → G is CBC-MAC, which is
somewhat similar to Cipherblock Chaining mode from Section 3.6.

Fix some element t0 ∈ G. The plaintextm is a sequence of group elementsm1m2 . . .mL.
The key k is an element of K. Let

ti = π(k, ti−1 +mi), where 1 ≤ i ≤ L.

21

Then µCBC(k,m) = tL.

e Exercise 41. The above is an informal description. Write down carefully what the three
sets K, P, T are, and implement an algorithm computing the function µCBC. Show
that µCBC is a message authentication code.

This MAC is only secure when restricted to messages of fixed length. If messages of
different lengths are allowed, it is not secure.

e Exercise 42. Find an attack against this MAC when messages of different length are
allowed.

There are many secure variants of this MAC. One variant is based on a block cipher
π, π−1 : K × F→ F over a field F. The idea is to modify the final plaintext block with
an unpredictable value.

Fix a non-zero element g ∈ F. The plaintext m is a sequence of field elements
m1m2 . . .mL. The key k is an element of K. Let t0 = 0, h = π(k, 0) and

ti = π(k, ti−1 +mi), where 1 ≤ i ≤ L− 1.

Then µCBC′(k,m) = π(k, hg + tL−1 +mL).

Informally: The modified CBC-MAC using a secure block cipher is a
secure MAC.

5 Confidentiality and Integrity

Finally, we consider the situation where Eve controls the communications channel be-
tween Alice and Bob. Eve’s goal is both to read Alice’s messages to Bob and tamper
with them.

We shall combine the secure cryptosystems we saw in Section 3 with the message
authentication codes we saw in Section 4 into cryptosystems that provide both confi-
dentiality and integrity.

Informally: A symmetric cryptosystem provides integrity if it is hard to
create a ciphertext that decrypts to anything other than ⊥ without knowl-
edge of the key.

First we consider a general principle in cryptography: Never use the same key for
two different things. This means that we should use different keys for the cryptosystem
and the MAC when we combine them. That leaves us with three obvious ways of
combining a cryptosystem with a MAC:

Encrypt-then-MAC First encrypt the message, then MAC the ciphertext:

w = E(ke,m); t = µ(km, w); c = (w, t).

MAC-then-encrypt MAC the message, then encrypt the message and the tag:

t = µ(km,m); c = E(ke, (m, t)).

22

Encrypt-and-MAC Encrypt the message and attach a MAC tag of the message:

w = E(ke,m); t = µ(km,m); c = (w, t).

In all three cases, the decryption algorithm verifies the MAC and if the verification fails,
the output of the decryption algorithm is ⊥.

Encrypt-and-MAC is in general insecure. If you encrypt the same message twice,
you will always get the same tag, something that Eve will notice. Therefore, it fails
confidentiality.

MAC-then-encrypt is often secure, but there are special cases where it is not secure.
In particular, such schemes will often fail when combined with padding schemes.

Encrypt-then-MAC is always secure, which means that this is the best choice.

Informally: A cryptosystem that provides confidentiality against eaves-
droppers and a secure message authentication code combined using Encrypt-
then-MAC provides both confidentiality and integrity.

Remark. Practice has shown that Encrypt-then-MAC seems to be hard to do right. In
practice, there is also a need to protect the integrity of more than the encrypted message,
so-called associated data, which is actually non-trivial to get right. Modern practice has
therefore moved towards authenticated encryption with associated data (AEAD). We do
not discuss this here.

Note that nothing prevents Eve from replaying old ciphertexts by sending them to
Bob. Defending against such attacks is out of scope for this note.

23

Diffie-Hellman and Discrete Logarithms

KG

October 24, 2019

Contents

1 Introduction 1

2 The Diffie-Hellman Protocol 2

3 Discrete Logarithms 6
3.1 An Unsuitable Group . 9
3.2 Pohlig-Hellman I . 9
3.3 Pohlig-Hellman II . 12
3.4 Shank’s Baby-step Giant-step . 15
3.5 Pollard’s rho . 17

4 Primality Testing 21
4.1 Fermat’s Test . 22
4.2 Soloway-Strassen Test . 23

5 Finite Fields 27
5.1 Group Operation . 27
5.2 Finding Suitable Primes . 28
5.3 Index Calculus . 29

6 Elliptic Curves 36
6.1 Group Operation . 43
6.2 Finding Suitable Curves . 46
6.3 Discrete Logarithms . 49

7 Active Attacks 50

1 Introduction

In this note, we consider the following problem. Alice and Bob wants to establish a
shared secret known only by them by communicating via some communications channel.
Eve has access to the channel and she may eavesdrop on anything sent over the channel.

1

Establishing a shared secret is a prerequisite for using the theory of symmetric
cryptography to communicate securely over insecure channels. Traditionally, this was
done by meeting in person, using couriers or relying on trusted third parties. But
as networks grow and the number of connections increase, the traditional approaches
become impractical or introduce unpleasant trust assumptions.

The Diffie-Hellman protocol is a cryptographic protocol for establishing a shared
secret. Conjecturally, if the underlying mathematical structure is carefully chosen,
running the protocol requires Alice and Bob to do relatively little work to establish a
shared value, but the eavesdropper Eve will have to do infeasibly much work to deduce
the shared value. In other words, the shared value will remain a secret known (fully)
only to Alice and Bob.

This note is an introduction to this protocol and the study of its security. Section 2
describes the protocol and its mathematical foundations, namely finite cyclic groups.

As shown in Section 3.1, not every finite cyclic group is suitable for use in the Diffie-
Hellman protocol. Section 3 discusses various necessary requirements for a cylic group
to be suitable. Two plausible families of cyclic groups based on finite fields and elliptic
curves are discussed in Section 5 and 6, while Section 4 show how to distinguish prime
numbers from composite numbers, something that we will need to do.

This text is intended for a reader that is familiar with mathematical language,
basic algebra (groups, rings, fields and linear algebra) and elementary computer science
(algorithms).

This text is sometimes informal, in particular with respect to computational com-
plexity. Every informal claim in this text can be made precise, but the technical details
are out of scope for this note.

This text uses colour to indicate who is supposed to know what. When discussing
cryptography, red denotes secret information known only by Alice or Bob. Blue denotes
information that the eavesdropper will see. Information that is assumed to be known
by both Alice and Bob (as well as Eve) is not coloured.

We also colour for theorems about computation, where blue denotes information
that an algorithm gets as input and can use directly, while red denotes information that
exists, but has to be computed somehow before it can be used directly. Information
that is considered fixed (such as the specific group in use, group order, generator, etc.)
is not coloured.

2 The Diffie-Hellman Protocol

The Diffie-Hellman protocol is a cryptographic protocol that allows Alice and Bob to
establish a shared value. Alice is the initiator in the sense that she sends the first
message in the protocol. Bob is the responder since he responds to Alice’s message.

We first prove that the protocol is complete, in the sense that running the protocol
without an adversary establishes a shared value. Next, we consider how much work
Alice and Bob must do to execute the protocol.

We want to use the protocol to establish a shared secret, in the sense that the
eavesdropper Eve should not know the shared value.

2

Informally: A key exchange protocol is a two-party protocol between an
initiator and a responder. The players eventually output either a shared
secret or ⊥.

Informally: A key exchange protocol is secure if someone who sees the
protocol messages, but does not actually participate in the protocol, cannot
learn the agreed-upon shared secret.

The protocol is based on a finite cyclic group, and the study of its security turns
out to involve the study of an interesting computational problem in finite cyclic groups,
computing so-called discrete logarithms.

Before we can describe the Diffie-Hellman protocol, we must establish the underlying
abstract mathematical structure. We begin with a bit of notation.

d Definition 1. Exponentiation in a group is defined as

xa = x · x · · ·x︸ ︷︷ ︸
a terms

for any group element x and any integer a > 0. Then we define x0 to be the identity
element and xa = (x−1)−a when a < 0.

When using additive notation for the group operation, we get the notation

a · x = x+ x+ · · ·+ x︸ ︷︷ ︸
a terms

for any group element x and any integer a > 0, with 0 · x = 0 and a · x = (−a) · (−x)
for a < 0.

d Definition 2. A group G is cyclic if there exists an element g ∈ G such that G = {ga |
a ∈ Z}.

Let G be a finite cyclic group of order n, and let g be a generator. The Diffie-Hellman
protocol works as follows (see also Figure 1).

Both Alice and Bob know the group G, the group order n and the generator g.

1. Alice chooses a number a uniformly at random from the set {0, 1, 2, . . . , n − 1}.
She computes x = ga and sends x to Bob.

2. Bob receives x from Alice. He chooses a number b uniformly at random from the
set {0, 1, 2, . . . , n− 1}, computes y = gb and zB = xb, and sends y to Alice.

3. Alice receives y from Bob. Alice computes zA = ya.

Remark. The structures Zn and Fp, which we will use for many examples, are typically
constructed as factor rings. As such, their elements are really cosets and should be
denoted as k + 〈n〉 or k + 〈p〉. In principle, any integer in the coset can be used to
represent the coset.

We now make two remarks;

3

Alice

a
r← {0, 1, 2, . . . , n− 1}

x← ga

— wait for y from Bob —
zA ← ya

Bob

b
r← {0, 1, 2, . . . , n− 1}

y ← gb

zB ← xb

x

y

Figure 1: The Diffie-Hellman protocol.

1. In the interest of brevity, we will simply write k instead of k + 〈n〉 and k + 〈p〉
whenever the meaning is clear. So in Z+

13 we will write 3 · 10 = 4, instead of the
cumbersome (3 + 〈13〉)(10 + 〈13〉) = (4 + 〈13〉).

2. When Alice and Bob compute group elements, their choice of representatives
for the coset is usually important, especially that they make the same choice.
Typically, they choose the unique smallest non-negative integer in the coset. Other
choices are sometimes convenient, in particular for intermediate results.

e Example 1. Alice and Bob use Diffie-Hellman with the group G = Z+
13 and generator

g = 2. Note the additive notation.
Alice chooses a = 3 and computes x = a · g = 3 · 2 = 6. She sends 6 to Bob.
Bob receives 6. He chooses b = 5 and computes y = b · g = 5 · 2 = 10 and

zB = b · x = 5 · 6 = 4. He sends 10 to Alice.
Alice receives 10 from Bob. She computes zA = a · y = 3 · 10 = 4.

Remark. Note that for Z+
n , the exponentiation coincides with ring multiplication. As

we shall see, this means that Z+
n cannot be used safely with Diffie-Hellman.

e Example 2. Alice and Bob use Diffie-Hellman with the group G = F∗13 and generator
g = 2.

Alice chooses a = 3 and computes x = ga = 23 = 8. She sends 8 to Bob.
Bob receives 8. He chooses b = 5 and computes y = gb = 25 = 6 and zB = xb =

85 = 8. He sends 6 to Alice.
Alice receives 6 from Bob. She computes zA = ya = 63 = 8.

e Exercise (for groups) 1. Agree on a cyclic group and a generator for the group, then
use the Diffie-Hellman protocol to agree on a secret.

We begin by proving completeness, that is, Alice and Bob arrive at a shared value.

t Proposition 1. In the above protocol zA = zB.

Proof. We compute that zA = ya = (gb)a = (ga)b = xb = zB .

We have shown that the Diffie-Hellman protocol establishes a single shared value,
which we shall denote by z.

4

Next, we must consider how much work Alice and Bob must do to execute the
protocol. It is clear that the only non-trivial computations involved are the two expo-
nentiations done by each of them. From the definition, it is clear that Alice and Bob
can do their two exponentiations using less than 2n group operations:

25 = 2 · 24 = 4 · 23 = 8 · 22 = 16 · 2 = 32.

However, there is a better way to do these computations.

t Proposition 2. For any x ∈ G and integer a > 0, the group element xa can be computed
using at most 2 log2 a group operations.

Proof. Since

x2
i+1

= (x2
i

)2,

we can compute the l+ 1 group elements x = x2
0

, x2
1

, x2
2

, . . . , x2
l

using l group opera-
tions.

When these elements have been computed, we can write a in binary as

a =
l∑

i=0

ai2
i, ai ∈ {0, 1}

and compute the product

l∏

i=0

(x2
i

)ai = x
∑l

i=0 ai2
i

= xa.

Computing this product requires at most l group operations.
We have done at most 2l group operations. If a > 0, we may assume that al = 1,

and then we have that l ≤ log2 a. The claim follows.

e Example 3. We can compute 213 in Z by observing that 13 = 20 + 22 + 23, computing

22
0

= 2 22
1

= (22
0

)2 = 22 = 4

22
2

= (22
1

)2 = 42 = 16 22
3

= (22
2

)2 = 162 = 256

and
213 = 22

0+22+23 = 22
0

22
2

22
3

= 2 · 16 · 256 = 32 · 256 = 8192.

This required only 5 multiplications, while using the definition would require 12 multi-
plications.

e Example 4. We can compute 2257 in F∗19 by computing successively 22 = 4, 22
2

= 42 =

16, 22
3

= 162 = 9, 22
4

= 92 = 5, 22
5

= 52 = 6, 22
6

= 62 = 17, 22
7

= 172 = 15 and
22

8

= 152 = 16, and finally
2257 = 2 · 16 = 13.

5

Alice Bob

Eve

x

y

Figure 2: Eve is listening and learns x and y, but cannot see Alice’ and Bob’s secret
values or computations. She already knows G, g and n.

Note that by choosing small coset representatives for the intermediate results, we
avoid computing with large integers.

e Exercise 2. The proof of Proposition 2 essentially describes an algorithm for computing
xa. Implement this algorithm and restate Proposition 2 as a statement about the
algorithm’s time complexity (in terms of group operations, ignoring any other form of
computation involved).

e Exercise 3. Use the algorithm from Exercise 2 to compute (by hand) 5582 in the cyclic
group F∗10007.

e Exercise 4. Note that we can define xa for a ≥ 0 using the rules that x0 = 1 and

xa =

{
(xa/2)2 when a is even, and

(x(a−1)/2)2x when a is odd.

Use this fact to give an alternative proof of Proposition 2 leading to an alternative
algorithm.

We have shown that as long as group operations can be computed in reasonable
time, Alice and Bob can execute the Diffie-Hellman protocol in reasonable time, even
when the group order is very large.

3 Discrete Logarithms

Our goal is for Alice and Bob to establish a shared secret. We must consider what the
eavesdropper Eve can do to learn the established shared value.

The Diffie-Hellman protocol is supposed to work even when Alice and Bob have had
no previous communication. We must therefore assume that Eve knows both the group
G, the generator g and the group order n. When Alice and Bob run the protocol, Eve
additionally learns x and y. She wants to know z.

6

d Definition 3. The Diffie-Hellman problem in a cyclic group G of order n with generator
g is to find z = gab given x = ga and y = gb, when a and b has been chosen independently
and uniformly at random from {0, 1, 2, . . . , n− 1}.

It is more or less clear that solving the Diffie-Hellman problem is more or less the
same as attacking the Diffie-Hellman key exchange protocol.

We must choose the cyclic group that Alice and Bob shall use. They want to spend
as little effort as possible to establish the shared secret, both with respect to computa-
tion and communication. Which means that computing the group operation should be
reasonably fast, and group elements should have a reasonably compact representation.

At the same time, Alice and Bob want the established shared value to be secret. It
cannot be secret unless solving the Diffie-Hellman problem for the group Alice and Bob
use requires more computational effort than Eve can manage.

It is clear that if Eve can find a or b, then she can easily compute z = ya = xb.

d Definition 4. The discrete logarithm of x to the base g is the smallest non-negative
integer a such that x = ga. We write logg x = a.

The discrete logarithm problem in a cyclic group G is to find the discrete logarithm
of x to the base g, when x has been chosen uniformly at random from the group.

As we see, if Eve can compute discrete logarithms, she can easily compute the shared
value established by Alice and Bob. Conversely, it is generally believed (and there is
evidence to suggest that this is the case) that if Eve can compute the shared value, she
will be able to compute discrete logarithms as well.

Informally: It is conjectured that solving the Diffie-Hellman problem in a
group G is not (much) easier than computing discrete logarithms in G.

Under this conjecture, the study of the security of the Diffie-Hellman protocol re-
duces to the study of how easy it is to compute discrete logarithms in the group we
want to use.

We first begin with the observation that no choice of generator will make discrete
logarithm computations harder.

e Exercise 5. Let x be a group element of order m and a, b be integers. Prove that xa = xb

if and only if a ≡ b (mod m).

t Proposition 3. Let g1 and g2 be generators, and suppose logg1 g2 = a. Then logg2 g1 ≡
a−1 (mod n).

Proof. It is given that g2 = ga1 , and since g2 is a generator, there exists an integer b
such that g1 = gb2. We get that g1 = gab1 . Exercise 5 then says that

ab ≡ 1 (mod n),

and our claim follows.

The following exercise will justify that we do not much care about which base we
use and often omit it from theorems.

7

e Exercise 6. Show that if you can compute discrete logarithm with some generator g as
base, then you can compute discrete logarithms with any generator as base, at roughly
twice the cost.

e Exercise 7. Any cyclic group G of order n is isomorphic to Z+
n . Let λ : G → Z+

n be
a group isomorphism taking a generator g to 1 + 〈n〉. Show that computing discrete
logarithms to the base g is essentially the same as computing the group isomorphism λ.

We now begin by establishing a level of effort that will certainly be sufficient to
compute discrete logarithms. This will lead to our first requirement for a group to be
suitable for Diffie-Hellman.

t Proposition 4. Let G be a cyclic group of order n. The discrete logarithm of a group
element x ∈ G can be computed using less than n group operations.

Proof. Let g be a generator. Since gag = ga+1, we can compute the elements of the
sequence g0, g1, g2, . . . , gn−1 using n − 1 group operations. Clearly, we can also keep
track of the discrete logarithm of each element as we compute it, simply by counting
how many group operations we have done.

Since g is a generator, x must be one of the elements in the sequence, and we can
recognize it when we reach it. The claim follows.

The algorithm for computing discrete logarithms implied by the proof of the propo-
sition does more than just group operations, it also compares group elements and counts
how many group operations it has done. But the group operations will dominate the
computational effort. It therefore makes sense to focus on the number of group opera-
tions. This will be the case for all the algorithms in this section.

e Exercise 8. The proof of Proposition 4 essentially describes an algorithm for computing
logg x. Implement this algorithm and restate Proposition 4 as a statement about the
algorithm’s time complexity (in terms of group operations, ignoring everything else).

e Example 5. Consider the group G = F∗13 with generator g = 2. We want to compute
the discrete logarithm of x = 6.

We compute 20 = 1, 21 = 2, 22 = 2 · 2 = 4, 23 = 4 · 2 = 8, 24 = 8 · 2 = 3 and
25 = 3 · 2 = 6. We find that log2 6 = 5.

e Exercise 9. Use the algorithm from Exercise 8 to compute (by hand) the discrete loga-
rithm of 3972 to the base 5 in the group F∗10007.

The structure of our study of the discrete logarithm computation is to study various
ways of solving or simplifying the computation. Every time we improve our ability to
compute discrete logarithms in various groups, we better understand what kind of group
Alice and Bob can use for Diffie-Hellman.

Based on Proposition 4, we arrive at the following requirement.

Requirement 1. If n is the group order, n group operations must be an infeasible
computation.

8

3.1 An Unsuitable Group

It is easy to find cyclic groups with large group order. If n is any large number, then
Z+
n is a cyclic group of order n. A natural generator is 1 + 〈n〉, but the coset of any

integer relatively prime to n will do.
Note that this group is written additively. The Diffie-Hellman protocol then looks

like:

1. Alice chooses a number a uniformly at random from the set {0, 1, 2, . . . , n − 1}.
She computes x = a · (1 + 〈n〉) = a+ 〈n〉 and sends x to Bob.

2. Bob receives x from Alice. He chooses a number b uniformly at random from the
set {0, 1, 2, . . . , n − 1}, computes y = b · (1 + 〈n〉) and z = b · x, and sends y to
Alice.

3. Alice receives y from Bob. Alice computes z = a · y.

From the description, we see that x is essentially a, and it is immediately obvious
that this group is unsuitable for Diffie-Hellman.

e Exercise 10. Show that the Extended Euclidean algorithm can be used to compute
multiplicative inverses modulo n quickly (in time roughly proportional to log2 n integer
divisions and multiplications). Implement this algorithm.

e Exercise 11. Alice’s x is essentially equal to a since we used 1 + 〈n〉 as a generator.
Use Proposition 3 and the previous exercise to show that any other generator would be
equally insecure.

e Exercise 12. In Example 1, Alice and Bob use the group G = Z+
13 and generator g = 2.

Alice sends x = 6 to Bob, and Bob replies with y = 10. Use only this information,
together with the result from the previous exercise, to compute Alice’s secret value a,
Bob’s secret value b and the shared secret z.

This example shows us that a large group is necessary, but not sufficient for our
purposes.

3.2 Pohlig-Hellman I

There are many ways to describe and analyse the first part of the Pohlig-Hellman
algorithm for computing discrete logarithms. We shall rely on the algebraic structure
of cyclic groups, and begin with the observation that computing a discrete logarithm
in G is the same as computing the isomorphism from G to Z+

n taking g to 1 + 〈n〉. If
G has a suitable group structure, we can use that to simplify the computation of the
isomorphism.

Suppose for the remainder of this section that n = n1n2 with gcd(n1, n2) = 1. Define
the two sets

H1 = {xn2 | x ∈ G} and H2 = {xn1 | x ∈ G}.

9

e Exercise 13. Prove that the sets H1, H2 are subgroups of G of order n1, n2, respectively.

Next, define π1 : G→ H1, π2 : G→ H2 and π : G→ H1 ×H2 by

π1(x) = xn2 , π2(x) = xn1 and π(x) = (π1(x), π2(x)).

e Exercise 14. Prove that the maps π1, π2 are well-defined, that they are group homo-
morphisms and that they are surjective.

e Exercise 15. Prove that the map π is a group isomorphism by giving an inverse homo-
morphism.

It is interesting to compare the above results with the situation for Z+
n . We begin

by stating a version of the Chinese remainder theorem without proof.

t Theorem 5. Let n = n1n2 with gcd(n1, n2) = 1. Then as rings

Zn ' Zn1 × Zn2 ,

and the unique ring isomorphism and its inverse are easy to compute.

The map Z+
n → Z+

n1
× Z+

n2
corresponding to π above is given by k + 〈n〉 7→ (kn2 +

〈n1〉, kn1 + 〈n2〉). This map is a group isomorphism, but not a ring isomorphism, unlike
the Chinese remainder theorem ring isomorphism which takes k + 〈n〉 to (k + 〈n1〉, k +
〈n2〉).

Let λ : G → Z+
n , λ1 : H1 → Z+

n1
and λ2 : H2 → Z+

n2
be the group isomorphisms

satisfying λ(g) = 1 + 〈n〉, λ1(π1(g)) = 1 + 〈n1〉 and λ2(π2(g)) = 1 + 〈(n2〉. Note that λ1
and λ2 are carefully chosen, and correspond to discrete logarithms to the bases π1(g)
and π2(g).

t Proposition 6. The diagram

G Z+
n

H1 ×H2 Zn1
× Zn2

λ

π

λ1 × λ2

CRT

is commutative. (Here λ1×λ2 is the group isomorphism taking (x1, x2) to (λ1(x1), λ2(x2)).

Proof. It is sufficient to consider what happens to a group generator.
By definition, we have that λ1(π1(g)) = 1 + 〈n1〉 and λ2(π2(g)) = 1 + 〈n2〉.
Since gcd(n1, n2) = 1, the Chinese remainder theorem says that Z+

n1
×Z+

n2
is isomor-

phic to Z+
n . Moreover, the ring isomorphism given by the Chinese remainder theorem

takes the ring identity (1 + 〈n1〉, 1 + 〈n2〉) to the ring identity 1 + 〈n〉, which concludes
the proof.

10

Now that we have established the suitable group structure, all we need to do is to
ensure that we can use it.

t Proposition 7. Let G be a cyclic group of order n = n1n2, gcd(n1, n2) = 1. Let H1

and H2 be the subgroups of order n1 and n2, respectively. The discrete logarithm of any
group element x ∈ G can be computed by computing one discrete logarithm in H1 and
one discrete logarithm in H2, and also two exponentiations of x and two exponentiations
of g.

Proof. Consider the diagram from Proposition 6. Computing the maps π1 and π2 costs
one exponentiation each, and we need to apply the maps to g and x in order to know
what the λ1 and λ2 maps are. Computing discrete logarithms in H1 and H2 is the same
as computing the maps λ1 and λ2. Computing the ring isomorphism described by the
Chinese remainder theorem is cheap, so we can ignore that cost.

Computing discrete logarithms in G is equivalent to computing λ. Our claim follows
by Proposition 6 and the above accounting.

e Exercise 16. The proof of Proposition 7 essentially describes an algorithm for computing
discrete logarithms, using a different algorithm for computing discrete logarithms in
subgroups. Implement this algorithm and restate Proposition 7 as a statement about
the algorithm’s time complexity (in terms of group operations and computing discrete
logarithms in subgroups, ignoring any other form of computation involved).

e Example 6. Consider the group G = Z+
72 with generator g = 1, and let x = 23. We

want to compute logg x. (The answer is of course obvious, but we do not actually care
about the answer, we just want to understand how the algorithm works.)

Since n = 72 = 8 · 9, we let n1 = 8 and n2 = 9.
We compute π1(g) = 9 · 1 = 9 and π1(x) = 9 · 23 = 63. We can now observe that

π1(x) = 63 = 7 · 9 = 7 · π1(g), so λ1(π1(x)) = 7.
Next, we compute π2(g) = 8 · 1 = 8 and π2(x) = 8 · 23 = 40. Again, we observe that

π1(x) = 40 = 5 · 8 = 5 · π2(g), so λ2(π2(x)) = 5.
Finally, the canonical CRT map takes (7, 5) to 23, as expected.

e Exercise 17. Observe that 72 = 8 · 9. Use the algorithm from Exercise 16 to compute
(by hand) the discrete logarithm of 70 to the base 5 in the group F∗73.

An alternative, more computational approach to proving the theorem is to observe
that if logg x = a then

xn2 = gan2 = (gn2)a,

which by Exercise 5 means that

a ≡ loggn2 x
n2 (mod n1).

In the same way, we get that

a ≡ loggn1 x
n1 (mod n2).

11

It follows that if we can compute the discrete logarithms to the bases gn1 and gn2 , we
can use the Chinese remainder theorem to recover the logarithm to the base g.

e Example 7. We redo Example 6.
We compute n2 · g = 9 · 1 = 9 and n2 ·x = 9 · 23 = 63. We compute that log9 63 = 7,

which means that a ≡ 7 (mod 8).
Next, we compute n1 · g = 8 · 1 = 8 and n1 · x = 8 · 23 = 40. We compute that

log8 40 = 5, which means that a ≡ 5 (mod 9).
Finally, we use CRT to find that a = 23.

e Exercise 18. State a variant of Proposition 7 and prove it using the above computational
approach.

t Theorem 8 (Pohlig-Hellman I). Let G be a cyclic group of order n =
∏l
i=1 `

ri
i , where

`i 6= `j when i 6= j. The discrete logarithm of a group element x ∈ G can be computed
by computing one discrete logarithm in each of the subgroups of order `rii , and also l
exponentiations of x and l exponentiations of g.

Proof. We apply Proposition 7 repeatedly and the theorem follows.

e Exercise 19. The proof of Theorem 8 essentially describes an algorithm for computing
discrete logarithms. Implement this algorithm and restate Theorem 8 as a statement
about the algorithm’s time complexity (in terms of group operations and computing
discrete logarithms in subgroups, ignoring any other form of computation involved).

You may use the algorithm and statement from Exercise 16 as a subroutine and
lemma, respectively.

Based on Proposition 4 and Theorem 8, we arrive at the following requirement.

Requirement 2. If n =
∏l
i=1 `

ri
i is the group order and `rll is the largest prime power

dividing n, `rll group operations must be an infeasible computation.

3.3 Pohlig-Hellman II

In the previous section, we saw how computing discrete logarithms can be reduced to
computing discrete logarithms in subgroups whose orders are prime powers. We shall
now see how computing discrete logarithms in a group whose order is a prime power
can be reduced to computing discrete logarithms in a prime-ordered subgroup.

Suppose for the remainder of this section that the group order n is a prime power
`r for some prime `.

Define the sets
Hi = {x`i | x ∈ G}, 0 ≤ i ≤ r.

Note that Hr = {1}.
e Exercise 20. Prove that the sets H0, H1, . . . ,Hr are subgroups of G such that H0)
H1) · · ·) Hr. Prove also that Hr−1 is isomorphic to Z+

` .

12

Now we consider the maps πi : Hi → Hr−1 defined by

πi(y) = y`
r−i−1

, 0 ≤ i ≤ r − 1.

e Exercise 21. Prove that the πi maps are surjective group homomorphisms.

e Exercise 22. Show that if y ∈ Hi, then y`
j ∈ Hi+j for any j ≥ 0. Show also that

πi+j(y
`j) = πi(y).

e Exercise 23. Prove that the kernel of πi is Hi+1.

t Proposition 9. Let g be a generator for G, let y ∈ Hi and let a = logπ0(g) πi(y). Then

yg−`
ia ∈ Hi+1.

Proof. Note first that g`
i ∈ Hi, and that πi(y) = π0(g)a. Using Exercise 22, we compute

πi(yg
−`ia) = πi(y)πi(g

`i)−a = π0(g)aπ0(g)−a = 1.

The claim now follows from Exercise 23.

This suggests a recursive algorithm for computing discrete logarithms.

t Theorem 10 (Pohlig-Hellman II). Let G be a cylic group of order n = `r, where ` is
prime. The discrete logarithm of a group element x ∈ G can be computed by computing
r discrete logarithms in the subgroup of order ` (all to the same base), and also r − 1
exponentiations of group elements, r − 1 group operations and r exponentiation of g.

Proof. We construct a sequence of group elements y0, y1, . . . , yr and integers a0, a1, . . . , ar−1
as follows. We begin with y0 = x, and compute

ai = logπ0(g) πi(yi) and yi+1 = yig
−`iai , for 0 ≤ i < r.

By Proposition 9, this sequence is well-defined and yr = 1. Which means that

1 = yr−1g
−`r−1ar−1 = · · · = xg−

∑r−1
i=0 ai`

i

.

Note that 0 ≤ ai < ` for 0 ≤ i < r, which means that 0 ≤ ∑r−1
i=0 ai`

i < `r. By
Exercise 5, we get that

logg x =

r−1∑

i=0

ai`
i,

Each iteration requires the computation of one discrete logarithm in the subgroup
Hr−1, and also one evaluation of πi (one exponentiation of a group element), one ex-
ponentiation of g and one group operation. The latter can be ignored for the final
iteration, of course.

There is a total of r iterations. We also have to compute π0(g) (one exponentiation
of g) once.

13

e Exercise 24. The proof of Theorem 10 essentially describes an algorithm for computing
discrete logarithms. Implement this algorithm and restate Theorem 10 as a statement
about the algorithm’s time complexity (in terms of group operations and computing
discrete logarithms in subgroups, ignoring any other form of computation involved).

e Example 8. Consider the group G = Z+
27 with generator g = 1, and let x = 23. We

want to compute logg x.
Since n = 27 = 33, we find that the subgroup H1 is all the multiples of 3, while

H2 = {0, 9, 18} is the multiples of 9 = 32. The map π0 then maps y ∈ G = H0 to
32 · y ∈ H2, while π1 maps y ∈ H1 to 3 · y ∈ H2.

First we see that π0(g) = 9 · 1 = 9.
With y0 = x = 23, we get π0(x) = 9 · 23 = 18 = 2 · 9, so a0 = 2.
We compute y1 = x0−a0 ·g = 23−2 ·1 = 21. We then get π1(21) = 3 ·21 = 9 = 1 ·9,

so a1 = 1.
Finally, we compute y2 = y1 − (3a1) · g = 21− (3 · 1) · 1 = 18 = 2 · 9, so a2 = 2.
We get log1 23 = 2 + 1 · 3 + 2 · 32 = 23.

e Exercise 25. Use the algorithm from Exercise 24 to compute the discrete logarithm
of 85 to the base 11 in the group Z+

125. (Note that we are talking about the additive
group here, where the group operation is addition modulo 125 and exponentiation is
multiplication modulo 125.)

e Exercise 26. Observe that 72 = 2332.

1. In F∗73, 2 generates a subgroup of order 32. Use the algorithm from Exercise 24
to compute (by hand) the discrete logarithm of 64 to the base 2 in the subgroup
of F∗73.

2. In F∗73, 10 generates a subgroup of order 23. Use the algorithm from Exercise 24
to compute (by hand) the discrete logarithm of 27 to the base 10 in the subgroup
of F∗73.

3. Use the algorithm from Exercise 16 together with the algorithm from Exercise 24
to compute (by hand) the discrete logarithm of 70 to the base 5 in the group F∗73.
You should use the results of the previous two exercises in your computation.

An alternative, more computational approach to proving Proposition 10 begins by
writing a =

∑
ai`

i and then observing that if

y = g
∑r−1

i=j ai`
i

,

then
y`

j−1

= gaj`
r−1

.

e Exercise 27. Give a proof of Theorem 10 using the above computational approach.

14

e Example 9. Consider the group G = Z+
27 with generator g = 1, and let x = 23. We

want to compute logg x.
We write logg x = a0 + 3a1 + 32a2.
First we compute 9 · g = 9 · 1 = 9.
Let y0 = x = (a0 + 3a1 + 32a2) · 1. We compute 9 · 23 = 18 = 2 · 9, which tells us

that
9(a0 + 3a1 + 32a2) ≡ 9 · 2 (mod 27) ⇒ a0 = 2.

We get y1 = y0− 2 · 1 = 21 = (3a1 + 32a2) · 1. We compute 3 · y1 = 3 · 21 = 9 = 1 · 9,
which tells us that

3(3a1 + 32a2) ≡ 9 · 1 (mod 27) ⇒ a1 = 1.

We get y2 = y1 − (3 · 1) · 1 = 18 = (32a2) · 1. We compute y2 = 2 · 9, which tells us
that

32a2 ≡ 9 · 2 (mod 27) ⇒ a2 = 2.

We get that logg 23 = 2 + 3 · 1 + 32 · 2 = 23.

Based on Proposition 4, Theorem 8 and Theorem 10, we arrive at the following
requirement.

Requirement 3. If n =
∏l
i=1 `

ri
i is the group order and `l is the largest prime dividing

n, `l group operations must be an infeasible computation.

3.4 Shank’s Baby-step Giant-step

In this section, we shall improve on Proposition 4 by trading reduced computational
effort for increased memory use. Let G be a cyclic group of order n. We must assume
that there is some total order � on the group elements, such that the following two
claims hold when L≪ n:

Sorting With effort comparable to computing L group operations, a list of pairs of
group elements and integers (x1, a1), (x2, a2), . . . , (xL, aL) can be rearranged into
a new list (y1, b1), (y2, b2), . . . , (yL, bL) satisfying yi � yj when i ≤ j.

Searching With effort comparable to computing one group operation, we can decide
if a group element x is present in a list of pairs of group elements and integers
(y1, b1), (y2, b2), . . . , (yL, bL) satisfying yi � yj when i ≤ j. If the element is
present, we also learn what its corresponding number b is.

The algorithm we are interested in begins with the observation that logg x = bL+b′,
where 0 ≤ b′ < L.

t Theorem 11. Let G be a cyclic group of order n. For any positive integer L≪ n, the
discrete logarithm of an element x ∈ G can be computed using memory to hold L group
elements and L+ dn/Le group operations.

15

Proof. First we construct a list of pairs of group elements and their discrete logarithms

(1, 0), (g, 1), (g2, 2), (g3, 3), . . . , (gL−1, L− 1).

Computing this list requires less than L group operations and memory to hold L group
elements. By assumption, we can sort the list into the list

(y1, b1), (y2, b2), (y3, b3), . . . , (yL, bL)

using effort comparable to what it took to create the list. Note that we can now quickly
decide if the discrete logarithm of any group element is less than L, and if so, what its
discrete logarithm is.

Recall that we can write logg x = bL+ b′, where 0 ≤ b′ < L. Therefore

0 ≤ logg x(g−L)b < L.

We can find b and b′ by computing successively

x, xg−L, x(g−L)2, x(g−L)3, . . .

and for each element check if it is in our list. Note that computing the next element
requires one group operation, while the check requires comparable effort.

We know that we will find an element in our list before computing dn/Le elements.
It follows that we will find the discrete logarithm of x with at most L + dn/Le group
operations.

e Exercise 28. The proof of Theorem 11 essentially describes an algorithm for computing
discrete logarithms. Implement this algorithm and restate Theorem 11 as a statement
about the algorithm’s time complexity (in terms of group operations, ignoring any other
form of computation involved).

e Example 10. Consider the group G = Z+
29 with generator g = 1, and let x = 23. We

want to compute logg x.
We first compute the list of group elements, choosing L = 5. Sorting is easy for this

group.
i · g 0 1 2 3 4
i 0 1 2 3 4

We also compute −5 · g = 24.
We see that 23 is not in the table, so we compute 23 + 24 = 18. This is not in the

table, so we compute 18 + 24 = 13. This is not in the table, so we compute 13 + 24 = 8.
Again, this is not in the table, so we compute 8 + 24 = 3.

We find that 3 is in the table, with discrete logarithm 3. We have added −5 · g to
23 four times. It follows that

logg 23 = 4 · 5 + 3.

e Exercise 29. What value of L minimizes computational effort?

16

e Exercise 30. Using the algorithm from Exercise 28 to compute (by hand) the discrete
logarithm of 51 to the base 2 in the group F∗59.

e Exercise 31. Decide the optimal value of L if we need to compute the discrete logarithm
of k group elements x1, x2, . . . , xk.

e Exercise 32. Suppose we know that logg x < k. Show that for any L > 0 we can
compute this discrete logarithm using at most L+ dk/Le group operations.

e Exercise 33. Suppose we know that k1 ≤ logg x < k2. Show that for any L > 0 we can
compute this discrete logarithm using at most L+ d(k2 − k1)/Le group operations.

Based on Theorems 8, 10 and 11, we arrive at the following requirement.

Requirement 4. If n is the group order and ` is the largest prime dividing n, then
L + d`/Le group operations using memory for L group elements must be an infeasible
computation.

3.5 Pollard’s ρ

In this section, we shall consider a group G with a prime n number of elements. In
the previous section, we saw that we could trivially recover the discrete logarithm of x
given an equation of the form x(g−L)b = gb

′
. Pollard’s ρ method will try to generate

an equation of the form
gaxb = ga

′
xb
′
, (1)

with b 6≡ b′ (mod n), after which it is easy to see that logg x ≡ (a − a′)(b′ − b)−1

(mod n).
Pollard’s ρ method relies on connecting two separate ideas with a conjecture to arrive

at an algorithm for finding a relation like (1) above. The first idea is that in sequences
of randomly chosen elements we will quickly see repetitions. The second idea is that
in certain sequences we can quickly find cycles. The conjecture is that, with respect to
repetitions, certain non-random sequences “look random”. It is the repetitions in this
sequence that will cause cycles, which we can quickly find and which will give us the
required relation.

We begin with the first idea and a sequence of elements chosen at random. What is
the probability that there are no repetitions within the first L elements of the sequence?

t Proposition 12. Suppose we have a sequence of elements s1, s2, s3, . . . , the elements
chosen independently and uniformly at random from a set S with n elements. Let E be
the event that the L first elements are all distinct. Then

1− L(L− 1)

2n
≤ Pr[E] ≤ exp

(
−L(L− 1)

2n

)
.

Proof. If L ≥ n, then Pr[E] = 0 and the claim holds. So we may assume L < n.

17

Choosing elements one after another, we see that we have n choices for the first
element, n− 1 choices for the second element, n− 2 choices for the third element, and
so forth. By independence and uniformity, we get that

Pr[E] = (1− 1/n)(1− 2/n) · · · (1− (L− 1)/n).

Note that 1− ε ≤ exp(−ε) for any ε, so

Pr[E] ≤ e−1/ne−2/n · · · e−(L−1)/n = exp

(
−
L−1∑

i=1

i/n

)
= exp

(
−L(L− 1)

2n

)
.

For the lower bound, we consider the complementary event. Let Fi be the event
that the ith chosen element coincides with at least one of the previous elements. Then
Pr[Fi] ≤ (i− 1)/n, and we get that

1− Pr[¬E] = 1− Pr[F1 ∨ F2 ∨ · · · ∨ FL]

≥ 1−
L∑

i=1

Pr[Fi] ≥ 1−
L∑

i=1

i− 1

n
≥ 1− L(L− 1)

2n
,

which concludes the proof.

Note that the sequence we shall consider next is far from random, and this propo-
sition and its proof do not apply. But many non-random sequences are still “random-
looking” with respect to repetitions in the sequence, which means that the bounds in
the proposition apply in practice. This will be sufficient for our purposes.

Now we shall consider the problem of finding cycles in the special kind of infinite
sequences generated by a starting point s1 ∈ S, a function f : S → S and the rule
si+1 = f(si). The sequence eventually becomes cyclic (for some integers i, j, k, sj+k = sj
when j ≥ i) when S is finite.

t Proposition 13. Let s1, s2, . . . be the sequence defined by s1 and the rule si+1 = f(si).
Suppose k is the smallest integer such that sk = sk′ for some k′ < k. Then distinct
indexes i, j can be found such that si = sj using at most 3k evaluations of f .

Proof. We consider the sequence t1, t2, . . . given by tj = s2j . It is clear that for some i,
ti = si, and that this i is at most k.

We can compute successively the pairs (s1, t1), (s2, t2), . . . using the rule

(si+1, ti+1) = (f(si), f(f(ti))).

We will notice when si = ti, at which point we have found si = s2i. Computing each
new pair requires evaluating f three times. The claim follows.

e Exercise 34. The proof of Proposition 13 essentially describes an algorithm for finding
two integers. Implement this algorithm and restate Proposition 13 as a statement about

18

the algorithm’s time complexity (in terms of evaluations of the function f).

Now we are ready to construct a sequence that should allow us to find an equation
like (1) and thereby compute discrete logarithms.

Our set will be the group G, of course. Suppose {S1, S2, S3} is a partition of G – S1,
S2 and S3 are pairwise disjoint sets whose union is G – where the three subsets have
approximately the same cardinality. Suppose also that it is easy to check which subset
an element is in.

Finally, we are ready to construct a sequence y1, y2, . . . based on S1, S2, S3, a gen-
erator g and a group element x. We let y1 = x and

yi+1 =

yig yi ∈ S1,

y2i yi ∈ S2, or

yix yi ∈ S3.

(2)

Based on the sequence y1, y2, . . . , we can define a sequence of integer pairs (a1, b1), (a2, b2), . . .
starting with (a1, b1) = (0, 1) and using the rule

(ai+1, bi+1) =

(ai + 1 mod n, bi) yi ∈ S1,

(2ai mod n, 2bi mod n) yi ∈ S2, or

(ai, bi + 1 mod n) yi ∈ S3.

(3)

e Exercise 35. Show that the above two sequences defined by (2) and (3) satisfy yi =
gaixbi .

e Example 11. Consider G = Z+
31 with generator g = 1, x = 7 and the (randomly chosen)

partition:
S1 4, 9, 11, 14, 15, 16, 21, 24, 29, 30
S2 1, 6, 7, 8, 10, 18, 19, 20, 25, 27
S3 0, 2, 3, 5, 12, 13, 17, 22, 23, 26, 28

Given the starting point y1 = x = 7, we get the sequences

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j 1 2 3 4 5 6 7 8
yi 7 14 15 16 17 24 25 19 7 14 15 16 17 24 25 19

S2 S1 S1 S1 S3 S1 S2 S2 S2 S1 S1 S1 S3 S1 S2 S2

ai 0 0 1 2 3 3 4 8 16 1 2 3 4 4 5 10
bi 1 2 2 2 2 3 3 6 12 24 24 24 24 25 25 19

By inspection, we see that y9 = y1 = 7, while the algorithm from Exercise 34 finds the
repetition y8 = y2·8.

e Exercise 36. Consider the subgroup G of F∗107 with 53 elements. Use the generator
g = 11 and x = 85. Also use the partition where y ∈ Si ⇔ y ≡ i− 1 (mod 3).

19

1. Compute (by hand) the 20 first terms of the sequences from (2) and (3).

2. Find by inspection the first repetition in the sequence y1, y2,

3. Use the algorithm from Exercise 34 to find a repetition in this sequence.

e Exercise 37. Let y1, y2, . . . and (a1, b1), (a2, b2), . . . be the above sequences defined by
(2) and (3) and suppose k is the smallest integer such that yk = yk′ for some k′ < k.
Prove that distinct indexes i, j along with corresponding pairs (ai, bi) and (aj , bj) can
be found such that yi = yj using at most 3k group operations and 6k additions and
multiplications modulo n.

Let E be the event that the L first elements of y1, y2, . . . are all distinct, and let E′

be the event that the L first pairs of (a1, b1), (a2, b2), . . . are all distinct. Then we can
define the two functions

θ(L, n) = Pr[E] and γ(L, n) = 1− Pr[E′].

We can now prove the following result.

t Theorem 14. Let G be a cyclic group of order n. The discrete logarithm of an element
x ∈ G can be computed using 3L group operations and 6L + 3 arithmetic operations
modulo n, except with probability at most θ(L, n) + γ(L, n).

Proof. Some element will appear twice among the L first elements of the sequence
described by (2) except with with probability θ(L, n).

The corresponding pairs (ai, bi) and (aj , bj) will be distinct except with probability
γ(L, n).

This repetition yi = yj gives us an equation of the form (1), namely

gaixbi = gajxbj .

When bi 6= bj , we can compute the discrete logarithm of x, since n is prime.
By Exercise 37 we can find the indexes of the repetition, while at the same time

keeping track of the sequence described by (3), using at most 3L group operations and
6L arithmetic operations modulo n. The claim follows.

e Exercise 38. The proof of Theorem 14 essentially describes an algorithm for computing
discrete logarithms. Implement this algorithm and restate the claim in Theorem 14
as a statement about the algorithm’s time complexity (in terms of group operations
and arithmetic operations modulo n) and success probability (in terms of θ(L, n) and
γ(L, n)).

e Example 12. Continuing from Example 11, we use the algorithm from Exercise 37 to
find a repetition in the sequence y1, y2, . . . , and find that y16 = y8.

20

From the already computed values, we find that

8 · 1 + 6 · x = 10 · 1 + 19 · x ⇒ logg x ≡
8− 10

19− 6
≡ (−2)(12) ≡ 7 (mod 31).

e Exercise 39. Use the algorithm from Exercise 38 to compute (by hand) the discrete
logarithm of 85 to the base 11 in the group F∗107.

When we choose a reasonable partition {S1, S2, S3}, it seems plausible that some-
thing similar to the claims of Proposition 12 should hold for the two sequences, and in
practice, this seems to be true. We phrase this in terms of a conjecture. Note that in
this conjecture the probability is taken over the choice of the element x.

t Conjecture 15. For reasonable partitions {S1, S2, S3}, the function θ(L, n) is roughly
similar to

exp

(
−L(L− 1)

2n

)

and γ(L, n) is roughly similar to
L(L− 1)

2n2
.

Based on Conjecture 15 and Theorems 8, 10 and 14, we arrive at the following
requirement.

Requirement 5. If n is the group order and ` is the largest prime dividing n, then
√
`

group operations must be an infeasible computation.

4 Primality Testing

Throughout this section, we shall take n to be a large odd integer.
We want to be able to distinguish prime integers from composite integers. The

following proposition is obvious, since a composite integer must have a proper divisor
smaller than the square root of the integer and we can in principle check every possible
divisor.

t Proposition 16. We can decide if a number n is prime using at most
√
n integer

divisions.

Unfortunately, the algorithm implied by this proposition is useless for large inte-
gers, and therefore for our purposes. However, having divisors is just one difference in
behaviour between composite and prime integers.

To distinguish primes from composites, we shall find a subset S of Z∗n with three
properties:

1. It is easy to check if an element is in S or not.

2. If n is prime, then S = Z∗n.

3. If n is composite, then S contains at most half of all the elements of Z∗n.

21

If our three properties are satisfied, we can recognize primes as follows. First, we
choose k elements from Z∗n uniformly and independently at random. Then we check if
all of these elements are in the subset S. If any element is not in the subset, we conclude
that n is composite. Otherwise, we conclude that n may be prime.

If one or more of the elements are not in the subset, we have proved that S is a
proper subset, from which it follows that n is composite. Any element that is not in
the subset is a witness for the fact that n is not prime.

The probability that all of the random elements lie inside S is of course (|S|/|Z∗n|)k.
For moderately large k, if |S|/|Z∗n| < 1/2, this probability will be very small. It follows
logically that if all of the random elements lie inside S, it is most likely that n is prime.
Note that it is not certain that n is prime, just likely.

4.1 Fermat’s Test

Our first attempt is based on Fermat’s little theorem.

t Theorem 17. If n is prime, then for any integer a not divisible by n,

an−1 ≡ 1 (mod n). (4)

We now define our subset, which turns out to also be a subgroup.

e Exercise 40. Let Gn ⊆ Z∗n be the set

Gn = {x ∈ Z∗n | xn−1 = 1}. (5)

Show that Gn is a subgroup of Z∗n, and that if n is prime then Gn = Z∗n.

e Exercise 41. Show that there is an algorithm that can decide if an element x ∈ Z∗n is
in Gn or not using at most one exponentiation.

We have now shown that we have a subset Gn and that we can distinguish its mem-
bers easily. Fermat’s little theorem says that if n is prime, then Gn = Z∗n. Furthermore,
if Gn is a proper subgroup, then it will contain at most half of all the elements of Z∗n.

e Exercise 42. Exercise 41 together with the strategy described above informally describes
an algorithm that decides if the subgroup Gn is a proper subgroup of Z∗n. Implement
this algorithm. Formulate and prove a statement about the algorithm’s time complexity
(in terms of exponentiations) and success probability (the probability that the algorithm
decides correctly).

Note the careful phrasing. The exercise only says that the algorithm can decide if
Gn is likely to be a proper subgroup, not if n is likely to be prime. Of course, if Gn is a
proper subgroup, we know that n is composite, so we can attempt to use this to prove
that numbers are composites.

e Example 13. Consider n = 55. First we try 34 and compute that

3454 ≡ 1 (mod 55).

22

This means that 34 does not disprove that 55 is prime. Next we try 21 and compute
that

2154 ≡ 1 (mod 55).

Again, this means that 21 does not disprove that 55 is prime. Next we try 27 and
compute that

2754 ≡ 9 (mod 55),

which proves that 55 is composite. Note that we have not found any factors of 55.

e Exercise 43. Use the algorithm from Exercise 42 to prove two of the three numbers 767,
13457 and 83693 composite.

Unfortunately, our strategy will fail for some composite numbers.

d Definition 5. A Carmichael number is a composite integer n such that Gn = Z∗n.

The algorithm from Exercise 42 does not distinguish prime numbers from composite
numbers, but rather prime and Carmichael numbers from non-Carmichael composites.

e Exercise 44. Use the algorithm from Exercise 42 to prove one of the two numbers 294409
and 951253 composite. What about the other number?

Carmichael numbers not only exist, but there are infinitely many of them. Fortu-
nately, Carmichael numbers are rare, in the sense that we are unlikely to run into one
in most cryptographic applications. This means that for most cryptographic purposes,
this test would be good enough. But it is easy to do better.

4.2 Soloway-Strassen Test

The Soloway-Strassen test relies on a simple way to decide if a number is a square
modulo a prime. Before we can explain the test, we require a bit of number theory.

d Definition 6. Let p be a prime. For any integer a, the Legendre symbol is defined to
be

(
a

p

)
=

1 if there exists b 6≡ 0 (mod p) such that b2 ≡ a (mod p),

0 p divides a, and

−1 otherwise.

Let n be an integer with prime factorization n =
∏
i p
ri
i . For any integer a, the Jacobi

symbol is defined to be (a
n

)
=
∏

i

(
a

pi

)ri
.

Note that if n is prime, the Jacobi symbol coincides with the Legendre symbol.
We can consider the Legendre symbol to be a map from F∗p to its subgroup {±1}.

The inverse image of 1 is the set of all group elements that are squares.

23

Likewise, we can consider the Jacobi symbol
(·
n

)
to be a map from Z∗n to its subgroup

{±1}.
e Exercise 45. Let Hn ⊆ Z∗n be the set

Hn =
{
x ∈ Z∗n | x

n−1
2 =

(x
n

)}

Show that Hn is a subgroup of Z∗n.

We have defined our subset. We now need to be able to decide if an element lies in
Hn or not, which means that we need to be able to compute the Jacobi symbol quickly.
We can do this using quadratic reciprosity as well as other properties of the Jacobi
symbol. We state the properties of the Jacobi symbol without proof.

t Fact 18. Let n be an odd integer and let a, b be integers that are relatively prime to n.
For the final point, a should also be odd. Then the following hold:

1.
(
a
n

)
=
(
b
n

)
if a ≡ b (mod n).

2.
(
ab
n

)
=
(
a
n

) (
b
n

)
.

3.
(
2
n

)
=

{
1 if n is congruent to 1 or 7 modulo 8,

−1 otherwise.

4.
(
a
n

)
=

{
−
(
n
a

)
if n and a are both congruent to 3 modulo 4,(

n
a

)
otherwise.

e Exercise 46. Show that using the above properties of the Jacobi symbol, we can con-
struct an algorithm for quickly computing the Jacobi symbol. Implement this algorithm.

e Example 14. We want to compute the Jacobi symbol
(
34
55

)
. We get

(
34

55

)
=

(
2

55

)(
17

55

)
=

(
17

55

)
=

(
55

17

)
=

(
4

17

)
= 1.

We use the second, third, fourth, first and third properties of the Jacobi symbol, re-
spectively.

e Example 15. We want to compute the Jacobi symbol
(

34
385

)
. We get

(
34

385

)
2.
=

(
2

385

)(
17

385

)
3.
=

(
17

385

)
4.
=

(
385

17

)
1.
=

(
11

17

)
4.
=

(
17

11

)

1.
=

(
6

11

)
2.
=

(
2

11

)(
3

11

)
3.
= −

(
3

11

)
4.
=

(
11

3

)
1.
=

(
2

3

)
3.
= −1.

The Jacobi symbol property used is marked above each equality sign.

24

e Exercise 47. Compute the Jacobi symbol
(

7
294409

)
.

The next theorem shows that Hn = Z∗n when n is prime.

t Theorem 19. Let n be an odd prime and let a ∈ Z∗n. Then

(a
n

)
= a

n−1
2 . (6)

Proof. Recall that the Legendre symbol of a group element is 1 if and only if that
element is a square in the group.

When n is prime, Proposition 21 says that Z∗n is cyclic of order n− 1. Let g be any
generator. When the group order n−1 is even, the squares are the elements of the form
g2i for integers i, while the non-squares are of the form g2i+1. We see that

(g2i)
n−1
2 = (gn−1)i = 1 and (g2i+1)

n−1
2 = (gn−1)ig

n−1
2 = −1,

which proves the theorem.

We are now very close to an algorithm that decides if a number is prime or not. All
that remains is to show that whenever n is composite, Hn is a proper subgroup of Z∗n.

t Theorem 20. Let n be an odd composite number. Then there exists a ∈ Z∗n such that
(6) does not hold.

Proof. We consider two cases, whether or not n is square-free.
First, suppose there is a prime p such that p2 divides n. Let n2 = n/p, and let a be

the integer 1 +n2, which is not congruent to 1 modulo n, but is congruent to 1 modulo
n2 and p. The Jacobi symbol is

(a
n

)
=

(
a

p

)(
a

n2

)
=

(
1

p

)(
1

n2

)
= 1.

We shall show that a has order p modulo n. Since p does not divide n− 1, it will follow
that a(n−1)/2 is not congruent to 1 modulo n, and therefore that a+〈n〉 does not satisfy
(6).

From the binomial theorem, it follows that

ap ≡ (1 + n2)p ≡
p∑

i=0

(
p

i

)
ni2 (mod n).

It is clear that n divides every other term of the sum except the first term (which is 1)
and possibly the second term. But since p divides

(
p
1

)
, n divides the second term too,

and ap has order p modulo n.

25

Next, suppose that no square of any prime divides n. Let p be any prime dividing
n and let n2 = n/p. Let also b be any integer that is not a square modulo p with
gcd(b, n) = 1. By the Chinese remainder theorem, we can find an integer a satisfying

a ≡ 1 (mod n2),

a ≡ b (mod p).

Note that the first equation implies that

a(n−1)/2 ≡ 1(n−1)/2 ≡ 1 (mod n2),

which means that a(n−1)/2 6≡ −1 (mod n). Finally, we compute the Jacobi symbol of a
as (a

n

)
=

(
b

p

)(
1

n2

)
= (−1) · 1 = −1.

It follows that (6) does not hold for a+ 〈n〉.

It is now clear that our strategy will work.

e Exercise 48. Exercise 45, Exercise 46 and our strategy can be combined into an al-
gorithm that decides if the subgroup Hn is a proper subgroup of Z∗n. Implement this
algorithm and formulate and prove a statement about the algorithm’s time complexity
(in terms of exponentiations) and success probability.

Exercise 48 allows us to decide if Hn is a proper subgroup of Z∗n or not. By Theo-
rems 19 and 20, we know that it is a proper subgroup if and only if n is a composite
number. In other words, we have an efficient way to decide if a number is prime or not.

e Example 16. Consider n = 55. First we try 34 and compute that

3427 ≡ 34 6≡ ±1 (mod 55),

which proves that 55 is composite. Note that we have not found any factors of 55.

e Example 17. Consider n = 385. First we try 309 and compute that

309192 ≡ 1 ≡
(

309

385

)
(mod 385).

This means that 309 does not disprove that 385 is prime. Next, we try 34 and compute
that

34192 ≡ 1 6≡
(

34

385

)
(mod 385),

which proves that 385 is composite. Note that we have not found any factors of 385.

e Exercise 49. Use the algorithm from Exercise 48 to prove the two numbers 294409 and
951253 composite.

26

e Exercise 50. Choose several random numbers between 106 and 107. Use the algorithm
from Exercise 48 to decide primality for each number with reasonable certainty. For
the composites, how many random numbers do you need to test before disproving their
primality.

Redo the exercise for random numbers between 1020 and 1021.
Are the results surprising? Should they be?

5 Finite Fields

The non-zero elements of a finite field with q form an abelian group under multiplication,
and we denote this group by F∗q . The question we shall now investigate is if this group
is suitable for use in Diffie-Hellman.

We begin by showing that this group is cyclic. Note that we may still want to use
a subgroup and not the whole group.

t Proposition 21. The group F∗q is cyclic.

Proof. Let n be the maximal order of any element in F∗q . We know that the order of
any element in a group divides the group order, so specifically n ≤ q− 1. Furthermore,
the order of any element in F∗q must divide n.

For any x ∈ F∗q we therefore have that xn = 1 or xn − 1 = 0.
Now consider the polynomial Xn − 1. As we have just seen, every non-zero field

element is a zero of this polynomial. We know that a polynomial of degree d > 0 over
any field has at most d zeros, so n ≥ q − 1. We can conclude that n = q − 1.

Since we have an element of order q − 1, the group order, the group is cyclic.

Requirement 5 says that the order of any group we use in Diffie-Hellman should be
divisible by a large prime. In other words, we need a large prime power q such that
q − 1 is divisible by a large prime.

It turns out (for reasons that we shall not investigate) that computing discrete
logarithms in extension fields is easier than in prime fields of comparable size. Therefore
we restrict our study to prime fields.

Before we go on to discuss how we can find suitable primes, we first discuss the
details of the group operation.

5.1 Group Operation

Let p be a prime. Mathematically, the finite field Fp consists of a set of p elements, two
of which are distinguished (0 and 1), along with two binary operations + and ·.

The field is isomorphic to the factor ring Z/〈p〉, where it is easy to compute. To
add, subtract or multiply, we simply add, subtract or multiply representatives of the
cosets to get new representatives. To divide by ξ + 〈p〉, we first find an inverse ζ of ξ
modulo p, then multiply by ζ + 〈p〉 (again by multiplying representatives).

27

This is unproblematic mathematically, but computationally it is awkward because
the size of the representatives tends to grow very quickly, making arithmetic very slow.
However, we know that two integers represent the same coset if and only if they are
congruent modulo p. Which means that after we do some arithmetic operation on the
representatives, we may divide the (possibly large) new representative by p and use the
remainder as our representative for the result coset.

What happens is that we represent the field elements using the integers {0, 1, . . . , p−
1} and do arithmetic as integer arithmetic followed by taking the remainder after divi-
sion by p.

It follows that a group operation costs two arithmetic operations, while finding an
inverse in the group is somewhat more expensive.

e Exercise 51. Find reasonable algorithms for addition, subtraction, multiplication, divi-
sion. We can use the Extended Euclidian algorithm to compute inverses. Implement
any of these that are missing in your favourite programming language. Compare these
algorithms in terms of run-time.

5.2 Finding Suitable Primes

The prime number theorem says that in any given range of integers, primes are fairly
common (inversely proportional to the number of digits). Since we can efficiently rec-
ognize primes, we can fairly quickly find large primes simply by choosing random large
numbers until we find a prime.

By Requirement 5, we need a cyclic group such that the group order is divisible by
a large prime. This means that we are not just looking for primes, we are looking for a
prime p such that p− 1 is divisible by a large prime.

We can do this by first choosing a sufficiently large prime ` and then choosing random
numbers k until 2k`+1 is prime. In practice, this algorithm performs as well as a search
for an arbitrary prime.

e Example 18. Testing integers sequentially starting at 2000, we find that ` = 2003 is
prime. We then test multiples starting with 101 and find that when k = 103 the
number p = 2k`+ 1 = 412619 is prime.

Sometimes, we want the p− 1 to be twice a prime `. In this case, p is called a safe
prime and ` is called a Sophie-Germain prime. This time, the need for ` and 2`+ 1 to
be prime simultaneously means that we need to look at many more candidates before
we find a suitable prime. This will be slow, but there are techniques to speed up the
search.

e Example 19. Again, testing integers sequentially starting at 2003, we find that ` = 2039
is prime at the same time as p = 2`+ 1 = 4079.

e Exercise 52. About one third of all candidates will be divisible by 3. Checking that a
number is not divisible by 3 is much faster than using the primality testing algorithms
from Section 4. Expand on this idea and explain how we can use so-called trial division
by small primes to exclude most candidate primes before finally using the algorithms

28

from Section 4.

e Exercise 53. The Sieve of Eratosthenes can be used to quickly find the first small primes.
Adapt the sieving idea to quickly find the most likely prime candidates from an integer
range.

5.3 Index Calculus

All of the algorithms from Section 3 will work for F∗p. But it turns out that we can do
very much better. We shall develop the ideas of index calculus in a general setting, and
then show how the properties of prime fields allow us to apply the ideas to get a more
efficient algorithm for computing discrete logarithms.

We begin with an observation about abstract cyclic groups, which is an extension of
(1). Let G be a cyclic group of order n. Let g be some generator and let x be a group
element. Suppose we have ν pairs of integers (r1, t1), (r2, t2), . . . , (rν , tν) and integers
α1, α2, . . . , αν (not all congruent to zero modulo n) such that

ν∏

i=1

(
xtigri

)αi
= 1. (7)

This will give us the equation

x
∑

i αitig
∑

i αiri = 1,

which is of the same form as (1). As long as
∑
i αiti is invertible modulo n, we can

recover logg x from the equation using 2ν+2 arithmetic operations (ν+1 multiplications,
ν additions and one inversion).

We first consider the case when the group order n is prime.

e Example 20. Consider the prime p = 1019 with the elements g = 3, generating a
subgroup G of F∗p of order 509. Let x = 11.

With the relations

y1 = g112x239 = 576 y2 = g477x274 = 70 y3 = g378x248 = 180 y4 = g80x66 = 42

y5 = g331x488 = 720

and integers α1 = 145, α2 = 436, α3 = 72, α4 = 73 and α5 = 1, we get that

y1451 x4362 y723 y
73
4 y5 = 1.

This means that

logg x ≡ −
145 · 112 + 436 · 477 + 72 · 378 + 73 · 80 + 331

145 · 239 + 436 · 274 + 72 · 180 + 73 · 66 + 488
≡ − 45

149
≡ 191 (mod 509).

A quick calculation proves that this is the correct discrete logarithm.

29

e Exercise 54. Suppose n is prime. Consider (7). Let

yi = xtigri , i = 1, 2, . . . , ν.

Suppose further that the coefficients r1, r2, . . . , rν , t1, t2, . . . , tν have been chosen uni-
formly at random, but the coefficients α1, α2, . . . , αν only depend on the group elements
y1, y2, . . . , yν . Show that

∑
i αiti is divisible by n with probability 1/n.

t Proposition 22. Suppose n is prime and that ¯̀
1, ¯̀

2, . . . , ¯̀
l are elements of G. Given

l + 1 distinct, non-trivial relations of the form

yi =
l∏

j=1

¯̀sij
j , i = 1, 2, . . . , l + 1,

we can compute α1, α2, . . . , αl+1 satisfying

l+1∏

i=1

yi = 1

using at most (l + 1)3 arithmetic operations.

Proof. Let S be the (l+ 1)× l matrix (sij), where each of the relations defines one row.
If we consider S as a matrix over Fn, it has rank at most l, so there exists a non-zero
vector α such that αS = 0. Given such a vector, we get

l+1∏

i=1

yαi
i =

l+1∏

i=1

l∏

j=1

¯̀sij
j

αi

=
l∏

j=1

¯̀
∑l+1

i=1 αisij
j = 1.

Gaussian elimination will find a vector in the kernel of S using at most (l + 1)3

arithmetic operations.

e Example 21. Continuing with the discrete logarithm problem and relations from Ex-
ample 20, we have the elements 2, 3, 5 and 7 in the subgroup of F∗p and the relations:

y1 = 576 = 26 · 32 y2 = 70 = 2 · 5 · 7 y3 = 180 = 22 · 32 · 5
y4 = 42 = 2 · 3 · 7 y5 = 720 = 24 · 32 · 5

This gives us the matrix

S =

6 2 0 0
1 0 1 1
2 2 1 0
1 1 0 1
4 2 1 0

.

30

The Gaussian elimination in F509 proceeds as follows:

6 2 0 0 1
1 0 1 1 1
2 2 1 0 1
1 1 0 1 1
4 2 1 0

∼

6 2 0 0 1
339 1 1 424 1
171 1 0 339 1
340 0 1 424 1
340 1 0 169

∼

6 2 0 0 1
339 1 1 424 1

5 4 508 4 1
2 3 254 2 1
3 2 508 2

∼

6 2 0 0 1
339 1 1 424 1

5 4 508 4 1
205 458 204 305 1
305 305 305 203

∼

6 2 0 0 1
339 1 1 424 1

5 4 508 4 1
205 458 204 305 1

145 436 72 73

.

We find (α1, α2, α3, α4) in the bottom row of the right half of the matrix.

t Proposition 23. Suppose n is prime and that ¯̀
1, ¯̀

2, . . . , ¯̀
l are elements of G. Suppose

further that for a group element y chosen uniformly at random from G we can find a
relation of the form

y =
l∏

j=1

¯̀sj
j (8)

with probability σ, using at most τ arithmetic operations.
Then, except with probability 1/n, we can compute logg x using an expected

σ−1(l + 1)(τ + 2χ) + (l + 1)3 + 2l + 3

arithmetic operations, where χ is the number of arithmetic operations required for an
exponentiation in G.

Proof. We shall choose random group elements and for each element use at most τ
arithmetic operations to try to find a relation of the form (8). When we have found
l + 1 relations, we shall stop.

We choose random elements of the form xtgr, ensuring that the coefficients sj will
be independent of the exact random numbers t, r chosen, satisfying the requirements of

31

Exercise 54.
Now we can apply Proposition 22 to compute a relation among the random group

elements, which by Exercise 54 will allow us to compute the discrete logarithm except
with probability 1/n.

We expect to find l + 1 relations after choosing σ−1(l + 1) random group elements.
Sampling a random element costs 2χ arithmetic operations, and trying to find rela-

tions costs τ arithmetic operations per group element tested.
The linear algebra will require (l+ 1)3 arithmetic operations, and computing logg x

will cost at most 2l + 3 arithmetic operations. The claim follows.

If n is a prime power qk then Proposition 22 does not apply. If q is small, the
algorithms from Section 3 suffice to compute the discrete logarithm quickly. The case
where q is not small can be handled as well, but since this is almost never the case in
cryptography, we do not discuss the details.

Finally, we consider the case of a more general group order.

t Proposition 24. Let n = n1n2, such that n1 is a large prime that does not divide n2,
let g be a generator of G, let ¯̀

1, ¯̀
2, . . . , ¯̀

l be elements of G, and let H be the subgroup
of G of order n1. Also, let d be an inverse of n2 modulo n1.

Suppose that for a group element y chosen uniformly at random from G, we can find
a relation of the form

y =
l∏

j=1

¯̀sj
j

with probability σ, using at most τ arithmetic operations.
Then for a group element y′ chosen uniformly at random from H, we can find a

relation of the form

y′ =

l∏

j=1

(¯̀n2d
j)sj

with probability σ, using at most τ + χ arithmetic operations, where χ is the number of
arithmetic operations required for an exponentation in G.

Proof. If y′ has been chosen uniformly at random from H, and b has been chosen
uniformly at random from {0, 1, . . . , n2 − 1}, then

y = y′gn1b

has been chosen uniformly at random from G.
By assumption, with probability σ we can find s1, s2, . . . , sl such that

y =

l∏

j=1

¯̀sj
j . (9)

32

Then

y′ = yn2d =
l∏

j=1

¯̀sjn2d
j =

l∏

j=1

(¯̀n2d
j)sj .

We have a relation of the required form, and we succeed with probability σ.
Generating y requires χ arithmetic operations. Finding (9) requires τ arithmetic

operations.

This result says that if we can find relations in the big group, we can move that
relation into a subgroup. By Proposition 23 we can then compute discrete logarithms
in the subgroup. Theorem 8 now applies. (In fact, we can do even better by reusing
relations that we find in the big group for each of the subgroups, and not finding new
relations for each subgroup.)

Now we let G = Fp. We want a way to find relations of the form (8) for randomly
chosen group elements.

Let `1, `2, . . . , `l be the l smallest primes (listed in order, so that `1 = 2, `2 = 3,
etc.), and let ¯̀

1, ¯̀
2, . . . , ¯̀

l be the corresponding group elements in F∗p. Define the sets

P =

l∏

j=1

`
sj
j < p

∣∣∣∣∣∣
s1, s2, . . . , sl ≥ 0

 and P̄ = {k + 〈p〉 | k ∈ P}.

It is clear that for any y ∈ F∗p, we can choose a smallest non-negative coset representative

and test if y ∈ P̄ by repeated trial division.

e Exercise 55. Show that we can decide if a group element is in P̄ or not using at most
τ = bl + log2 pc integer divisions.

e Exercise 56. Show that we can use the trial division algorithm implied by the previous
exercise to find relations of the form (8) for a fraction σ = |P̄ |/(p − 1) of all elements
in F∗p using at most τ = bl + log2 pc arithmetic operations.

e Exercise 57. A group operation in F∗p requires two arithmetic operations (one multipli-
cation and one division). Use Proposition 2 to show that we can compute an exponen-
tiation (with an exponent smaller than the group order) in F∗p using at most 4 log2 p
arithmetic operations.

e Example 22. Consider p = 272003 and the subgroup of F∗p of order 307, generated by
g = 231904, and the group element x = 4644. We want to compute logg x. (Note that
p = 2 · 443 · 307 + 1.)

We find that h = 255754 has order 2 · 443 modulo p. We choose to use the small
primes 2, 3, 5, 7 and 11. There are 1647 integers between 1 and p who have no other
prime factors, so we expect to find the 6 relations we need after about 1000 tries. A

33

computer-aided search quickly finds:

g238x4h20 = 1089 = 32 · 112

g217x264h142 = 180075 = 3 · 52 · 74

g206x305h355 = 128 = 27

g259x261h464 = 26244 = 2238

g303x231h64 = 4158 = 2 · 33 · 7 · 11

g106x125h793 = 13122 = 2 · 38

We get the matrix

S =

0 2 0 0 2
0 1 2 4 0
7 0 0 0 0
2 8 0 0 0
1 3 0 1 1
1 8 0 0 0

.

It is now easy to see that with α = (0, 0, 1,−7, 0, 7), we have αS = 0.
We quickly verify by checking that 128 · 26244−7 · 131227 = 1.
We then compute

logg x ≡ −
206− 7 · 259 + 7 · 106

305− 7 · 261 + 7 · 125
≡ 11 (mod 307).

For simplicity, we consider a single large prime divisor q of p− 1 such that q2 does
not divide p − 1. With the above results, Proposition 23 and Exercises 55 and 57 say
that we can compute logarithms modulo q using

σ−1(l + 1)(l + log2 p+ 8 log2 p) + (l + 1)3 + 2l + 3

arithmetic operations, where σ = |P̄ |/(p − 1). We expect l to be much larger than
log2 p, so we get an approximate cost

σ−1l2 + l3. (10)

It is now clear that while we can make the fraction σ large by making l large, that
will increase the cost of generating relations and may actually increase the total cost.
Making l too large may be counterproductive, and we need to find a good value.

We must estimate σ−1 = (p− 1)/|P | ≈ p/|P |. We begin by taking logarithms in the
equation

∏
j `
sj
j < p and observing that the number of integers in P is the same as the

number of non-negative integer solutions to the inequality

l∑

j=1

sj log `j < log p.

34

Observing that most of our small primes have approximately the same logarithm, we
can instead count the number of non-negative integer solutions to the inequality

l∑

j=1

sj <
log p

log `l
.

Letting u = log p/ log `l, we get that

|P | ≈
(buc+ l

l

)
=

(buc+ l)!

buc!l! .

Taking logarithms, using Stirling’s approximation and replacing buc by u, we get that

log |P | ≈ (u+ l) log(u+ l)− (u+ l)− (u log u− u)− (l log l − l).

If we additionally assume that u is much smaller than l, we get

log |P | ≈ (u+ l) log l − u− l − u log u+ u− l log l + l = u log l − u log u.

The prime number theorem says that l ≈ `l/ log `l, so we get that

log σ−1 ≈ log p− log |P | ≈ u log `l − u log l + u log u

= u log `l − u log `l + u log log `l + u log log p− u log log `l

=
log p

log `l
log log p.

We get the rough estimate

σ−1 ≈ exp

(
log p

log `l
log log p

)
.

The prime number theorem says that

l ≈ `l/ log `l = exp (log `l − log log `l) ,

which means that (10) gives us an approximate cost of

exp

(
log p log log p

log `l
+ 2 log `l − 2 log log `l

)
+ exp (3 log `l − 3 log log `l) .

Ignoring the log log `l terms, we want to choose `l so as to make the sum

exp

(
log p log log p

log `l
+ 2 log `l

)
+ exp (3 log `l)

as small as possible. The sum is dominated by the exponential with the biggest expo-
nent. The second exponent increases monotonously with increasing `l. Since the first
exponent has its minimum

√
8
√

log p log log p at

log `l =
√

log p log log p/2

35

where the second exponent takes the smaller value
√

9/2
√

log p log log p, we see that
taking this value for log `l should approximate a minimum. In particular, by using this
value we should be able to compute discrete logarithms using approximately

exp
(√

8
√

log p log log p
)

arithmetic operations.
We have arrived at the following requirement.

Requirement 6. If G is any subgroup of F∗p, then exp(
√

8 log p log log p) arithmetic
operations must be an infeasible computation.

Today, we have much better algorithms for computing discrete logarithms in finite
fields. While we shall not study these algorithms, we note that the above requirement
is not the final requirement.

e Exercise 58. Suppose we want to compute a number (say hundreds) of discrete log-
arithms in a prime-order subgroup of F∗p. That is, suppose we have x1, . . . , xν ∈ G,
G ⊆ Fp, and want to compute logg x1, . . . , logg xν .

First, show that given ν relations

gvi
∏

i

xui
i = 1,

you can compute the discrete logarithms. Next, show that the above index calculus
algorithms can be adapted to find such relations. Finally, show that this computation
is much faster than computing the ν discrete logarithms separately.

Hint: You may make optimistic assumptions about linear independence when needed.

6 Elliptic Curves

Elliptic curves have been studied for a long time by number theorists and a rich and
varied theory has been developed. We are interested in elliptic curves because the
points on an elliptic curve over a finite field forms a group that is suitable for use in
cryptography.

From a mathematical point of view, studying elliptic curves over any field is inter-
esting. From a cryptographic point of view, our groups come from elliptic curves over
finite fields, which must therefore be our main interest. To simplify our presentation, we
shall restrict ourselves to elliptic curves of a special form defined over prime fields. We
note that essentially all of the theory we discuss works equally well for elliptic curves
defined over other fields, though sometimes with minor modifications.

Even though we only discuss curves over finite prime fields, it is still convenient to
use drawings of curves over the real numbers to illustrate ideas.

We begin by considering the algebraic curve C defined over the field Fp, p a large
prime, given by the polynomial equation

Y 2 = X3 +AX +B, A,B ∈ Fp. (11)

36

Figure 3: Four cubic curves. From left to right: Y 2 = X3− 6X − 1, Y 2 = X3− 2X + 2,
Y 2 = X3 and Y 2 = X3 − 3

4X + 1
4 .

The points on the curve are the points in the plane that satisfy the curve equation.
However, we cannot restrict the coordinates of the points to be elements of Fp. We fix
an algebraic closure F̄ of Fp and consider the points on the curve to be all the pairs
(x, y) ∈ F̄2 satisfying the curve equation.

A point on a curve is Fp-rational (or just rational) if its coordinates lie in Fp.

e Example 23. Consider the curve over F13 defined by Y 2 = X3 +X + 2. The points in
F2
p satisfying the equation are

(1, 2), (1, 11), (2, 5), (2, 8), (6, 4), (6, 9), (7, 1), (7, 12), (9, 5), (9, 8), (12, 0).

Observe that 11 = −2, 8 = −5, etc.

A curve is smooth if its partial derivatives never vanish all at the same time for
points on the curve. Figure 3 shows four cubic curves, of which two are smooth.

e Example 24. Consider the curve over F13 defined by Y 2 = X3 +X+ 3. The point (2, 0)
is on the curve. Since both partial derivatives vanish at (2, 0), there is no well-defined
tangent at that point.

The slope of a line passing through two distinct points on the curve is well-defined.
Over a finite field, the tangent line no longer has a natural definition in terms of limits,
but we can still use formal partial derivatives to define tangent lines.

e Exercise 59. Show that a smooth curve has a well-defined, unique tangent line at any
point on the curve.

t Proposition 25. An algebraic curve defined by (11) is smooth if and only if the poly-
nomial X3 +AX +B has three distinct zeros.

Proof. We first compute the partial derivative with respect to Y to get

2Y = 0.

Any point on the curve where both partial derivatives vanish must therefore have Y -
coordinate 0.

37

Figure 4: Intersection of lines and elliptic curves. From left to right: three distinct
intersection points, possibly with complex Y -coordinates; tangent lines with one or
two distinct intersection points; two distinct intersection points, possibly with complex
Y -coordinates; and a tangent line with one intersection point.

It follows that the X-coordinate of a point where both partial derivatives vanish
will be a zero of both X3 + AX + B and its derivative 3X2 + A. The only way a
polynomial and its derivative can have a common zero is if the polynomial has a double
or triple zero. We may conclude that the curve is smooth if and only if the polynomial
X3 +AX +B has three distinct zeros.

t Fact 26. A polynomial aX3 + bX2 + cX + d has three distinct zeros if and only if its
discriminant b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd is non-zero.

In general, an elliptic curve is a smooth cubic curve with one chosen point, but we
shall restrict attention to curves of the form we have already discussed.

d Definition 7. An elliptic curve E over the field Fp is a cubic curve over Fp given by
(11) with 4A3 + 27B2 6= 0.

e Example 25. Over F13, it is easy to verify that the curve defined by Y 2 = X3 +X + 2
is an elliptic curve, while the curve defined by Y 2 = X3 +X + 3 is not.

We need to study the points of intersection between elliptic curves and straight lines.
The situation can be neatly illustrated over the real numbers as in Figure 4. We see
that lines can intersect the curve in zero, one, two or three points. This is untidy, and
we want a better understanding of what is going on.

t Proposition 27. Let E be an elliptic curve defined by Y 2 = X3 +AX +B.
If L is a line defined by Y = αX + β, then the zeros of the polynomial

X3 − α2X2 + (A− 2αβ)X +B − β2 (12)

are the X-coordinates of the points of intersection.
If L is a line defined by X = β, then the zeros of the polynomial

Y 2 − β3 −Aβ −B (13)

are the Y -coordinates of the points of intersection.

38

Proof. We begin with a line L of the form Y = αX + β. We want to compute the
intersection of this line and an elliptic curve defined by Y 2 = X3 +AX +B. Using the
line equation to eliminate Y from the curve equation, we find

α2X2 + 2αβX + β2 = X3 +AX +B.

The solutions to this equation corresponds to the zeros of the cubic polynomial (12). If
x is any zero of this polynomial, we know that the point (x, αx+ β) is on both the line
and the curve and therefore a point of intersection.

Next we consider a line L′ of the form X = β. This time, we use the line equation
to eliminate X from the curve equation and get

Y 2 = β3 +Aβ +B.

The solutions to this equation corresponds to the zeros of the quadratic polynomial
(13). If y is any zero of this polynomial, we know that the point (β, y) is on both the
line and the curve, and therefore a point of intersection.

e Example 26. Consider the elliptic curve over F13 defined by Y 2 = X3 +X + 2, and the
six lines X = 2, X = 3, X = 12, Y = X + 3 and Y = X + 4 and Y = 2X.

The line X = 2 gives us the equation Y 2 = 23+2+2 = 12. We see that 52 = 25 = 12,
so the zeros of this polynomial equation are Y = ±5, giving us the intersection points
(2, 5) and (2,−5) = (2, 8).

The line X = 3 gives us the equation Y 2 = 33 + 3 + 2 = 6, but 6 is not a square
modulo 13, so the line does not intersect the curve in any rational points.

The line X = 12 gives us the equation Y 2 = 123 + 12 + 2 = 0, so 0 is a double zero
of the polynomial. This gives us a single intersection point (12, 0).

The line Y = X+ 3 gives us the equation X2 + 6X+ 9 = X3 +X+ 2, or X3−X2−
5X − 7 = 0. A quick search tells us that the left hand side is (X − 2)(X − 6)2, which
means that there are two intersection points, (2, 5) and (6, 9), where (6, 9) is a double
zero and the line is a tangent.

The line Y = X + 4 gives us the equation X2 + 8X + 3 = X3 + X + 2, or X3 −
X2− 7X − 1 = 0. A quick computation tells us that this equation has no rational zeros
(solutions in Fp).

The line Y = 2X gives us the equation 4X2 = X3 +X+2, or X3−4X2 +X+2 = 0.
A quick search tells us that the left hand side factors as (X − 1)(X − 7)(X − 9), which
gives us the intersection points (1, 2), (7, 1) and (9, 5).

t Fact 28. Let F be a field and let F̄ be an algebraic closure of F. Counting multiplicities,
a polynomial of degree d over F has d zeros in F̄.

d Definition 8. Let E be an elliptic curve, P a point on E and L a line intersecting E in
P . The multiplicity of the point of intersection P is the multiplicity of the corresponding
zero of the polynomials in (12) or (13).

39

e Exercise* 60. Let E be an elliptic curve, P a point on E and L a line intersecting E
in P . Show that the multiplicity of the intersection point is greater than 1 if and only
if L is tangent to E at P .

e Exercise 61. Let E be an elliptic curve. Show that E has 0, 1 or 3 rational points with
vertical tangents.

e Example 27. The elliptic curve over F13 defined by Y 2 = X3 + X + 2 has just one
rational point with vertical tangent, namely (12, 0).

The elliptic curve over F13 defined by Y 2 = X3 + 2X + 6 has three rational points
with vertical tangents, namely (3, 0), (4, 0) and (6, 0).

The elliptic curve over F13 defined by Y 2 = X3 +2X+4 has no rational points with
vertical tangents.

Returning to Figure 4, in the left drawing we see two lines, one of which clearly
has three real points of intersection. In this case, the polynomial (12) has three real
solutions. The second line seemingly has only one point of intersection. In this case, (12)
has only one real zero. But it also has two complex zeros, and these zeros correspond to
points of intersection, points with complex coordinates. Over a general field, all three
points of intersection may have X-coordinates in an extension field.

The second drawing in Figure 4 again has two lines, one of which has two points
of intersection and one which has a single point of intersection. The corresponding
cubic polynomial (12) does not have complex zeros, but double or triple zeros. The
intersection point has multiplicity equal to the multiplicity of the corresponding zero.
We do not have three distinct points of intersection, but if we count multiplicity, we
have three points of intersection.

In the third drawing in Figure 4, by considering complex coordinates, we see that
both lines have two distinct points of intersection. In the fourth drawing, by count-
ing multiplicity, we get two points of intersection. But we never get three points of
intersection, because (13) is a polynomial of degree two.

It is very inconvenient that vertical lines have only two points of intersection, while
non-vertical lines have three points of intersection. It would have been nice if every
line intersected the curve in three points, counting multiplicity. The proper solution to
this issue lies in projective geometry, but in this text we shall choose a much simpler
solution.

We declare that one extra point O exists with the following properties:

1. The point O does not lie in the plane (hence has no coordinates), but lies on the
curve and is a rational point.

2. Any line of the form X = β intersects the elliptic curve in O with multiplicity
one. No line of the form Y = αX + β intersects the curve in O.

3. The curve has a tangent line in O, and that line intersects the curve only in O,
with multiplicity three.

40

The special point O is often called the point at infinity.
As we saw in the discussion of Figure 4, considering coordinates in an algebraic

closure and the notion of multiplicity somewhat simplifies the situation with regard
to intersection points. Now that we have introduced the point at infinity, we get the
following nice results.

t Proposition 29. Let E be an elliptic curve defined over Fp, and let L be a line. Count-
ing multiplicities, L intersects E in exactly three points. If two of the intersection points
are rational, then the third point is also rational.

Proof. The first claim follows trivially from Proposition 27 and the properties of O.
If the two points are both O, then by O-2 and O-3 the line must be the tangent

line to E at O, which means that the third point of intersection is again O, which is
rational.

If only one point is O, then by O-2 the line takes the form X = β. By (13), the
other two points of intersection must be (β,±y) for some y ∈ F̄p. It is then clear that
either both or none of these points are rational.

Finally, suppose neither of the two rational points is O. We consider two cases. If
the line is of the form X = β, then by O-2 the third point of intersection is O, which is
rational.

Otherwise, the line is of the form Y = αX+β. If the line passes through two distinct
rational points, we know that α, β ∈ Fp. If the multiplicity of the intersection point is
2 or greater, Exercise 60 says that the line is a tangent, which means that α, β ∈ Fp.

This means that the polynomial (12) has coefficients in Fp. Furthermore, two of
its zeros lie in Fp, which means that the third zero also is in Fp. This means that the
X-coordinate of the third point of intersection lies in Fp, and since it lies on the line
Y = αX + β, the third point of intersection is rational.

t Proposition 30. Let P,Q be points (not necessarily distinct) on an elliptic curve E.
Then there exists a unique line L and a unique point R such that P , Q and R are the
points of intersection of E and L.

Proof. If P = Q = O then O-2 and O-3 say that R = O.
If P and Q are distinct points and one of them is O, then the vertical line through

the other point is determined by that point. By Proposition 29 this line intersects the
curve in one more point, though not necessarily distinct.

If P and Q are distinct points and neither of them is O, the line through the points
is uniquely determined. By Proposition 29 this line intersects the curve in one more
point, though not necessarily distinct.

If P = Q 6= O, then the line we are looking for must be a tangent line. By Exercise 59
the tangent line is unique, and by Proposition 29 this line intersects the curve in one
more point, though not necessarily distinct.

e Example 28. Consider the elliptic curve over F13 defined by Y 2 = X3 +X + 2.
The points (1, 2) and (7, 1) both lie on the curve. The line Y = 2X is uniquely

41

determined by the two points. The line also intersects the curve in a third point (9, 5).
The point (6, 9) lies on the curve. The line Y = X + 3 is the unique tangent to the

curve at (6, 9). The line also intersects the curve in the point (2, 5).
The points O and (2, 5) both line on the curve. The line X = 2 is, by O-2, the

unique line determined by the two points. The line also intersects the curve in a third
point (2,−5).

We conclude this section by saying precisely what the points on an elliptic curve are.

d Definition 9. The points on an elliptic curve E over Fp defined by

Y 2 = X3 +AX +B, 4A3 + 27B2 6= 0,

are the points with coordinates in the algebraic closure F̄ of Fp satisfying the curve
equation, plus the special point O:

E(F̄) = {(x, y) ∈ F̄2 | y2 = x3 +Ax+B} ∪ {O}.

The Fp-rational (or just rational) points on E are the points with coordinates in Fp,
plus the special point O:

E(Fp) = {(x, y) ∈ F2
p | y2 = x3 +Ax+B} ∪ {O}.

e Example 29. Consider the elliptic curve over F13 defined by Y 2 = X3 + X + 2. The
rational points on the curve are

O, (1, 2), (1, 11), (2, 5), (2, 8), (6, 4), (6, 9), (7, 1), (7, 12), (9, 5), (9, 8), (12, 0).

Except for O, this is exactly as in Example 23

Since the rational points on an elliptic curve will form a group that we will use for
cryptography, we are very interested in how many rational points there are on an elliptic
curve.

t Fact 31 (Hasse’s theorem). Let E be an elliptic curve defined over Fp. The number of
rational points on E is

|E(Fp)| = p+ 1− t,
where |t| ≤ 2

√
p.

e Example 30. Consider the elliptic curve over F13 defined by Y 2 = X3 +X + 2. We saw
in Example 29 that there are 12 rational points on this curve, including O. We get that
12 = 13 + 1− 2, so in this case t = 2.

e Example 31. Consider the elliptic curve over F13 defined by Y 2 = X3+4. An exhaustive
computation shows that there are 21 rational points on this curve, including O. We get
that 21 = 13 + 1− (−7), so in this case t = −7.

42

P Q

P ∗Q

P +Q

P

P ∗P

P + P

Figure 5: The group operation on elliptic curves. Addition of distinct points is shown
on the left, point doubling is shown on the right.

6.1 Group Operation

We are now ready to turn the set of points on an elliptic curve into a group. We begin
by defining a binary operation on the points of the elliptic curve, and then define the
actual group operation in terms of the binary operation.

d Definition 10. Let E be an elliptic curve. We define two binary operations ∗ and +
on E as follows: P ∗Q is the unique point identified by Proposition 30, and P + Q =
(P ∗Q) ∗O.

e Example 32. Consider the elliptic curve over F13 defined by Y 2 = X3 +X + 2.
Since the unique line through (1, 2) and (7, 1) intersects the curve in a third point

(9, 5), we find that (1, 2) ∗(7, 1) = (9, 5).
The line through (9, 5) and O intersects the curve in (9,−5), so according to the

definition (1, 2) + (7, 1) = ((1, 2) ∗(7, 1)) ∗O = (9,−5).
The unique line through (6, 9) that is tangent to the curve intersects the curve in

the point (2, 5), so (6, 9) ∗(6, 9) = (2, 5).
The line through (2, 5) and O intersects the curve in (2,−5), so (6, 9) + (6, 9) =

(2,−5).
The unique line through (2, 5) and (2,−5) intersects the curve inO. The line through

O and O is the tangent at O, which intersects only there with multiplicity 3. In other
words, (2, 5) + (2,−5) = O.

We shall show that there exists an identity element for +, there exists inverses for
+ and that it is commutative. There are many ways to show that + is associative, but
they are either tedious or advanced, so we do not prove associativity.

e Exercise 62. Let E be an elliptic curve and let P,Q be points on E. Show that P ∗Q =
Q ∗P , and consequently that P +Q = Q+ P .

t Proposition 32. Let E be an elliptic curve and let P be a point on E. Then P +O =
O + P = P .

43

Proof. First suppose P = O. By O-2 and O-3, we see that the third point of intersection
identified by Proposition 30 must be O. It follows that O ∗O = O and that O+O = O.

Next, suppose P 6= O. By O-2 the line through O and P intersects the curve in
some point Q 6= O and P ∗O = Q. It then follows that the line through P and Q has
O as its third point of intersection, which means that P +O = P .

t Proposition 33. Let E be an elliptic curve and let P = (x, y) be a point on E. Let
Q = (x,−y). Then Q is also on the curve, P ∗O = Q and P +Q = O.

Proof. It is immediately clear that if P is on the curve, then so is Q.
If y = 0, then P = Q and the tangent in that point is a vertical line, which intersects

the curve in O by O-2, so P ∗Q = O and P +Q = O.
If y 6= 0, the line through P and Q is vertical, so by O-2 intersects the curve in O.

It follows that P ∗Q = O, that P +Q = O and that P ∗O = Q.

t Fact 34. Let E be an elliptic curve and let P,Q,R be points on E. Then (P +Q)+R =
P + (Q+R).

t Theorem 35. Let E be an elliptic curve. The set of points on E is a commutative
group under +. The set of rational points is a subgroup.

Proof. The fact that the set of points is a group follows from Propositions 32 and 33
and Fact 34. Commutativity follows from Exercise 62.

That the rational points form a subgroup follows from Proposition 30.

We conclude this section by developing explicit formulas for computing P +Q.
By Proposition 32, if either point to be added is O, the answer is the other point.

Otherwise, we may assume that P = (x1, y1) and Q = (x2, y2).
By Proposition 33, if x1 = x2 and y1 = −y2, then the answer is O.
If the answer has not been found, we need to find the third point of intersection of

the line through P and Q. We begin by finding the slope α of the line. If x1 = x2, then
P = Q and we must use the tangent. The tangent line has slope

α =
3x21 +A

2y1
.

If x1 6= x2, then the slope is

α =
y2 − y1
x2 − x1

.

In either case, the line’s constant term is β = y1 − αx1.
The X-coordinates of the intersection points of this line and the elliptic curve are

zeros of (12). We know two of the zeros, namely x1 and x2, and we need to find
the third zero x3. The monic polynomial in (12) should be equal to the polynomial

44

(X − x1)(X − x2)(X − x3). Comparing the coefficients of the X2 term, we get that
−α2 = −x1 − x2 − x3, or

x3 = α2 − x1 − x2.

The Y -coordinate of the third point of intersection is αx3 + y1−αx1 = α(x3−x1) + y1.
By Proposition 33, the Y -coordinate of P +Q is the negative of this, which is

y3 = α(x1 − x3)− y1.

We summarize the above in the following result.

t Proposition 36. Let E be an elliptic curve and P,Q be points on E.

• If P = O, then P +Q = Q.

• If Q = O, then P +Q = P .

If neither point is O, then let P = (x1, y1) and Q = (x2, y2).

• If x1 = x2 and y1 = −y2, then P +Q = O.

• Otherwise, P +Q = (x3, y3) with

x3 = α2 − x1 − x2 and y3 = α(x1 − x3)− y1,

where

α =

{
3x2

1+A
2y1

x1 = x2,
y2−y1
x2−x1

x1 6= x2.

e Example 33. Consider the elliptic curve over F13 defined by Y 2 = X3 +X + 2.
We want to add (1, 2) and (7, 1). We compute the slope as −1/6 = 2, and then

x3 = 22 − 1− 7 = 9 and y3 = 2(1− 9)− 2 = 8, that is

(1, 2) + (7, 1) = (9,−5).

We want to add (6, 9) to itself (doubling). We compute the slope as (3·62+1)/(2·9) =
1, and then x3 = 12 − 6− 6 = 2 and y3 = 6− 2− 9 = −5, that is

(6, 9) + (6, 9) = (2,−5).

We conclude by noting that the exponentiation we have studied in Section 2 and 3
now corresponds to a point multiplication

aP = P + P + · · ·+ P︸ ︷︷ ︸
a terms

,

since the group of points on an elliptic curve is written additively instead of multiplica-
tively.

Even though the notation we have chosen for the elliptic curve group operation
suggests addition and not multiplication, we use the words from Definition 4 and say

45

that the discrete logarithm of a point Q to the base P is the smallest non-negative
integer a such that Q = aP . We write logP Q = a.

e Exercise 63. Redo Exercise 2 for point multiplications. Is anything different? What
about Exercise 4?

6.2 Finding Suitable Curves

We have shown that the points on an elliptic curve form a commutative group, and the
set of rational points is a finite commutative group. As we saw in Section 3, we need a
cyclic group whose order is divisible by a large prime.

e Exercise 64. Show that an elliptic curve has 0, 1 or 3 rational points of order 2.
Hint: Use Exercise 61.

e Exercise 65. Let E be the curve defined by Y 2 = X3 + 12 over the field F13. Show that
E is not cyclic.

In general, the group of rational points is not cyclic, but it must contain a large
cyclic subgroup.

t Fact 37. Let E be an elliptic curve defined over Fp. Then there exists n1, n2, where n1
divides both n2 and p− 1, such that

E(Fp) ' Z+
n1
× Z+

n2
.

But a large cyclic subgroup is not sufficient for our purposes, we also need to know
that its order is divisible by a large prime.

t Proposition 38. Let p be a prime congruent to 2 modulo 3, and let E be an elliptic
curve defined by Y 2 = X3 +B over Fp. Then |E(Fp)| = p+ 1.

Proof. Since p ≡ 2 (mod 3), 3 will be invertible modulo p− 1. Then the map ζ 7→ ζ3 is
invertible. If k is an inverse of 3 modulo p− 1, then ζ 7→ ζk is the inverse map.

This means that for any value γ, the equation γ = X3 +B has a unique solution in
Fp, and that solution is (γ −B)k. We conclude that for every possible Y -coordinate y,

((y2 −B)k, y)

is a point on the curve, and it is the only point with that Y -coordinate. There are p
such points and these are all the points with coordinates, which when counting O makes
for p+ 1 points on the curve.

Unfortunately, curves of the form Y 2 = X3 + B are so-called supersingular, which
for reasons we shall not consider are less suitable for our purposes than ordinary elliptic
curves.

For a randomly chosen curve, the number of points is close to evenly distributed
within the range given by Hasse’s theorem. Since a curve with a prime (or close to

46

prime) number of points would be reasonable, if we can determine the number of rational
points on a curve, we could easily find a suitable curve.

We shall briefly sketch Schoof’s algorithm for counting points on an elliptic curve.
The story begins with the Frobenius map. Let E be an elliptic curve defined over Fp
and define a map φ : E(F̄)→ E(F̄) by

φ(P) =

{
O P = O, and

(xp, yp) P = (x, y).

e Exercise 66. Show that φ is a well-defined map.

e Exercise 67. Show that φ is a group homomorphism.

The fixed field of the map F̄ → F̄ given by α 7→ αp is Fp. It follows that the set of
fixed points of φ is the set of rational points on E.

Hasse’s theorem (Fact 31) says that there is a number t such that the number of
rational points is p + 1 − t. It turns out that this number is closely related to the
Frobenius map.

t Fact 39. Let E be an elliptic curve defined over Fp, and let t be the integer such that
the number of rational points on E is p+ 1− t. Then

φ2(P)− tφ(P) + pP = O (14)

for any point P ∈ E(F̄).

It turns out that the action of the Frobenius map on points of small order is impor-
tant.

d Definition 11. Let ` be an integer greater than 0. The set of `-torsion points is

E[`] = {P ∈ E(F̄) | `P = O}.

If P ∈ E[`], then (14) becomes

φ2(P)− t`φ(P) + pP = O,

where t` = t mod `. Reordering terms, we get

φ2(P) + pP = t`φ(P).

This is nothing more than a discrete logarithm problem, but note that the subgroup
generated by φ(P) has order `. If ` is not too big and computations on `-torsion points
are not too expensive, it will be possible to recover t`.

Note that t ≡ t` (mod `). If we can recover t` for many different, small primes `
whose product is greater than 4

√
p, we can recover t and thereby the group order.

It still remains to show that we can find `-torsion points and compute with them.

47

t Fact 40. Let E be an elliptic curve. There exists an efficiently computable sequence of
polynomials (called division polynomials) ψ1(X,Y), ψ2(X,Y), . . . such that

• for any P = (x, y) ∈ E(F̄), ψ`(x, y) = 0 if and only if P ∈ E[`]; and

• for odd `, ψ`(X,Y) is a polynomial in X only, and has degree (`2 − 1)/2.

t Fact 41. Let E be an elliptic curve over Fp. If p does not divide `, then E[`] ' Z+
` ×Z+

` .

We now have a polynomial that characterizes all the X-coordinates of the `-torsion
points. Suppose that ` is an odd prime and smaller than p.

We can decide if ψ`(X) has rational zeros by computing gcd(Xp − X,ψ`(X)). It
must either have 0, (` − 1)/2 or (`2 − 1)/2 rational zeros. Since each X-coordinate
gives rise to two points, for the latter two cases we immediately know that p+ 1− t is
congruent to 0 modulo ` or `2, respectively.

More usually, ψ`(X) will not have any rational zeros. But it will usually not be irre-
ducible. Let f(X) be an irreducible factor of ψ`(X) of degree d. Then by constructing
the extension field

Fpd ' Fp[X]/〈f(X)〉,
we know that the element x ∈ Fpd corresponding to X + 〈f(X)〉 is a zero of f(X) and
hence of ψ`(X) and hence the X-coordinate of an `-torsion point.

We now have the X-coordinate of an `-torsion point, but we do not have a Y -
coordinate. We can find a Y -coordinate by computing a square root of x3 + Ax + B.
Note that sometimes, we have to go to yet another field extension to find a square root,
but this is unproblematic.

Factoring ψ`(X) is possible, but costly. Instead of finding an irreducible factor of
ψ`(X), we can compute in the factor ring

Fp[X]/〈ψ`(X)〉.

If ψ`(X) factors into distinct irreducibles as f1(X)f2(X) · · · fl(X), then

Fp[X]/〈ψ`(X)〉 ' Fp[X]/〈f1(X)〉 × · · · × Fp[X]/〈fl(X)〉.

Computing in this ring is just a simultaneous computation in every possible field exten-
sion where we could have found X-coordinates for `-torsion points.

Since our computations involve divisions, and our ring contains non-invertible ele-
ments, the computation may not be possible to complete. However, when we cannot
find an inverse of some element, we find a divisor of ψ`(X). If this happens, we simply
restart the computation using one of the factors of ψ`(X). Eventually, we must either
complete the computation or find an irreducible factor of ψ`(X).

Going into an extension of these rings to find the Y -coordinate of the `-points is
also unproblematic.

The above algorithm sketch works, but is very inefficient and mostly impractical. A
more careful algorithm will work significantly faster.

The most important improvement to the algorithm is that for some small primes
it is relatively easy to find an irreducible factor of ψ`(X). Since this factor has much

48

smaller degree, we can work in a small field extension where arithmetic is much faster
than in Fp[X]/〈ψ`(X)〉. The resulting algorithm is significantly faster.

The upshot is that there are feasible algorithms that are able to compute the number
of points on an elliptic curve. We will not have to count the number of points of many
curves until we find one with a suitable number of points.

6.3 Discrete Logarithms

In the group F∗p the group operation requires two arithmetic operations (one integer
multiplication and one integer division), while finding inverses is much more costly
(using the extended Euclidian algorithm). Note that division in a finite field is usually
done by multiplying with inverses.

In the group E(Fp), Proposition 36 says that adding distinct non-inverse points
requires one inversion, three multiplications and six additions. Adding a point to itself
requires one inversion, two multiplications by small constants, four multiplications, one
addition of a constant and four additions.

At first glance, it would seem odd to consider the elliptic curve group, since the
group operation there is much more complicated than the group operation in F∗p. But
there is one more variable to consider: the size of the underlying field. Recall that we
choose the size of the group such that the discrete logarithm problem in the group is
sufficiently difficult.

The methods in Section 3 work for essentially any group. For F∗p we also have index
calculus methods, which become significantly better than the methods in Section 3 as
p grows. For most elliptic curves, there are no equivalents of the small primes, so there
are no obvious, useful index calculus methods.

We briefly summarize the state of the art in elliptic curve discrete logarithm com-
putations.

• For so-called anomalous elliptic curves, curves defined over Fp with p elements,
there are very efficient algorithms for computing discrete logarithms. These curves
are completely unsuitable for use in cryptography.

• For certain subgroups G,H of E(F̄), there are so-called bilinear maps e : G×H →
F∗pd satisfying

e(aP, bQ) = e(P,Q)ab.

When the field extension degree d is small, these maps can be computed easily
and can sometimes be used to move a discrete logarithm problem from an elliptic
curve into a finite field. Since index calculus methods can be used in finite fields,
curves with low extension degree must be defined over larger finite fields, making
arithmetic slower.

So-called supersingular curves is one class of curves with very low extension degree.

Note that bilinear maps can sometimes be used constructively in cryptography.
But unless we need easily computable bilinear maps, curves with such maps are
not useful for cryptography.

49

Alice

a
r← {0, 1, . . . , n− 1}

x← ga

— wait for u —
zA ← ua

Eve

r
r← {0, 1, . . . , n− 1}

u← gr

— wait for y —
zA ← xr, zB ← yr

Bob

b
r← {0, 1, . . . , n− 1}

y ← gb

zB ← ub

x u

yu

Figure 6: A man-in-the-middle attack on the Diffie-Hellman protocol, where Eve estab-
lishes separate shared secrets with Alice and Bob, who do not notice the attack.

• For many other small families of elliptic curves, there are algorithms capable of
computing discrete logarithms faster than the methods from Section 3.

For most elliptic curves, the best algorithms for computing discrete logarithms are
those from Section 3. Compared to F∗p, our elliptic curves can therefore be defined over
much smaller fields where arithmetic is much faster, so even if we have to do more
arithmetic operations, each group operation may be faster.

We should mention that elliptic curves over non-prime finite fields have been studied
extensively. In certain cases, such fields may be more convenient than prime fields, but
there have been many more advances in computing discrete logarithms for such curves.
Usually, the advantage gained is outweighed by the uncertainty.

7 Active Attacks

The only attackers we have considered so far are eavesdroppers. For some communica-
tions channels, this is correct. But for most channels in use today, an attacker that can
eavesdrop can also tamper with communications.

As we see in Figure 6, Diffie-Hellman on its own will not be secure in practice. We
shall consider how Diffie-Hellman can be secured later.

50

Public Key Encryption

KG

October 24, 2019

Contents

1 Introduction 2

2 Public Key Encryption 3

3 Schemes Based on Diffie-Hellman 4
3.1 ElGamal . 6

4 RSA 8
4.1 Preliminaries . 8
4.2 The RSA Cryptosystem . 9
4.3 Attacks . 12
4.4 Secure Variants . 14

5 Factoring Integers 16
5.1 Fermat Factoring . 17
5.2 Pollard’s p− 1 . 19
5.3 Pollard’s ρ . 20
5.4 Index Calculus . 23

6 Lattices 26
6.1 Lattice basics . 27
6.2 Hermite Normal Form . 28
6.3 Gram-Schmidt . 30
6.4 The Fundamental Domain . 31
6.5 Dual lattice . 32
6.6 p-ary lattices . 33
6.7 Short Vectors . 34

7 Lattice-based cryptosystems 36
7.1 The GGH cryptosystem . 36
7.2 Regev’s cryptosystem . 37

7.2.1 Attacks . 39

1

7.3 NTRU Encrypt . 39
7.3.1 Attacking NTRU . 40

8 Lattice algorithms 41
8.1 Enumerating short vectors . 41
8.2 LLL algorithm . 42

9 Key Encapsulation Mechanisms 47

10 The Public Key Infrastructure Problem 48

1 Introduction

In this note, we consider the following problem. Alice wants to send a message to Bob
via some channel. Eve has access to the channel and she may eavesdrop on anything
sent over the channel. Alice does not want Eve to know the content of her message to
Bob.

The obvious solution is for Alice and Bob to first run the Diffie-Hellman protocol to
establish a shared secret. Then Alice can use the shared secret to encrypt her message
using symmetric cryptography.

For some channels, such as mail, this is very inconvenient, since each message may
take a long time to arrive, and even longer before it is read and acted upon.

Of course, Alice and Bob could establish a shared secret and then simply use that
secret from then on. But Alice may need to talk to many people, not just Bob. Sharing
secrets with all of them and then managing the shared secrets is inconvenient.

Alice wants to be able to send a single encrypted message to Bob or one of her other
correspondents. She does not want to manage shared secrets with every correspondent,
but she may be willing to manage public information, just as she is already managing
names, phone numbers and adresses.

The answer to Alice’s problem is public key encryption, and the basic idea is ex-
plained and defined in Section 2. Section 3 describes a public key encryption scheme
based on the Diffie-Hellman protocol, and Section 4 describes public key encryption
schemes based on arithmetic modulo products of large primes. The best general attack
on these schemes is to factor integers, and we discuss factoring algorithms in Section 5.
In Section 7 we describe several public key cryptosystems essentially based on lattices.
For two of the systems, lattices are not required for describing the scheme (relying in-
stead on linear algebra and polynomial arithmetic). Instead, lattices are required for the
analysis of the schemes. We discuss algorithms for solving the related lattice problems
in Section 8, while Section 6 covers basic material about lattices.

This text is intended for a reader that is familiar with mathematical language, basic
number theory, basic algebra (groups, rings, fields and linear algebra) and elementary
computer science (algorithms), as well as the Diffie-Hellman protocol. We do not expect
the reader to be familiar with lattices, so we include a brief introduction to lattices in
Section 6.

2

This text is informal, in particular with respect to computational complexity. Every
informal claim in this text can be made precise, but the technical details are out of
scope for this note.

This text uses colour to indicate who is supposed to know what. When discussing
cryptography, red denotes secret information that is only known by its owner, Alice or
Bob. Green denotes information that Alice and Bob want to protect, typically messages.
Blue denotes information that the adversary Eve will see. Information that is assumed
to be known by both Alice and Bob (as well as Eve) is not coloured.

We also use colour for theorems about computation, where blue denotes information
that an algorithm gets as input and can use directly, while red denotes information that
exists, but has to be computed somehow before it can be used directly. Information
that is considered fixed (such as the specific group in use, group order, generator, etc.)
and that the algorithm may depend on is not coloured.

2 Public Key Encryption

Alice, Bob and a number of other people want to be able to send confidential messages to
each other. For various reasons, using the Diffie-Hellman protocol to establish a shared
secret every time they want to send messages is not possible or practical. Furthermore,
Alice does not want to manage a long-term secret for each correspondent. She is willing
to manage public information for each correspondent.

In this situation, what is needed is public key encryption.

d Definition 1. A public key encryption scheme consists of three algorithms (K, E ,D):

• The key generation algorithm K takes no input and outputs an encryption key
ek and a decryption key dk . To each encryption key ek there is an associated
message set Mek .

• The encryption algorithm E takes as input an encryption key ek and a message
m ∈Mek and outputs a ciphertext c.

• The decryption algorithm D takes as input a decryption key dk and a ciphertext
c and outputs either a message m or the special symbol ⊥ indicating decryption
failure.

We require that for any key pair (ek , dk) output by K and any message m ∈Mek

D(dk , E(ek ,m)) = m.

Just as for symmetric encryption, the users of a system require confidentiality and
some sense of integrity. However, since the encryption key is known anyone can create a
ciphertext, so the informal notion of integrity does not work for public key encryption.
Instead, we have a notion of non-malleability where it should be hard to modify a
ciphertext in a predictable way.

3

Informally: A public key encryption scheme provides confidentiality if it
is hard to learn anything at all about the decryption of a ciphertext from
the ciphertext itself, possibly except the length of the decryption.

Informally: A public key encryption scheme is non-malleable if it is hard
to create a new ciphertext based on a given ciphertext such that the de-
cryption of the new ciphertext is not ⊥, but predictably related to the given
ciphertext.

3 Schemes Based on Diffie-Hellman

We shall develop a public key encryption scheme based on the Diffie-Hellman protocol.
The initial situation is that Alice, Carol and Bob will use the Diffe-Hellman protocol
to establish a shared secret, and then send the message encrypted using a symmetric
encryption scheme.

Let G be a finite cyclic group of order n and let g be a generator. Let (G,P, C, Es,Ds)
be a symmetric cryptosystem. Note that G is the key set for the symmetric cryptosys-
tem.

When Alice wants to send a message mA ∈ P to Bob, she uses Diffie-Hellman to
establish a shared secret, encrypts her message using the symmetric cryptosystem and
sends the ciphertext to Bob. Bob decrypts the ciphertext.

1. Alice chooses a number rA uniformly at random from the set {0, 1, 2, . . . , n− 1}.
She computes xA = grA and sends xA to Bob.

2. Bob receives xA from Alice. He chooses a number bA uniformly at random from
the set {0, 1, . . . , n− 1}, computes yA = gbA and zA = xbAA .

3. Alice receives yA from Bob. Alice computes zA = yrAA , encrypts the message as
w ← Es(zA,mA), and sends w to Bob.

The situation where both Alice and Carol send messages to Bob is illustrated in
Figure 1.

But a variation on this topic is possible. Before anything happens, Bob executes part
of the Diffie-Hellman protocol. He samples a random number b and computes y = gb.
Whenever someone contacts him, he immediately responds with y. When he receives
the symmetric ciphertext, he computes the shared secret and decryptes the ciphertext.
This variation is illustrated in the middle part of Figure 1.

It is possible to prove that Bob does not lose any security by doing this. The proof
is out of scope for this note.

Obviously, repeatedly sending the same value y is wasteful. Bob therefore announces
publicly what he is doing and publishes the value y. When Alice and Carol want to
send a message to Bob, they already know y. Therefore, they do not have to wait to
receive it. Instead, they can immediately compute the shared secret and encrypt the
message. This final situation is shown in the bottom of Figure 1.

4

Alice
rA

r← {0, 1, 2, . . . , n− 1}
xA ← grA

zA ← yrA
A

wA ← Es(zA,mA)

Carol
rC

r← {0, 1, 2, . . . , n− 1}
xC ← grC

zC ← yrC
C

wC ← Es(zC ,mC)

Bob
bA

r← {0, 1, 2, . . . , n− 1}
yA ← gbA

zA ← xbA
A

mA ← Ds(zA, wA)

bC
r← {0, 1, 2, . . . , n− 1}

yC ← gbC

zC ← xbC
C

mC ← Ds(zC , wC)

xA

yA

wA

xC

yC

wC

Alice
rA

r← {0, 1, 2, . . . , n− 1}
xA ← grA

wA ← Es(yrA ,mA)

Carol
rC

r← {0, 1, 2, . . . , n− 1}
xC ← grC

wA ← Es(yrC ,mC)

Bob
b

r← {0, 1, 2, . . . , n− 1}
y ← gb

mA ← Ds(x
b
A, wA)

mC ← Ds(x
b
C , wC)

xA

y

wA

xC

y

wC

Alice
rA

r← {0, 1, 2, . . . , n− 1}
xA ← grA

wA ← Es(yrA ,mA)

Carol
rC

r← {0, 1, 2, . . . , n− 1}
xC ← grC

wC ← Es(yrC ,mC)

Bob
b

r← {0, 1, 2, . . . , n− 1}
y ← gb

mA ← Ds(x
b
A, wA)

mC ← Ds(x
b
C , wC)

(xA, wA)

(xC, wC)

Figure 1: From Diffie-Hellman to public key encryption scheme. (top) Alice and Carol
use Diffie-Hellman to establish shared secrets with Bob and send him encrypted mes-
sages. (middle) Bob uses a single random number for all the Diffie-Hellman protocol
runs. (bottom) Bob publishes his Diffie-Hellman message. Alice and Carol complete the
Diffie-Hellman protocol to establish a shared secret and send Bob encrypted messages.

5

What has happened is that we have turned the Diffie-Hellman protocol combined
with a symmetric cryptosystem into a public key encryption scheme.

The public key encryption scheme (K, E ,D) is based on a finite cyclic group G of
order n with generator g and a symmetric cryptosystem (G,P, C, Es,Ds).

• The key generation algorithm K samples a number b uniformly at random from
the set {0, 1, 2, . . . , n − 1}. It computes y = gb and outputs ek = y and dk = b.
The message set associated to ek is P.

• The encryption algorithm E takes as input an encryption key y and a message
m ∈ P. It samples a number r uniformly at random from the set {0, 1, 2, . . . , n−1}.
Then it computes x = gr and z = yr, and encrypts the message as w = Es(z,m).
It outputs the ciphertext c = (x,w).

• The decryption algorithm D takes as input a decryption key b and a ciphertext
c = (x,w). It computes z = xb and decrypts the message as m = Ds(z, w). If
Ds outputs the special symbol ⊥ indicating decryption failure, then D outputs ⊥,
otherwise it outputs m.

e Exercise 1. The above is an informal description of a public key encryption scheme.
Implement the three algorithms K, E and D. Show that the triple (K, E ,D) is a public
key encryption scheme.

Informally: If it is hard to break the Diffie-Hellman protocol based on G,
and (G,P, C, Es,Ds) provides confidentiality and integrity, then the above
public key encryption scheme provides confidentiality and non-malleability.

3.1 ElGamal

The security of the above scheme depends both on the security of the Diffie-Hellman
protocol and the security of the symmetric cryptosystem.

In order to illustrate certain attacks, it is convenient to consider a variant of the above
public key encryption scheme that uses an extremely simple symmetric cryptosystem,
namely a variant of the Shift cipher given by (G,G,G, Es,Ds), where Es(k,m) = mk
and Ds(k,w) = wk−1.

The resulting scheme is known as the ElGamal (or textbook ElGamal) public key
encryption scheme.

• The key generation algorithm is as described above.

• The encryption algorithm E takes as input an encryption key y and a message
m ∈ G. It samples a number r uniformly at random from the set {0, 1, 2, . . . , n−1}.
Then it computes x = gr and w = myr. It outputs the ciphertext c = (x,w).

• The decryption algorithm D takes as input a decryption key b and a ciphertext
c = (x,w). It computes m = wx−b.

6

e Example 1. Consider the group Z+
23 with generator g = 5.

Bob chooses the random number b = 13 and computes y = 13 · 5 = 19.
Alice wants to encrypt the message m = 7. She knows Bob’s encryption key y = 19.

She chooses the random number r = 5 and computes x = 5·5 = 2 and w = 7+5·19 = 10.
The ElGamal ciphertext is c = (2, 10).

Bob computes 10 + (−13) · 2 = 7.

e Example 2. Consider the group F∗23 with generator g = 5.
Bob chooses the random number b = 13 and computes y = 513 = 21.
Alice wants to encrypt the message m = 7. She knows Bob’s encryption key y = 21.

She chooses the random number r = 5 and computes x = 55 = 20 and w = 7 · 215 = 6.
The ElGamal ciphertext is c = (20, 6).

Bob computes 6 · 20−13 = 7.

e Exercise 2. The above is an informal description of a public key encryption scheme.
Implement the three algorithms K, E and D. Show that the triple (K, E ,D) is a public
key encryption scheme.

Information Leakage For certain groups, the ElGamal public key cryptosystem may
leak information about the message. This may or may not be problematic.

e Exercise 3. Suppose p is a prime such that p − 1 is divisible by a large prime and the
discrete logarithm problem is hard in F∗p. Consider ElGamal based on G = F∗p. Let y
be the encryption key, and let c = (x,w) be an encryption of m under y. Show that

(
m

p

)
=

(
w
p

)
if
(
x
p

)
or
(
y
p

)
is 1; and

−
(
w
p

)
otherwise.

e Example 3. Continuing Example 2, we find
(

21
23

)
= −1,

(
20
23

)
= −1 and

(
6
23

)
= 1. This

means that
(
m
23

)
should be −1, and indeed,

(
7
23

)
= −1.

e Exercise 4. Suppose p is a prime such that the discrete logarithm problem is hard in
F∗p. Suppose also that p − 1 is divisible by a (small) known prime `, and that m ∈ F∗p
has order `. Show that m can be recovered from an encryption of m using essentially a
small multiple of

√
` group operations.

Malleability When the attacker only sees the encryption key and one ciphertext, we
say that we have a chosen plaintext attack. Quite often the attacker will be able to de-
duce some information about the decryption of other ciphertexts. We typically consider
a situation where the adversary wants to learn something about the decryption of one
or more ciphertexts, and may ask for the decryption of one or more other ciphertexts.
This is known as a chosen ciphertext attack.

7

We begin by showing that ElGamal is malleable, in that even if you do not know
the decryption of a ciphertext, it is still possible to create new ciphertexts that decrypt
to the same or related messages.

e Exercise 5. Suppose c = (x,w) is an encryption of an unknown message m. Show how
to create an encryption c′ = (x′, w′) of m where x′ 6= x. Also show how to create an
encryption of mm′ for any m′ ∈ G.

We can now use these properties of ElGamal to attack confidentiality under a chosen
ciphertext attack.

e Exercise 6. Suppose Alice sends Bob the ciphertext c = (x,w) and Eve learns this
ciphertext. Suppose further that Eve is capable of tricking Bob into decrypting one
ciphertext that is different from c. Show how Eve can learn the decryption of c.

The above exercises show that ElGamal, and in particular ElGamal over F∗p, does
not provide confidentiality. Neither does ElGamal provide non-malleability.

However, if the symmetric cryptosystem used provides confidentiality and integrity,
it can be proven under reasonable assumptions that the public key encryption scheme
from Exercise 1 is non-malleable and provides confidentiality.

4 RSA

In this section we shall develop the famous RSA public key encryption scheme. We
begin with the Pohlig-Hellman exponentiation cipher, which can be interpreted as a
public key encryption scheme, albeit an insecure one. The problem is that if the group
order is known, it is easy to recover the decryption key from the encryption key.

The exponentiation cipher can be adapted to a different algebraic structure, where
we are able to prove that recovering a decryption key is as hard as factoring certain
integers. While this does not prove that the scheme is secure if it is hard to factor those
integers, it turns out that factoring seems to be the best way to attack the cryptosystem.
We show a number of flaws in this cryptosystem and discuss various ways of improving
the system.

4.1 Preliminaries

The Pohlig-Hellman exponentiation cipher is based on a cyclic group G of order N . The
key is an integer k relatively prime to N , and the two block cipher maps are

(k, x) 7→ xk and (k, y) 7→ yk
−1

,

where k−1 is any inverse of k modulo N .
Observe now that we can turn the Pohlig-Hellman cipher into a public key encryption

scheme as follows. The key generation algorithm chooses an integer e from the integers
between 0 and N that are invertible modulo N . It then finds some inverse d of e modulo
the group order N . The encryption key ek is e, while the decryption key dk is d.

8

The encryption algorithm takes as input an encryption key ek = e and a message
m ∈ G and outputs the ciphertext c = me.

The decryption algorithm takes as input a decryption key dk = d and a ciphertext
c ∈ G out outputs the message m = cd.

e Exercise 7. The above is an informal description of a public key encryption scheme.
Implement the three algorithms K, E and D. Show that the triple (K, E ,D) is a public
key encryption scheme.

Unfortunately, this public key encryption scheme is trivially insecure. An adversary
that sees the encryption key e can easily compute an inverse of e modulo the group
order N , which is assumed known. (It may be impossible to compute the exact inverse
found by the key generation algorithm, but any inverse can be used to compute the
decryption map.)

However, if the group order was unknown, there would be no obvious way to compute
a decryption key from the encryption key. The first thing we do is to note that Pohlig-
Hellman works equally well in any finite group.

e Exercise 8. Let G be a finite group of order N , and let e and d be inverses modulo (a
multiple of) N . Show that the maps x 7→ xe and y 7→ yd are inverse maps.

The key generation algorithm needs to compute inverses modulo the group order,
which usually requires that the key generation algorithm knows the group order. This
means that we cannot fix a single group. Instead, the key generation algorithm must
choose a group in such a way that it knows the group order. Then it must include in the
encryption key a description of the group such that the group order is hard to compute
from that description.

Before we continue, we observe that for the Pohlig-Hellman cipher, ed ≡ 1 (mod N),
which means that ed− 1 is a multiple of N . Likewise, Exercise 8 says that if we know a
multiple of the group order, we can find something that is effectively a decryption key.

4.2 The RSA Cryptosystem

Before we define the famous RSA cryptosystem, we extend the result of Exercise 8 to a
specific ring.

e Exercise 9. Let n be the product of two large primes p and q, and let e and d be inverses
modulo (a multiple of) lcm(p − 1, q − 1). Show that the maps x 7→ xe and y 7→ yd on
Zn are inverses.

Hint: Prove that p divides the difference xed − x for any integer x. Repeat for q.
Then conclude that the product divides the difference.

The textbook RSA public key encryption scheme (K, E ,D) works as follows.

• The key generation algorithm K chooses two large primes p and q. It computes
n = pq, chooses e and finds d such that ed ≡ 1 (mod lcm(p − 1, q − 1)). Finally
it outputs ek = (n, e) and dk = (n, d). The message set associated to ek is
{0, 1, 2, . . . , n− 1}.

9

• The encryption algorithm E takes as input an encryption key (n, e) and a message
m ∈ {0, 1, . . . , n− 1}. It computes c = me mod n and outputs the ciphertext c.

• The decryption algorithm D takes as input a decryption key (n, d) and a ciphertext
c. It computes m = cd mod n and outputs the message m.

Note that the encryption exponent e may be very small, even 3.

e Exercise 10. The above is an informal description of a public key encryption scheme.
Implement (use some suitable method to choose p, q and e) the three algorithms K, E
and D are. Show that the triple (K, E ,D) is a public key encryption scheme.

Hint: Use Exercise 9.

e Example 4. Bob chooses the two primes p = 41 and q = 53 and computes n = 41 · 53 =
2173. He chooses e = 3 and computes an inverse d = 347 of 3 modulo (41− 1)(53− 1).
The encryption key is (2173, 3), the decryption key is (2173, 347).

Alice wants to encrypt the message m = 1234. She knows Bob’s encryption key.
She computes c = 12343 mod 2173 = 884.

Bob computes 884347 mod 2173 = 1234.

As we saw in Section 4.1, a public key encryption scheme is obviously useless if it is
easy to deduce the decryption key from the encryption key. We shall now consider this
problem for the RSA cryptosystem.

Let p and q be distinct, large primes, and let n = pq. Consider the group Z∗n, which is
isomorphic to Z∗p×Z∗q . It is clear that if we know p and q, we can find N = (p−1)(q−1).
Conversely, if we know n and N , then we can easily recover the factorization.

t Proposition 1. Let n be a product of two distinct primes p and q, and let N be the
order of Z∗n. Then p and q are zeros of the polynomial f(X) = X2 + (N −n− 1)X +n.

Proof. First note that N = n− (p+ q) + 1, so

p+ q = n+ 1−N .

Now consider the polynomial f(X) = (X − p)(X − q) = X2 − (p+ q)X + n.

Note that if we know N , then we know the polynomial’s coefficients, and if we know
the coefficients, we can easily compute the zeros of the polynomial using the usual
formula for the zeros of a quadratic polynomial.

If we only know n and a multiple of l of N , we cannot use the above result, but we
can still recover the factorization of n.

e Exercise 11. Let n be a product of two distinct primes p and q. Let x and y be integers
such that

x ≡ y (mod p) and x 6≡ y (mod q).

Show that gcd(x− y, n) = p.

10

t Lemma 2. Let n be a product of two distinct large primes p and q, and let k be an odd
multiple of lcm(p− 1, q − 1)/2. Then for at least half of all integers z between 0 and n
that are relatively prime to n,

zk ≡ ±1 (mod p) and zk ≡ ∓1 (mod q). (1)

Proof. Suppose first that neither p− 1 nor q− 1 divide k. Then (p− 1)/2 and (q− 1)/2
both divide k and

k

(p− 1)/2
and

k

(q − 1)/2

are both odd, so the Legendre symbol tells us that the equations

xk ≡ −1 (mod p) and yk ≡ −1 (mod q)

hold for half of all integers x ∈ {1, 2, . . . , p−1} and half of all integers y ∈ {1, 2, . . . , q−1}.
Otherwise, suppose without loss of generality that q − 1 divides k, while p− 1 does

not divide k. Again, the Legendre symbol tells us that

xk ≡ −1 (mod p) and yk ≡ 1 (mod q)

for half of all integers x ∈ {1, 2, . . . , p− 1} and any integer y ∈ {1, 2, . . . , q − 1}.
In either case, the Chinese remainder theorem says that (1) holds for half of all

integers z between 0 and n that are relatively prime to n.

t Proposition 3. Let n be a product of two distinct primes p and q. For any κ > 0,
given a multiple l of N , we can compute p and q with probability 1− 2−κ using at most
d4κ log2 le arithmetic operations and κ log2 l gcd computations.

Proof. Write l = 2ts, p−1 = 2tpsp and q−1 = 2tqsq with s, sp and sq all odd. We may
assume that tp ≥ tq. It is then clear that 2tp−1s is an odd multiple of lcm(p−1, q−1)/2.

Lemma 2 then says that for half of all z between 0 and n that are relatively prime
to n,

gcd(z2tp−1s + 1, n) = p or q.

For each value z chosen uniformly at random from {x | 0 < x < n, gcd(x, n) = 1}
the probability that the above gcd computation does not produce a proper factor of n is
1/2. The probability that a proper factor of n has not appeared after κ independently
sampled z values is 2−κ.

Obviously, we do not know tp. But for each value of z chosen, we can simply try all
possible values for tp. Since we know that tp ≤ t < log2 l, this requires at most log2 l
gcd computations per z value.

We can compute the greatest common divisor by computing z2is modulo n before
computing the gcd. We can compute this using the standard recursive exponentiation
algorithm using 4 log2 l arithmetic operations. By computing first z20s first, we can

compute z21s, . . . , z2t−1s successively, thereby computing all t values modulo n using
just 4 log2 l arithmetic operations. Doing this for at most κ distinct z values then
requires at most 4κ log2 l arithmetic operations.

11

e Exercise 12. The proof of Proposition 3 essentially describes an algorithm for factoring
a product of two large primes p and q given a multiple l of lcm(p− 1, q− 1). Implement
this algorithm and restate Proposition 3 as a statement about the algorithm’s time
complexity (in terms of arithmetic operations and gcd computations, ignoring any other
form of computation involved).

e Example 5. Consider n = 2173. Suppose we know that 35360 is a multiple of the order
of Z∗2173. We write 35360 = 25 · 1105.

We begin with z = 2 and compute 21105 mod 2173 = 401. We then compute
4012 mod 2173 = 2172 and 21722 mod 2173 = 1. This did not give us the factors
of 2173.

We try again with z = 3 and compute 31105 mod 2173 = 454. We then compute
4542 mod 2173 = 1854 and 18542 mod 2173 = 1803. At this point, we compute

gcd(1803− 1, 2173) = 53.

We have found that 2173 = 53 · 41.

Proposition 3 says that if anyone knows a multiple of N , then they can factor. It
follows that if we believe that it is difficult to factor integers like n, then it is also hard
to deduce the group order of Z∗n or any multiple of it, and therefore it is hard to deduce
the RSA decryption key from the RSA encryption key.

4.3 Attacks

We have seen that as long as the RSA modulus n chosen by the key generation algorithm
is hard to factor, the above public key encryption scheme is not obviously useless. In
fact, it turns out that it is useful.

The best strategy for recovering a completely unknown m from c = me mod n —
computing eth roots — seems to be to factor n. However, as the security definitions in
Section 2 make clear, the adversary does not need to recover a completely unknown m
to break the system. In this section, we shall consider a few attacks on the public key
encryption scheme from Exercise 10 that work essentially without computing eth roots.

Deterministic Encryption One fundamental problem with the public key encryp-
tion scheme is that it is not randomized. The ciphertext depends only on the message.

e Exercise 13. Show that D(dk , c) = m if and only if E(ek ,m) = c.

e Exercise 14. Let S be a fixed and known set of messages, and let c be an encryption
of some message from S. Show that we can decide what the decryption of c is using at
most |S| encryptions.

Information Leakage Part of the message encrypted will leak, which may or may
not be a problem.

12

e Exercise 15. Show that both e and d will be odd. Show that
(m
n

)
=
(c
n

)
.

Malleability Just like ElGamal, RSA is malleable and this can be used in a chosen
ciphertext attack.

e Exercise 16. Suppose c is an encryption of an unknown message m. Show how to create
an encryption c′ of mm′ for any m′ in the message space.

e Exercise 17. Suppose Alice sends Bob the ciphertext c and Eve learns this ciphertext.
Suppose further that Eve is capable of tricking Bob into decrypting one ciphertext that
is different from c. Show how Eve can learn the decryption of c.

Short Messages Just like we developed a public key encryption scheme based on
Diffie-Hellman and a symmetric encryption scheme, we can combine RSA and a sym-
metric cryptosystem (Ks,P, C, Es,Ds) to form a new public key encryption scheme.

The obvious idea is to consider the keys of the symmetric cryptosystem as integers
and do as follows:

• The key generation algorithm is exactly the same as the RSA key generation
algorithm.

• The encryption algorithm takes an encryption key ek = (n, e) and a message
m ∈ P as input. It chooses a random key k from Ks, computes x ← ke mod n
and w ← Es(k,m). Finally, it outputs c = (x,w).

• The decryption algorithm takes a decryption key dk = (n, d) and a ciphertext
c = (x,w) as input. It computes k ← xd mod n and m ← Ds(k,w). If k 6∈ Ks or
decryption of w fails, it outputs ⊥. Otherwise it outputs m.

One problem is that symmetric keys are typically small compared to the RSA mod-
ulus.

e Exercise 18. Suppose n ≈ 22000, e = 3 and Ks = {0, 1, 2, . . . , 2256 − 1}. Given an
encryption c of an unknown key k, show how you can easily recover k.

Small Integer Roots of Polynomial Equations A first solution to this problem
is to add a large, fixed integer such as 21999 to the key before raising it to the eth
power, and subtracting it after raising the RSA ciphertext to the dth power. That is,
x ≡ (21999 +k)e (mod n). Unfortunately, for small e it is easy to find small integer roots
of modular univariate equations such as (21999 +X)e − x ≡ 0 (mod n), and k < 2256 is
a small integer root of this equation.

A better solution is to add a random multiple of a large, fixed integer. That is,
x ≡ (r2256 + k)e (mod n). We recover k by computing the remainder when divided by
2256 after raising x to the dth power.

13

While this seems to work, there are some worries. First, even if it is hard to compute
eth roots in Zn, it may not be hard to compute parts of the root, e.g. the key k. Second,
it may be possible to modify x in such a way that k does not change, only r. Since the
decryption algorithm discards r, it will accept the modified ciphertext as valid, which
may be a problem for certain applications.

4.4 Secure Variants

There is a simple, robust solution that uses a random-looking function to derive the key
from a random number, which is raised to the eth power. Suppose h is a function from
{0, 1, . . . , n− 1} to Ks. We get the following cryptosystem.

• The key generation algorithm is exactly the same as the RSA key generation
algorithm.

• The encryption algorithm takes an encryption key ek = (n, e) and a message
m ∈ P as input. It chooses r uniformly at random from {0, 1, . . . , n−1}, computes
k ← h(r), x← re mod n and w ← Es(k,m). Finally, it outputs c = (x,w).

• The decryption algorithm takes a decryption key dk = (n, d) and a ciphertext
c = (x,w) as input. It computes r ← xd mod n, k ← h(r) and m ← Ds(k,w). If
decryption of w fails, it outputs ⊥. Otherwise, it outputs m.

Unless you know all of r, you know very little about the key k, since h is random-
looking. Furthermore, any change in x will lead to a change in r, which will lead to an
unpredictable change in k because h is random-looking. If k has changed unpredictably,
it will be hard to modify w so that it is a valid ciphertext under the modified k, so it
will be hard to get the decryption algorithm to say anything but ⊥.

e Exercise 19. The above is an informal description of a public key encryption scheme.
Implement (reuse key generation from Exercise 10) the three algorithms K, E and D.
Show that the triple (K, E ,D) is a public key encryption scheme.

e Exercise 20. Suppose you want to send the same message m to l recipients with public
keys (n1, e1), (n2, e2), . . . , (nl, el). One simple approach is to use the same r and compute
xi ← rei mod ni, i = 1, 2, . . . , l, k ← h(r) and w ← Es(k,m). You send (xi, w) to the
ith recipient.

Suppose e1 = e2 = · · · = el ≤ l. Show how you can easily recover r.

Remark. Exercise 20 does not show an attack on the public key encryption scheme from
Exercise 19. Instead, it illustrates one way to misuse a cryptosystem and thereby intro-
duce weaknesses. In this case, reusing the randomness r for more than one encryption
introduced the weakness. In general, it is implicitly assumed that randomness used by
key generation and encryption algorithms is never reused and does not leak out of the
algorithm. If those assumptions are violated, weaknesses may result as shown by the
exercise.

14

y1 y2 y3

h2

h3

+

+

+

h1

y′1 y′2 y′3

Figure 2: The permutation π can be used for RSA encryption.

Informally: If it is hard to compute eth roots modulo n for (n, e) as
output by the key generation algorithm K, and (Ks,P, C, Es,Ds) provides
confidentiality and integrity, then the above public key encryption scheme
provides confidentiality and non-malleability.

In situations with multiple recipients of the same message, other schemes may be
more convenient. One solution is based on a Feistel-like permutation. Suppose we
have three groups G1, G2 and G3 such that G1 ×G2 ×G3 can be considered a subset
of {0, 1, . . . , n − 1}. Suppose also that we have three random-looking functions h1 :
G2 × G3 → G1, h2 : G1 → G2 and h3 : G1 → G3. Then we can construct two
permutations on G1 ×G2 ×G3 as

π1(y1, y2, y3) = (y1, y2 + h2(y1), y3 + h3(y1)) and

π2(y′1, y
′
2, y
′
3) = (y′1 + h1(y′2, y

′
3), y′2, y

′
3).

The inverses of these two permutations are obvious. Our cryptosystem will use the
composition π = π2 ◦ π1 shown in Figure 2.

Suppose Ks ⊆ G2. Our cryptosystem works as follows.

• The key generation algorithm is exactly the same as the RSA key generation
algorithm.

• The encryption algorithm takes an encryption key ek = (n, e) and a message
m ∈ P as input. It chooses r uniformly at random from G1 and k uniformly at
random from Ks, computes x ← π(r, k, 0)e mod n and w ← Es(k,m). Finally, it
outputs c = (x,w).

• The decryption algorithm takes a decryption key dk = (n, d) and a ciphertext d
as input. It computes (r, k, y3) ← π−1(xd mod n) and m ← Ds(k,w). If k 6∈ Ks
or y3 6= 0 or the decryption of w failed, it outputs ⊥. Otherwise it outputs m.

15

e Exercise 21. The above is an informal description of a public key encryption scheme.
Implement (choose some sensible hash functions, and reuse key generation from Exer-
cise 10) the three algorithms K, E and D are. Show that the triple (K, E ,D) is a public
key encryption scheme.

Suppose we know x, that xd mod n = (y′1, y
′
2, y
′
3) and that π−1(y′1, y

′
2, y
′
3) = (r, k, 0).

Since h2(r) is added to the key to get y′2, it is impossible to recover k without
knowing r. But h1 is used to hide r, so it is impossible to recover all of r without
knowing both y′1, y′2 and y′3.

Furthermore, any change in y′1 will lead to a change in r, which will lead to an
unpredictable change in h3(r). Any change in y′2 or y′3 will lead to an unpredictable
change in r. If r has changed, it is unlikely that π−1 will result in 0 in the third
coordinate, which means that the decryption algorithm will reject the ciphertext.

It is possible to prove that under reasonable assumptions, variants of the above
public key cryptosystem provide confidentiality and non-malleability.

5 Factoring Integers

The cryptosystems described in Section 4.4 seem to be secure if it is hard to compute
eth roots modulo the RSA modulus. It seems like the best method to compute eth
roots modulo the RSA modulus n is to factor n.

Informally: It is conjectured that computing eth roots modulo a well-
chosen RSA modulus is not (much) easier than factoring the RSA modulus.

Under this conjecture, the study of the security of RSA-based cryptosystems like
those in Section 4.4 reduces to the study of how easy it is to factor RSA moduluses.

Throughout this section, unless otherwise stated we shall consider an integer n that
is the product of two large primes p and q, with q < p. We do this to simplify the
exposition, but we note that most of the factoring algorithms we consider will work for
other composite numbers, and often work much better.

We shall usually estimate the work required by our algorithms in terms of arithmetic
operations. By arithmetic operations, we mean additions, subtractions, multiplications
or divisions of integers of about the same size as n. We ignore additions and subtractions
of small constants, as well as multiplication and division by 2.

We begin with the simplest possible factoring algorithm, so-called trial division.
While it works, it is extremely slow.

t Proposition 4. A factor of a composite integer n can be found using at most
√
n

arithmetic operations.

Proof. The composite n must have a factor smaller than
√
n. We can divide n by

the integers 2, 3, 4, . . . , b√nc in order. When the remainder is zero, we have found the
smallest prime divisor of n.

16

e Exercise 22. The proof of Proposition 4 essentially describes an algorithm for finding
a factor of a composite integer. Implement this algorithm and restate Proposition 4 as
a statement about the algorithm’s time complexity (in terms of arithmetic operations,
ignoring any other form of computation involved).

Requirement 1. Let q be the smallest divisor of n. Then q arithmetic operations
should be an infeasible computation.

Having sufficiently large prime divisors is obviously easy to arrange.

e Exercise 23. Suppose n is a product of one or more prime powers, and that the biggest
prime divisor is p. Show that the prime factorization of n can be computed using at
most p+ log2 n arithmetic operations.

5.1 Fermat Factoring

If p and q are numbers of roughly the same size, then p and q should be close to
√
n,

but their average should be closer. Searching for the average close to
√
n may make

sense.
Let t = (p+ q)/2 and let s = (p− q)/2. Then

t2 − s2 = (t+ s)(t− s) = pq = n.

This means that we can decide if some integer τ equals t by computing τ2 − n and
checking if it is an integer square.

t Lemma 5. Given an integer k > 1, we can compute the integer square root of k if it
exists using at most 3 log2 k + 3 arithmetic operations.

Proof. We use binary search and construct a sequence of intervals (l1, r1), (l2, r2), . . . as
follows.

Let l1 = 1 and r1 = k. Let ui = b(li + ri)/2c. If u2
i > k, set (li+1, ri+1) = (li, ui). If

u2
i < k, set (li+1, ri+1) = (ui, ri). If u2

i = k, set (li+1, ri+1) = (ui, ui).
If u2

i = k for some i, then lj =
√
k = rj for all j > i. Otherwise, note that

1 <
√
k < k. And if li <

√
k < ri and u2

i 6= k, then li+1 <
√
k < ri+1. It follows that

the intervals satisfy li ≤
√
k ≤ ri for all i. Furthermore, if li 6= ri, then li <

√
k < ri.

If ri − li > 1, then ri+1 − li+1 ≤ d(ri − li)/2e, or alternatively ri+1 − li+1 ≤ (ri −
li)/2 + 1/2. It follows that

ri+1 − li+1 ≤
1

2
(ri − li) +

1

2
≤ 1

2

(
1

2
(ri−1 − li−1) +

1

2

)
+

1

2

≤ 2−i(r1 − l1) +

i∑

j=1

2−j < 2−ik + 1.

It follows ri+1 − li+1 ≤ 1 for i > log2 k.

17

We now have a simple algorithm for computing the integer square root, or concluding
that it does not exist. It computes pairs (li, ri) until either ri = li, in which case ri is
the integer square root of k, or ri = li + 1, in which case k is not the square of any
integer.

This algorithm will terminate after computing at most dlog2 ke pairs (after the first).
Finally, given a pair (li, ri), computing (li+1, ri+1) requires 3 arithmetic operations. The
claim follows.

e Exercise 24. The proof of Lemma 5 essentially describes an algorithm for computing
an integer square root, or proving that no such square root exists. Implement this
algorithm and restate Lemma 5 as a statement about the algorithm’s time complexity
(in terms of arithmetic operations, ignoring any other form of computation involved).

e Exercise 25. Compute the square root of 16129 (by hand) using the algorithm from
Exercise 24.

Remark. The algorithm implied for computing square roots implied by Lemma 5 is
not the most efficient. Variants of Newtons method will typically be much faster.
Furthermore, if we only want to know if a given integer is square, we can detect most
non-squares very quickly by checking if they are squares modulo small primes.

t Lemma 6. Let n = pq where p, q are large primes. Then (p+ q)/2−√n ≤ |p− q|/2.

Proof. The claim holds if p = q. We may therefore assume that p > q. With t = (p+q)/2
and s = (p− q)/2 as above, we have that

t− s =
√

(t− s)2 <
√

(t− s)(t+ s) =
√
n,

from which the claim follows.

t Theorem 7 (Fermat factoring). Let n be a product of two large primes p, q. Then a
factor of n can be found using at most 3|p− q|(2 + log2 n)/2 + 1 arithmetic operations.

Proof. We are looking for an integer τ such that τ = (p− q)/2. We know that τ >
√
n,

so we may consider the distance τ − d√ne. By Lemma 6, this distance is at most
|p− q|/2. In other words, there is an i < |p− q|/2 and integer σ such that

(d√ne+ i)2 − n = σ2.

We can find the first integer square among the |p− q|/2 integers (d√ne+ i)2 − n using
at most 3 log2 n+ 3 + 3 arithmetic operations per integer, by Lemma 5.

Once we find t = d√ne+ i and the square root s, we find a proper factor t− s of n
using a single arithmetic operation. The claim follows.

18

e Exercise 26. The proof of Theorem 7 essentially describes an algorithm for finding a
factor of a composite integer. Implement this algorithm and restate Theorem 7 as a
statement about the algorithm’s time complexity (in terms of arithmetic operations,
ignoring any other form of computation involved).

e Example 6. Consider n = 1173. We get that d√ne = 35.
Then 352 − 1173 = 52, which is not a square.
Then (35 + 1)2 − 1173 = 123, which is not a square.
Then (35 + 2)2 − 1173 = 196 = 142. We get that

1173 = (37− 14)(37 + 14) = 23 · 51.

e Exercise 27. Factor 1683557 using the algorithm from the above proof.

e Exercise 28. We can use a variant of the Sieve of Eratosthenes to find primes quickly.
The idea is that we sieve over a small integer range to quickly exclude numbers divisible
by small primes. The remaining numbers are then much more likely to be prime. This
reduces the number of expensive primality tests we must do before we find a prime.

We can adapt this idea to RSA key generation by sieving over a range likely to
contain two primes, which will be our p and q. Explain why this is a bad idea.

We arrive at the following requirement.

Requirement 2. Let n = pq. Then |p−q| arithmetic operations should be an infeasible
computation.

e Exercise 29. Suppose we choose two numbers x and y independently and uniformly at
random from the range {2k−1, 2k−1 + 1, . . . , 2k − 1}. What is the expected value of
|x− y|?

5.2 Pollard’s p− 1

We saw earlier that if we have a multiple of lcm(p − 1, q − 1), then we can factor n.
However, it turns out that if we have a multiple of p − 1 or q − 1, we can usually also
factor n.

t Proposition 8. Let n be the product of two distinct large primes p and q, and let k be
a multiple of p − 1, but not a multiple of q − 1. Then for at least half of all integers z
between 0 and n that are relatively prime to n,

zk ≡ 1 (mod p) and zk 6≡ 1 (mod q). (2)

Proof. The first equation holds for all z that are relatively prime to n.
Let g be a generator for F∗q , and let

x =
q − 1

gcd(q − 1, k)
.

19

Then gk has order x, which means that

zk ≡ 1 (mod q)

for at most 1/x of all integers z between 0 and n that are relatively prime to n. The
claim follows.

Note that if we have z and k such that (2) holds, then Exercise 11 allows us to factor
n.

The question is, how do we find a multiple of p− 1? One approach may be to hope
that p−1 is only divisible by the l smallest primes `1, `2, . . . , `l. Since the largest prime

power that could divide the (unknown) value p− 1 is `
blogn/ log `ic
i , we could construct

a multiple using

k =
l∏

i=1

`
blogn/ log `ic
i .

In practice, k = `l! will work just as well.

e Example 7. Consider n = 1007. We choose z = 2, and try the bound `l = 6 and
k = 6! = 720.

We compute 2720 ≡ 153 (mod 1007), and then

gcd(153− 1, 1007) = 19.

We find that 1007 = 19 · 53.

e Exercise 30. Using the above approach, factor 1829.

We arrive at the following requirement.

Requirement 3. Suppose n = pq. Let k1 be the largest divisor of p − 1, and let k2

be the largest divisor of q − 1. Then min{k1, k2} arithmetic operations should be an
infeasible computation.

One simple way to ensure this is to choose p and q as safe primes, that is, such that
(p− 1)/2 and (q − 1)/2 are also prime.

5.3 Pollard’s ρ

We assume that the reader is familiar with Pollard’s ρ method for computing discrete
logarithms. Our goal this time is to construct three random-looking sequences of inte-
gers, one of which will collide and provide us with our factorization.

Let s1 be an integer between 0 and n. We construct a sequence of integers s1, s2, . . .
using the rule

si+1 = s2
i + 1 mod n. (3)

Based on this sequence, we define a second sequence sq,1, sq,2, . . . , where sq,i = si mod q.
Note that

sq,i+1 = s2
q,i + 1 mod q. (4)

20

t Lemma 9. Let the sequences s1, s2, . . . and sq,1, sq,2, . . . be as above. Suppose indexes
i, j exist such that sq,i = sq,j. Then gcd(si − sj , n) > 1. If si 6= sj, then

gcd(si − sj , n) = q.

Proof. If si = sj , then gcd(si − sj , n) = n, so suppose si 6= sj .
Since

si ≡ sq,i ≡ sq,j ≡ sj (mod q),

we see that q divides the difference si − sj . But si 6= sj , so we cannot also have that p
divides si − sj , and the claim follows.

e Exercise 31. In this exercise, we will use our knowledge of the factors of n to better see
what is happening. Let n = 2573 = 31 · 83 and s1 = 2380.

1. Compute the first 15 terms of the sequences from (3) and (4).

2. Find by inspection the first repetition in the sequence sq,1, sq,2,

3. Use Lemma 9 and the repetition found to factor n = 2573.

t Proposition 10. Let s1, s2, . . . and sq,1, sq,2, . . . be defined as above. Suppose k is the
smallest integer such that sq,k = sq,k′ for some k′ < k. Then distinct indexes i, j can
be found such that gcd(si− sj , n) > 1 using at most 9k arithmetic operations and k gcd
computations.

Proof. We consider the sequences t1, t2, . . . and tq,1, tq,2, . . . given by tj = s2j and
tq,j = sq,2j . It is clear that for some i, tq,i = sq,i, and that this i is at most k.

We can compute successively the pairs (s1, t1), (s2, t2), . . . using the rule

(si+1, ti+1) = (s2
i + 1 mod n, (t2i + 1)2 + 1 mod n).

By computing gcd(si − ti, n) we will notice when this is larger than 1, which it by
Lemma 9 will be for some i ≤ k. Computing each new pair requires 9 arithmetic
operations.

e Exercise 32. The proof of Proposition 10 essentially describes an algorithm that even-
tually computes a greatest common divisor larger than 1. Implement this algorithm
and restate Proposition 10 as a statement about the algorithm’s time complexity (in
terms of arithmetic operations and gcd computations).

Also, suppose the elements s1, s2, . . . , sk are all distinct. Show that then the greatest
common divisor eventually computed is a proper divisor of n.

e Example 8. Consider n = 1007.

21

We begin with s1 = 2, t1 = 22 + 1 = 5, and compute:

s2 = 5 t2 = 677 gcd(677− 5, 1007) = 1

s3 = 26 t3 = 886 gcd(886− 26, 1007) = 1

s4 = 677 t4 = 886 gcd(886− 677, 1007) = 19

We get that 1007 = 19 · 53.

e Exercise 33. Use the algorithm from Exercise 32 to factor (by hand) n = 2573.

Let E be the event that the L first elements of sq,1, sq,2, . . . are all distinct, and let
E′ be the event that the L first elements of s1, s2, . . . are all distinct. Then we can
define two functions

θ(L, n) = Pr[E] and γ(L, n) = 1− Pr[E′].

We can now prove the following result.

t Theorem 11. Let n be a product of two distinct primes p and q. Then a proper factor
of n can be computed using at most 9L arithmetic operations and L gcd computations,
except with probability θ(L, n) + γ(L, n).

Proof. Some integer will appear twice among the L first elements of the sequence
sq,1, sq,2, . . . except with probability θ(L, n).

There will be no repetitions among the L first elements of the sequence s1, s2, . . .
except with probability γ(L, n).

By Exercise 32 there is then an algorithm that computes a proper factor of n using
at most 9L arithmetic operations and L gcd computations. The claim follows.

Now suppose the two sequences are “random-looking” with respect to repetitions.
This means that since the elements of the second sequence come from a much smaller
set, we expect a repetition in that sequence long before we have a repetition in the larger
sequence. It seems plausible that the sequences we have defined above are “random-
looking” with respect to repetitions. Therefore, we make the following conjecture.

t Conjecture 12. The function θ(L, n) is roughly similar to

exp

(
−L(L− 1)

2q

)

and γ(L, n) is roughly similar to
L(L− 1)

2n
.

Based on Conjecture 12 and Theorem 11, we arrive at the following requirement.

Requirement 4. Suppose n = pq, with q < p. Then
√
q arithmetic operations should

be an infeasible computation.

22

5.4 Index Calculus

Index calculus for factoring is very similar to index calculus for discrete logarithms. We
begin with the observation that knowledge of more than two square roots modulo n of
the same number allows us to factor n.

t Proposition 13. Let n be the product of two distinct, large primes p and q. Let z be
a square modulo n with gcd(z, n) = 1. Then z has four square roots modulo n.

Suppose further that x and y are square roots of z modulo n satisfying

x 6≡ ±y (mod n).

Then gcd(x− y, n) is a proper divisor of n.

Proof. If z is a square modulo n, then x exists such that x2 ≡ z (mod n), which means
that x2 is congruent to z modulo both p and q. It follows that x and −x are square
roots of z modulo both p and q, and they are distinct since z is relatively prime to n.
The Chinese remainder theorem then says that these can be combined into four square
roots of z modulo n.

Since x2 ≡ z ≡ y2 (mod n), we know that n divides x2 − y2 = (x− y)(x+ y). But
since x 6≡ ±y (mod n), we know that n does not divide x− y and x+ y. It follows that
gcd(x− y, n) is a proper divisor of n.

e Example 9. Consider n = 314791 and the two numbers 125823 and 17500. We see that

1258232 ≡ 273148 ≡ 175002 (mod 314791) and

125823 6≡ ±17500 (mod 314791).

A quick computation gives us

gcd(125823− 17500, 314791) = 727.

The next idea is that if we have a sufficient number of relations between random
integers and small primes modulo n, then linear algebra will allow us to construct a
square root of a product of these random integers.

t Proposition 14. Let t1, t2, . . . , tl+1, `1, `2, . . . , `l be integers satisfying

ti ≡
l∏

j=1

`sij . (5)

Then using at most (l + 1)3 arithmetic operations, we can compute α1, α2, . . . , αl+1 ∈
{0, 1} (not all zero) such that

l+1∏

i=1

tαi
i ≡

l∏

j=1

`
1
2

∑l+1
i=1 αisij

j

2

(mod n).

23

Proof. Let S be the (l+ 1)× l matrix (sij), where each of the relations defines one row.
If we consider S as a matrix modulo 2, it has rank at most l, so there exists a non-zero
vector α such that αS ≡ 0 (mod 2).

Given such a vector α, we know that the sums
∑l+1
i=1 αisij are divisible by 2, which

means that raising each ` to these sums divided by 2 gives us a square root of
∏l+1
i=1 t

αi .
Gaussian elimination will find a vector in the kernel of S using at most (l + 1)3

arithmetic operations.

e Example 10. Consider n = 314791. We have six relations:

5000 = 23 · 54 118800 = 24 · 33 · 52 · 11

7425 = 33 · 52 · 11 882 = 2 · 32 · 72

25410 = 2 · 3 · 5 · 7 · 112 61250 = 2 · 54 · 72

We get the matrix

1 0 0 0 0
0 1 0 0 1
0 1 0 0 1
1 0 0 0 0
1 1 1 1 0
1 0 0 0 0

We could use Gaussian elimination to find vectors in the matrix kernel, but for such a
small matrix, it is easier to find them by inspection. We quickly see that (1, 0, 0, 1, 0, 0)
is in the matrix kernel, and we get the square

5000 · 882 ≡ 2926 ≡ (22 · 3 · 52 · 7)2 (mod 314791).

Another quick look at the matrix tells us that (0, 1, 1, 0, 0, 0) is in the matrix kernel,
and we get the square

118800 · 7425 ≡ 45618 ≡ (22 · 33 · 52 · 11)2 (mod 314791).

Finally, we see that (1, 0, 0, 0, 0, 1) is in the matrix kernel, which says that

5000 · 61250 ≡ 273148 ≡ (22 · 54 · 7)2 (mod 314791).

We have found three squares.

Finally, if we already know squares of the random integers from our relations, we
can easily find a square of the product. This second square will be independent of the
one we found above. Which means that we will be able to factor n half the time.

t Theorem 15. Suppose n is a product of two distinct large primes, and that a fraction
σ of the squares modulo n are divisible only by the small primes `1, `2, . . . , `l.

24

Then we can find a proper factor of n with probability 1/2 using an expected

σ−1(l + 1)(l + log2 n+ 2) + (l + 1)3 + 2l2 + 2(l + 1) log2 n+ 2l

arithmetic operations and one gcd computation.

Proof. Our goal is to construct two independent square roots modulo n of the same
number.

We begin by choosing random numbers r between 0 and n for each number checking
if t = r2 mod n factors as a product of the small primes. In this way, we eventually find
l + 1 relations of the form (5).

By Proposition 14, we can find α1, α2, . . . , αl+1 ∈ {0, 1} such that

(
l+1∏

i=1

ri

)2

≡

l∏

j=1

`
1
2

∑l+1
i=1 αisij

j

2

(mod n).

In other words, we have two square roots modulo n of the same number. Since the
coefficients sij depend only on the square modulo n of the random numbers r1, . . . , rl+1,
the two square roots are also independent.

By Proposition 13 we can then factor n with probability 1/2 using one gcd compu-
tation.

For each random number r, squaring modulo n requires 2 arithmetic operations.
Checking if the square factors as a product of `1, . . . , `l requires at most bl + log2 nc
arithmetic operations.

We expect to find l + 1 relations after trying σ−1(l + 1) random numbers, which
means that we need at most

σ−1(l + 1)(l + log2 n+ 2)

arithmetic operations to generate the relations. We then need at most (l+1)3 arithmetic
operations to find α1, . . . , αl+1. (Strictly speaking, we work with a binary matrix, so
these arithmetic operations are much faster.)

Finally, we need at most 2l2 arithmetic operations to compute the sums
∑l+1
i=1 αisij ,

then at most 2(l+ 1) log2 n arithmetic operations to compute the small primes raise to
these sums. Finally we require at most 2l multiplications to compute the two indepen-
dent square roots.

25

e Example 11. We choose a lot of random numbers, eventually finding these relations:

2376252 ≡ 5000 ≡ 23 · 54 (mod 314791)

909622 ≡ 118800 ≡ 24 · 33 · 52 · 11 (mod 314791)

1801362 ≡ 7425 ≡ 33 · 52 · 11 (mod 314791)

575932 ≡ 882 ≡ 2 · 32 · 72 (mod 314791)

2282182 ≡ 25410 ≡ 2 · 3 · 5 · 7 · 112 (mod 314791)

2111932 ≡ 61250 ≡ 2 · 54 · 72 (mod 314791)

As we saw in Example 10, we can use these relations to attempt to find two non-trivial
square roots of the same number. And as we see in Example 9, once we have these
non-trivial square roots, an easy gcd computation gives us a factor of 314791.

Note that if we do all these calculations and fail to factor n, then we do not have to
all the work over again. In practice, discarding a few of our old relations and replacing
them by a few new ones will give us another go. In this way, we will quickly factor n
without doing significantly more work.

We also expect l to be much larger than log2 n, so we expect to be able to factor n
using approximately

σ−1l2 + l3

arithmetic operations. It is reasonable to assume that random squares modulo n are
as likely to be products of small primes as random integers. As we have seen, after a
suitable choice for l, this means that we can factor using approximately

exp
(√

8
√

log n log log n
)

arithmetic operations.
We have arrived at the following requirement.

Requirement 5. exp(
√

8
√

log n log log n) arithmetic operations should be an infeasible
computation.

Today, we have much better algorithms for factoring. While we shall not study these
algorithms, we note that the above requirement is not the final requirement.

6 Lattices

Many different mathematical concepts share the name lattice, but the one we are inter-
ested in is essentially integer linear combinations of linearly independent vectors in a real
vector space. This notion of lattice arises naturally in many areas of mathematics, and
also in many applications, leading to a rich and varied theory that was well-developed
long before its use in cryptography.

26

Lattices have many uses in cryptography, and have for instance been used to attack
many cryptographic constructions. There have been many attempts to construct cryp-
tographic systems based on lattices, and some of these have failed. Recently, the theory
of lattice-based cryptography has grown significantly, especially related to so-called ho-
mormophic cryptosystems.

However, in this note, we are not interested in using lattices to attack cryptosystems
or these recent constructive developments, but rather the fact that there does not seem
to be any fast quantum algorithms for solving difficult lattice-related problems. This
makes lattice-based cryptography into a candidate for quantum-safe cryptography.

6.1 Lattice basics

There are several common, equivalent ways to define lattices. We have chosen a variant
that is convenient for our purposes.

d Definition 2. A lattice is a subgroup of Rn of the form

Λ =

{
r∑

i=1

aibi

∣∣∣∣∣ a1, . . . , ar ∈ Z

}
,

where b1, . . . ,br are linearly independent vectors in Rn.

A basis for a lattice Λ is any set of linearly independent vectors c1, c2, . . . , cr′ such
that Λ = {∑i aici | ai ∈ Z}.

From a basis b1, . . . ,br we can construct a r × n matrix B by letting the ith row
be bi, i = 1, 2, . . . , r. Then

Λ = {aB | a ∈ Zn}.
The matrix B is called a basis matrix or just a basis. Since the rows of B are linearly
independent, the rank of the matrix is equal to the number of rows.

e Example 12. The four vectors (1, 0, 1, 0), (1, 1, 1, 0), (1,−1,−1, 1) and (0, 1,−1,−1) are
linearly independent and generate a lattice. Also, the matrix

B =

1 0 1 0
1 1 1 0
1 −1 −1 1
0 1 −1 −1

is a basis matrix for the same lattice.

e Exercise 34. Let Λ be the lattice generated by the basis in Example 12. Decide which
of the vectors (6, 3,−4,−1), (3, 6, 9, 12), (1, 2, 3, 5) and (1, 2, 1, 2) are in the lattice.

t Proposition 16. Let Λ be a lattice, and let B and C be two bases for Λ. Then B and
C have the same rank r, and there exists an r× r invertible integer matrix U such that
UB = C and U−1 is an integer matrix.

27

Proof. Every row of B is in Λ which is a subset of the row space of C, so the row space
of B is a subspace of the row space of C. The converse also holds, so the matrices have
the same row space and therefore also the same rank.

For every row bi in B, there exists an integer vector ai ∈ Zr such that bi = aiC.
Combining these expression, we get an r × r integer matrix U such that B = UC. In
the same way, we get an r × r integer matrix V such that C = VB, and B = UVB.

Since B and C have maximal rank (and therefore have right-inverses) U and V
must be inverses.

e Exercise 35. The matrix

C =

−1 −3 −4 0
2 −6 −3 4
9 −1 9 9
6 7 12 3

is another basis matrix for the lattice Λ from Example 12. Find the integer matrices
taking B to C and back again, and check that they are inverse integer matrices.

d Definition 3. The rank of a lattice is the number of vectors in a basis. If Λ in Rn has
rank n, we say that Λ is a full rank lattice.

6.2 Hermite Normal Form

We know that matrices in triangular form are particularily useful when deciding if a
given system of equations has solutions or not. This is also true for lattices, and a basis
matrix that is in triangular form is convenient. We consider only full rank lattices,
which simplifies the definition and the arguments slightly.

d Definition 4. Let B = (bij) be an n × n integer matrix of maximal rank. We say
that B is on Hermite normal form if B is an upper-triangular integer matrix such that
bii > 0 and |bji| < bii for 1 ≤ i ≤ n and 1 ≤ j < i ≤ n.

Any lattice has a basis on Hermite normal form. Before we state the general theorem,
we describe the basic step that we shall be using to construct the Hermite normal form.

t Lemma 17. Let b1 = (b11, b12, . . .),b2 = (b21, b22, . . .) ∈ Zn be vectors such that
b11 6= 0. Let d = gcd(b11, b21) and let s, t ∈ Z be such that d = sb11 + tb21. Let

c1 = (c11, c12, . . .) = sb1 + tb2 c2 = (c21, c22, . . .) = (b21/d)b1 − (b11/d)b2.

Then c11 = d and c21 = 0, and the corresponding integer matrix

U =

(
s t

b21/d −b11/d

)

is invertible with det(U) = −1.

28

Proof. The lemma follows from direct computation.

t Theorem 18. Let B be an n × n integer matrix of maximal rank. Then there exists
an integer matrix U with det(U) = ±1 such that UB is on Hermite normal form.
Furthermore, the matrix UB is unique.

Proof. The first claim is trivially true for a 1× 1 matrix.
Assume that the first claim is true for all maximal rank (n − 1) × (n − 1) integer

matrices.
Now consider an n× n matrix B of maximal rank. Since the matrix is of maximal

rank, there must be a row (bi1, bi2, . . . , bin) in the matrix with bi1 6= 0. We can swap the
first row and row i with a permutation matrix P, so that our new basis matrix looks
like

B′ =

(
bi1 . . .
... C

)
= PB.

Next, we can use Lemma 17 repeatedly to get a matrix where the first row has a
non-zero first column and every other row has a zero in the first column, so that our
basis matrix looks like

B′′ =

(
c11 . . .
0 C′

)
, c11 6= 0.

Note that the matrices we get from Lemma 17 all have determinant −1, so there exists
an integer matrix U′ such that B′′ = UB′ and det(U′) = ±1.

Since the submatrix C′ is of rank n − 1, then by assumption there is an integer
matrix U′′ with det(U′′) = ±1 such that U′′C′ is on Hermite normal form. Then

B′′′ =

(
c11 c12 . . . c1n
0 U′′C′

)
=

(
1 0
0 U′′

)
B′′.

Finally, we note that it is easy to make sure that the magnitude of the entries
(c12, . . . , c1n) in the top row are smaller than the entries on the diagonal by subtracting
first an appropriate multiple of the second row, then the third row, and so on. Now the
matrix is on Hermite normal form. By induction, the first claim follows.

Finally, we need to consider uniqueness. Suppose we have two maximal rank integer
matrices C1 and C2 on Hermite normal form such that Ci = UiB for some integer
matrices Ui, i = 1, 2, with det(Ui) = ±1.

The matrices have the same row space. Since they are both upper-triangular, the
ith row in C1 must be an integer linear combination of the i, i + 1, . . . , n rows in C2.
It follows that the diagonals of C1 and C2 must be identical.

Next, if the ith rows first differ in the jth column, j > i, then their difference must
lie on the row space of rows j, j + 1, . . . , n. Which means that the difference between
the jth columns must be a non-zero multiple of the jth entry on the diagonal. But then
the absolute value of the jth column value of at least one of the ith rows must be larger
than the value on the diagonal, which contradicts the hypothesis that the matrices were
on Hermite normal form.

29

Remark. The proof of the first claim in the theorem essentially describes an algorithm
for computing the Hermite normal form. It is easy to see that the number of arith-
metic operations (counting a gcd computation as one arithmetic operation) required
to compute this normal form is not too bad (a multiple of n3). However, counting
only arithmetic operations is misleading, since the numbers involved in these arithmetic
operations can grow very large, even when the numbers in the initial lattice basis are
small. However, there are more efficient algorithms for computing the Hermite normal
form.

6.3 Gram-Schmidt

The Gram-Schmidt algorithm is a general inner product space algorithm, which should
be well-known from linear algebra. We will need it later on, so it makes sense to repeat
its properties here. In the following, 〈·, ·〉 denotes the usual inner product on Rn. The
Gram-Schmidt algorithm takes a vector space basis b1, . . . ,br as input and constructs
an orthogonal basis b∗1, . . . ,b

∗
r recursively, beginning with b∗1 = b1 and then computing

µij =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

, 1 < i ≤ r, 1 ≤ j < i, and b∗i = bi −
i−1∑

j=1

µijb
∗
j . (6)

If we rearrange the equation defining b∗i as bi = b∗i +
∑i−1
j=1 µijb

∗
j , we get a lower-

triangular matrix and the matrix equation

B =

b1

...
br

 =

1 0
. . .

µij 1

b∗1
...

b∗r

 . (7)

e Exercise 36. Let b1,b2, . . . ,br ∈ Rn be a lattice basis. Show that we can compute the
Gram-Schmidt basis b∗1,b

∗
2, . . . ,b

∗
r and coefficients µij , 1 ≤ j < i ≤ r using 2nr2 − 1

arithmetic operations.

e Exercise 37. The answer to Exercise 36 implies the existence of an algorithm to compute
a Gram-Schmidt basis. Implement this algorithm.

e Exercise 38. Let Λ be the lattice from Example 12, and let B be the basis matrix from
the example. Compute the Gram-Schmidt basis corresponding to this basis.

e Exercise 39. Let b1,b2, . . . ,br be a basis for a lattice Λ, let B be the corresponding
matrix, and let b∗1, . . . ,b

∗
r be the corresponding Gram-Schmidt orthogonal basis.

1. Show that b∗1, . . . ,b
∗
r can be extended to an orthogonal basis b∗1, . . . ,b

∗
r , c
∗
1, . . . , c

∗
n−r

for Rn.

2. Let e1, e2, . . . , er be an orthonormal basis for Rr. Let P be the linear map from
Rn to Rr that takes b∗i to ‖b∗i ‖ei, 1 ≤ i ≤ r, and c∗i to 0, 1 ≤ i ≤ n − r. Show
that for any vector v ∈ span{b∗1, . . . ,b∗r}, ‖v‖ = ‖vP‖.

30

3. Show that the image ΛP of Λ under P is a full-rank lattice, and b1P,b2P, . . . ,brP
is a basis for ΛP.

6.4 The Fundamental Domain

Let b1, . . . ,br be a basis for a lattice Λ, B in matrix form. The fundamental domain
of the lattice is the parallelepiped

{
r∑

i=1

aibi | 0 ≤ ai < 1

}
.

When the lattice has full rank, it can be shown that the volume of the fundamental
domain is |det(B)|.

Since any two bases are related by an invertible integer matrix, which has deter-
minant ±1, it is clear that the volume of the fundamental domain is independent of
the choice of basis. We call this volume the determinant or the volume of the lattice,
denoted by det(Λ), or sometimes by det(b1,b2, . . . ,br).

Since a determinant is unchanged by elementary row operations, if b1, . . . ,bn is a
basis for a full-rank lattice Λ, then

det(Λ) = |det(B)| =
∏

i

‖b∗i ‖ ≤
∏
‖bi‖.

The value ∏ ‖bi‖
det(Λ)

is called the orthogonality defect of the basis.

e Exercise 40. We continue Exercise 39. Show that det(ΛP) = det(BP) =
∏r
i=1 ‖b∗i ‖.

When r < n, we define the volume of the fundamental domain to be

det(Λ) =

√
|det(BBT)| =

r∏

i=1

‖b∗i ‖.

Another interesting property of the fundamental domain of a full-rank lattice is that
any point in space can be expressed uniquely as the sum of a lattice point and a point
in the fundamental domain.

e Exercise 41. Let Λ be a lattice with basis b1,b2, . . . ,bn and let z ∈ Rn. Show that
unique integers a1, a2, . . . , an and real numbers α1, α2, . . . , αn ∈ [0, 1) exist such that

z =
∑

i

aibi +
∑

i

αibi.

Note that the fundamental domain depends on the basis for the lattice. We shall
use the notation z mod B to denote the unique point in the fundamental domain. Of

31

course, if two vectors z1, z2 satisfy z1 mod B = z2 mod B, then z2 − z1 ∈ Λ. We shall
write both z1 ≡ z2 (mod B) and z1 ≡ z2 (mod Λ).

For a full-rank lattice, the vector α in the exercise is often denoted by (zB−1) mod 1,
but we shall not use this notation. Instead, we shall write (z mod B)B−1.

6.5 Dual lattice

Corresponding to dual vector spaces, we shall define the dual lattice as the set of lin-
ear integer-valued functions (functionals) on the lattice, and then identify this set of
functions with a particular lattice.

d Definition 5. Let Λ ⊆ Rn be a lattice. The dual lattice is Λ∗ = {f : Λ→ Z | f linear}.

We would like to study the structure of Λ∗. It is clearly closed under addition and
multiplication by integers. Recall that for any functional f on Rn, there is a vector wf

such that for any v ∈ Rn we have that f(v) = vwT
f . If f is a functional on a subspace,

we can we choose wf to be in the subspace. Since any f ∈ Λ∗ is also a functional on
Rn (or span Λ if the lattice is not a full-rank lattice), we can associate the set

SΛ = {wf ∈ span Λ | f ∈ Λ∗}

with Λ∗.
e Exercise 42. Show that the set SΛ is closed under addition and multiplication by in-

tegers, and that the natural map f 7→ wf is a bijection and respects addition and
multiplication by integers.

t Proposition 19. Let B be a basis matrix for Λ. The set SΛ is a lattice with basis
matrix (BBT)−TB.

Proof. Suppose x,y be integer tuples and w = x(BBT)−TB and v = yB. Then

vwT = yBBT (BBT)−1xT = yxT ∈ Z

so the lattice generated by (BBT)−TB is a subset of SΛ.
Now suppose wf ∈ SΛ. Then wf = xB for some x ∈ Rr. Observe also that since

the rows of B are in Λ, we must have that BwT
f is an integer tuple. Then

wf = xB = x(BBT)T (BBT)−TB = xBBT (BBT)−TB = wfB
T (BBT)−TB

which proves that wf lies in the lattice generated by (BBT)−TB.

We identify Λ∗ with the set SΛ, so that Λ∗ is obviously a lattice.

e Exercise 43. Show that the dual lattice of Λ∗ is Λ.

t Proposition 20. Let Λ be a lattice and let Λ∗ be its dual. Let B be a basis for Λ and
let C be a basis for Λ∗. Then BCT is an integer matrix with integral inverse.

32

Proof. First, note that (BBT)−TB is a basis for Λ∗, so there is an integer matrix with
integral inverse U such that C = U(BBT)−TB. But then

BCT = BBT (BBT)−1UT = UT ,

which proves the claim.

6.6 p-ary lattices

Several of the lattices we shall encounter will originate with problems over prime finite
fields. In these cases, it makes sense to study certain special lattices.

d Definition 6. Let pZn = {px | x ∈ Zn}. A lattice is a p-ary lattice if pZn ⊆ Λ ⊆ Zn.

Let M be any n× r integer matrix. Then let

Λp(M) = {x ∈ Zn | ∃a ∈ Zr : aM ≡ x (mod p)} and

Λ⊥p (M) = {x ∈ Zn |MxT ≡ 0 (mod p)}.

Remark. We note that M can be considered as a generating matrix for a block code
over Fp, in which case MT would be a parity check matrix for a dual code.

t Proposition 21. Let Λ be a lattice. The following three conditions are equivalent:

(i) Λ is p-ary;

(ii) there exists a matrix M such that Λ = Λp(M); and

(iii) there exists a matrix M′ such that Λ = Λ⊥p (M′).

Before we prove the proposition, we shall need a small result about the existence of
certain matrices related to subspaces of Fnp . (Again, this is related to linear codes and
their generator and parity check matrices.)

e Exercise 44. Let V be any non-trivial proper subspace of Fnp of dimension r. Show that

there exists matrices M ∈ Fr×np and M′ ∈ Fn×(n−r)
p such that V is the row space of M

and the left kernel of (M′)T .

Proof of Proposition 21. First observe that Λp(M) and Λ⊥p (M) are obviously p-ary lat-
tices, so (i) is implied by both (ii) and (iii).

Let B be any basis for Λ. Since it is an integer matrix, we can consider it as a matrix
over Fp, and let V be its row space. Then Exercise 44 says that two matrices M̃ and

M̃
′

exist such that V is the row space of M̃ and the left kernel of (M̃
′
)T .

By construction, if we consider any integer vector x = aB ∈ Λ as a vector in Fnp , it

will be in V . It immediately follows that it lies in Λp(M) and Λ⊥p (M′).
Now suppose x ∈ Λp(M). Then modulo p we have that x is congruent to a linear

combination of rows of M. But modulo p the rows of M are linear combinations of the

33

rows of B. Which means that x is congruent to a lattice vector in Λ modulo p. But Λ
is p-ary, so x is in Λ.

Finally, suppose x ∈ Λ⊥p (M′). Then x is congruent to something in the left kernel of

(M′)T , which means that it is congruent to a vector in V modulo p. But that vector is
congruent to something in the row space of B modulo p, so x is congruent to a vector
in Λ modulo p. But Λ is p-ary, so x is in Λ.

We have shown that (i) implies (ii) and (iii).

When we consider the dual lattice Λ∗p(M) as an integer lattice, it is clear that

Λ⊥p (M) ⊆ Λ∗p(M). Likewise, since for any vector x ∈ Λp(M) and any vector y ∈ Λ⊥p (M)
we have that

xyT = aMyT ≡ 0 (mod p),

it follows that 1
py ∈ Λ∗p(M) and that

1

p
Λ⊥p (M) ⊆ Λ∗p(M).

In fact, we have equality, since for any x ∈ Λp(M) and y ∈ Λ∗p(M) we have that

xyT ∈ Z, which means that x(py)T ≡ 0 (mod p).

t Proposition 22. Let Λ be a p-ary lattice and let M be such that Λ = Λp(M). Then

1

p
Λ⊥p (M) = Λ∗p(M).

6.7 Short Vectors

d Definition 7. Let Λ be a lattice. The i-th successive minimum λi(Λ) is the minimal
real number such that there are i linearly independent vectors of length at most λi(Λ)
in Λ.

It is immediately clear that for a lattice of rank r, there are r successive minima,
that 0 < λ1(Λ) ≤ λ2(Λ) ≤ · · · ≤ λn(Λ), and that λ1(Λ) is the shortest length of a
non-zero vector in Λ. (Note that λ2(Λ) does not have to be the second shortest length
of a non-zero vector.)

t Fact 23. There exists a constant γn, depending only on n, such that for any lattice Λ

λ1(Λ)2 < γn det(Λ)2/n.

A natural question related to lattices is to ask what λ1(Λ) is. For large n, it can be
shown that n/(2πe) ≤ γn, and heuristic arguments suggests that an “average” lattice
will not contain non-zero vectors much shorter than

√
n/(2πe) det(Λ)1/n.

More practically important is finding a lattice vector of length λ1(Λ).

d Definition 8. The shortest vector problem for a lattice Λ is to find a vector x ∈ Λ such
that ‖x‖ = λ1(Λ).

34

Sometimes, there will be more than one non-zero vector of minimal length, so the
shortest vector problem may not have a unique answer. For some applications, merely
finding a short vector is sufficient.

d Definition 9. The γ-approximate shortest vector problem for a lattice Λ is to find a
vector x ∈ Λ such that ‖x‖ ≤ γλ1(Λ).

A slightly different problem is to find a lattice vector close to some given point. It
also has an approximate version.

d Definition 10. The closest vector problem for a lattice Λ ⊆ Rn and z ∈ Rn is to find
x ∈ Λ such that for any y ∈ Λ, ‖x− z‖ ≤ ‖y − z‖.

The γ-approximate closest vector problem for a lattice Λ ⊆ Rn and z ∈ Rn is to find
x ∈ Λ such that for any y ∈ Λ, ‖x− z‖ ≤ γ‖y − z‖.

An exhaustive search for short or close vectors will quickly become infeasible as the
lattice dimension grows. There is evidence that these lattice problems are hard in a
very fundamental way. However, the hardness depends on the lattice and on how the
lattice is described.

e Exercise 45. Suppose Λ has a given orthogonal basis b1,b2, . . . ,bn. Show how to find
a shortest vector in Λ and all the successive minima, essentially without any arithmetic.

If the basis is nearly orthogonal, the same approach as in the exercise will find short
vectors and make it easier to find a shortest vector.

e Exercise 46. Let B be an invertible n× n matrix and let b1,b2, . . . ,bn correspond to
the n rows of B. Let z ∈ Rn and let

(α1, α2, . . . , αn) = zB−1.

Show that
z = α1b1 + α2b2 + · · ·+ αnbn.

For the following exercise, it is convenient to introduce the following notation: bαe
is the nearest integer to α (rounding halves towards even numbers), and for a vector
α = (α1, α2, . . . , αn),

bαe = (bα1e , bα2e , . . . , bαne).

e Exercise 47. Suppose Λ has a given orthogonal basis B, and let z ∈ Rn. Suppose
a =

⌊
zB−1

⌉
. Explain why aB is the closest vector in Λ to z.

If the basis is nearly orthogonal, the same approach as in the exercise will tend to
find the closest vector if z was reasonably close to a lattice point.

e Exercise 48. Let Λ be the lattice from Example 12 with the basis matrix B from that
exercise and the basis matrix C given in Exercise 35. Consider the vector (2, 2, 2, 2) ∈
R4. Use the rounding strategy from Exercise 47 to find two lattice points. Are both of
them “close” to (2, 2, 2, 2). Can you decide if there are lattice points closer to (2, 2, 2, 2)
than you have already found?

35

Finding the closest lattice point in a lattice Λ has a related problem on the dual
lattice Λ∗. Note that if x is a lattice point such that ‖z−x‖ is minimal, then r = z−x
has minimal length among the vectors satisfying r ≡ z (mod Λ).

Let C be a basis for Λ∗. Then rCT = zCT − xCT , which means that the difference
between rCT and zCT is an integral vector.

7 Lattice-based cryptosystems

While the first cryptosystem we shall look at, the GGH system in Section 7.1, is phrased
directly in terms of lattices, many cryptosystems do not directly use lattices, yet their
security is essentially based on certain lattice problems being difficult to solve.

We now discuss three important systems, GGH, Regev’s Learning-with-errors cryp-
tosystem and NTRU. GGH is directly based on lattices. Regev’s cryptosystem is based
on the difficulty of solving an overdefined linear system of equations that contains er-
rors. NTRU is based on the difficulty of expressing an element in a polynomial ring
as a fraction where the numerator and denominator are both polynomials with short
coefficients.

Remark. When we discussed public key encryption schemes based on Diffie-Hellman and
RSA, we spent some time discussing attacks against simple variants of these schemes.
Similar attacks exist against the cryptosystems in this section, or at least against sim-
plified versions. We do not repeat the discussion.

7.1 The GGH cryptosystem

One idea for a symmetric encryption scheme based on lattices is to have a lattice Λ
with a nearly orthogonal basis B as a secret key. To encrypt we somehow encode the
message as a lattice vector x ∈ Λ and then add random noise r to that vector to get a
ciphertext z = x + r. To decrypt, we can use our nearly orthogonal basis to find the
closest vector x to z (using the technique from Exercise 47), and then decode the lattice
point to recover the message.

It is clear that we need to limit the magnitude of the random noise, since if it is
too big, we will no longer be able to recover x as the closest vector. This could happen
because x is no longer the closest vector to z, or because our basis is not orthogonal
and so does not perfectly solve the closest vector problem.

e Exercise 49. Let B be a basis for a lattice Λ. Show that with x ∈ Λ and z = x + r,
then

⌊
zB−1

⌉
B = x if and only if

⌊
rB−1

⌉
= 0.

e Exercise 50. Recall that for a real vector α = (α1, α2, . . . , αn), we have the norms
‖α‖1 =

∑
i |αi| and ‖α‖∞ = maxi |αi|.

Let B be a basis for a lattice Λ, let ρ be a bound on the ‖ · ‖1 norm of the columns
of B−1. Show that for any vector r, we have that

‖rB−1‖∞ ≤ ρ‖r‖∞.

Explain how this can be used to find a bound on the random noise when encrypting, to

36

ensure decryption still works.

It is tempting to turn this idea into a public key encryption scheme by publishing a
basis for the lattice. Obviously, we cannot publish our nearly orthogonal basis B, since
this is essentially the decryption key.

Recall that any lattice Λ with basis matrix B, if U is an integer matrix with deter-
minant ±1, then C = UB is another basis matrix for Λ.

One idea is then to create and publish a different basis for the lattice, one that is
not nearly orthogonal, and therefore cannot be used to find the closest vector using the
approach from Exercise 47. A natural choice is to use the Hermite normal form for B
as C. (The Hermite normal form is in some sense the worst possible form we can give
the public basis, since any adversary could easily compute the Hermite normal form on
his own.)

As usual, while we could attempt to embed the message in the vector x, it makes
more sense to use x and r as keys for a symmetric cryptosystem.

The GGH (Goldreich-Goldwasser-Halevi) public key encryption scheme (K, E ,D) is
based on lattices in Rn, a key derivation function h : Rn × Rn → Ks and a symmetric
cryptosystem (Ks,P, C, Es,Ds) and works as following.

• The key generation algorithm K chooses a lattice Λ by choosing a basis matrix B
that is nearly orthogonal. It chooses an integer matrix U with determinant ±1
and computes C = UB. It then outputs ek = C and dk = B.

• The encryption algorithm E takes as input an encryption key ek = C and a
message m ∈ P. It chooses a random vector a ∈ Zn and random noise r. Then it
computes x = aC, z = x + r, and encrypts the message as w = Es(h(x, r),m). It
outputs the ciphertext c = (z, w).

• The decryption algorithm D takes as input a decryption key dk = B and a ci-
phertext c = (z, w). It computes x =

⌊
zB−1

⌉
B and r = z− x, and decrypts the

message as m = Ds(h(x, r), w). If Ds outputs the special symbol ⊥ indicating
decryption failure, then D outputs ⊥, otherwise it outputs m.

e Exercise 51. The above is an informal description of a public key encryption scheme.
Implement (use some simple method to choose B, U, a and r) the three algorithms K,
E and D. Show that the triple (K, E ,D) is a public key encryption scheme.

Remark. Note that we have not said how to choose B or U.

7.2 Regev’s cryptosystem

Let p be a prime. Let a1,a2, . . . ,al ∈ Fnp be a set of randomly chosen vectors that
contains n linearly independent vectors. Let s ∈ Fnp , and let

βi = ai · s, i = 1, 2, . . . , l.

If we learn the value of these dot products, we can recover the vector s.

37

e Exercise 52. Given a1,a2, . . . ,al and β1, β2, . . . , βl, show how to compute s.

If we add a bit of randomness to the dot product, it turns out that finding the
value s becomes much more difficult. Let χ be a probability distribution on Fp and let
e1, e2, . . . , el be sampled independently according to χ. Let

bi = ai · s + ei, i = 1, 2, . . . , l.

Finding s given b1, b2, . . . , bl is known as the learning with errors problem (we want to
learn s from a set of equations for s that have errors in them).

e Exercise 53. Show that if l = n, then the learning with errors problem is impossible to
answer with (close to) certainty. (That is, any algorithm trying to solve the learning
with errors problem must fail sometimes.)

We shall need one particular property for the probability distribution χ. When
e1, e2, . . . , el have been sampled independently from χ, then for almost all subsets S ⊆
{1, 2, . . . , l} we have that ∑

i∈S
ei = k + 〈p〉,

for some integer k with |k| < p/4.
It can be shown that χ can be chosen such that this requirement is satisfied, and it

is still hard to solve the learning with errors problem.
We are now ready to describe a public key encryption scheme (K, E ,D) based on

learning with errors.

• The key generation algorithm K chooses random vectors a1,a2, . . . ,al from Fnp
such that there are n linearly independent vectors. It chooses a random vector
s ∈ Fnp , samples errors e1, e2, . . . , el independently according to χ and computes
bi = ai · s + ei for i = 1, 2, . . . , l. It then outputs ek = (a1,a2, . . . ,al, b1, b2, . . . , bl)
and dk = s.

• The encryption algorithm E takes as input an encryption key ek = (a1,a2, . . . ,al,
b1, b2, . . . , bl) and a messagem ∈ {0, 1}. It chooses a random subset S ⊆ {1, 2, . . . , l}
and computes

x =
∑

i∈S
ai and w = m

p− 1

2
+
∑

i∈S
b.

It outputs the ciphertext c = (x, w).

• The decryption algorithm D takes as input a ciphertext c = (x, w). It computes

w − x · s = t+ 〈p〉, |t| < p/2.

If |t| < p/4, it outputs m = 0, otherwise it outputs m = 1.

e Exercise 54. The above is an informal description of a public key encryption scheme.
Implement (use some simple method to sample from χ) the three algorithms K, E and

38

D. Show that the triple (K, E ,D) is a public key encryption scheme.

Remark. Note that this cryptosystem can only encrypt a single bit, so it is not at
all practical. It is, however, of great theoretical interest, in particular because of the
learning with errors problem.

7.2.1 Attacks

We shall consider two different ways to construct lattices that will allow us to break the
LWE system.

First, we reformulate the scheme in terms of matrices. Let A be the matrix with
rows a1,a2, . . . ,al, let s = (s1, s2, . . . , sl), e = (e1, e2, . . . , el) and b = (b1, b2, . . . , bn).
Then for some very short vector r we have

b = sA + e, x = rA, w = rbT +m
p− 1

2
.

Closest vector in a p-ary lattice Let z be any vector in Zn such that z ≡ b
(mod p). The matrix A defines a p-ary lattice Λ = Λp(A). We may assume that the
error distribution for the learning with errors problem is such that the length of e is
smaller than half the length of the shortest vector in Λ. In other words, if x is a vector
in Λ that is closest to z, then z− x ≡ ±e (mod p). Once we know the error vector, we
can compute s using linear algebra. In other words, we can recover the secret key if we
can find the closest vector.

7.3 NTRU Encrypt

Superficially, the NTRU cryptosystem is based on polynomial arithmetic. However, the
best attacks on the cryptosystem comes from using lattices.

We begin by considering three rings, R = Z[X]/〈Xn − 1〉, Rp = Zp[X]/〈Xn − 1〉
and Rq = Zq[X]/〈Xn − 1〉. Note that there are natural homomorphisms from R to the
other two rings (but not between the rings), so any element in R may be considered
also to be an element of Rp and Rq.

Strictly speaking, the elements in these rings are not polynomials, but cosets. As
usual, we take the lowest-degree representative whenever we need a representative. Fur-
thermore, when we consider elements in Rq as polynomials, the coefficients are integers
modulo q. We shall pull them back to R by choosing the coefficient representatives
with minimal absolute value, which means that the coefficients will be integers between
−q/2 and q/2.

Consider a polynomial s ∈ R such that s is invertible in Rp and Rq, and let g be
any other polynomial in R. Let y be a polynomial such that y = g/s in Rq. Suppose
r, t are polynomials and that c = pry+ t has been computed in Rq. Then we have that

sc = prg + st

39

in Rq. Furthermore, if the polynomials rg and st have only “small” coefficients, then
this equality also holds in R, which means that with if a ∈ R is equal to sc computed
in Rq, then a = st in Rp, or t = a/s in Rp.

We are now ready to describe a public key encryption scheme (K, E ,D) based on the
above equations with parameters n, p and q, a symmetric cryptosystem (Ks,P, C, Es,Ds)
and a key derivation function h : Rq ×Rp → Ks.

• The key generation algorithm K chooses polynomials g and s with “small” coeffi-
cients such that s is invertible in Rp and Rq. It computes y ← g/s in Rq. It then
outputs ek = y and dk = s.

• The encryption algorithm E takes as input an encryption key ek = y and a message
m ∈ P. It chooses polynomials r and t with “small” coefficients and computes
c ← pry + t in Rq, k ← h(c, t) and w ← Es(k,m). It outputs the ciphertext
c = (c, w).

• The decryption algorithm D takes as input a decryption key dk = s and a cipher-
text c = (c, w). It computes a = sc in Rq and t = a/s in Rp. Then it computes
k ← h(c, t) and m ← Ds(k,w). If Ds outputs the special symbol ⊥ indicating
decryption failure, then D outputs ⊥, otherwise it outputs m.

e Exercise 55. The above is an informal description of a public key encryption scheme.
Implement (use some simple method to choose polynomials) the three algorithms K,
E and D. Show that the triple (K, E ,D) is a public key encryption scheme (under
reasonable assumptions on what “small” means).

7.3.1 Attacking NTRU

Let y be represented by the polynomial y0 + y1X + · · ·+ yn−1X
n−1 ∈ Z[X]. Likewise,

let s and g We can now construct a matrix

B =

(
I H
0 qI

)

where I is a n× n identity matrix, and the matrix H consists of the cyclic shifts of the
coefficients of above representation of the y polynomial. That is, the ith row (starting
at 0) of H is (yn−i, yn−1, y0, y1, . . . , yn−i−1). This 2n × 2n matrix has full rank, so it
generates a full rank lattice Λ.

Now observe that if a, b ∈ Rq are such that b = ay, then if a and b are represented
by a0 + a1X + · · ·+ an−1X

n−1 ∈ Z[X] and b0 + b1X + . . . bn−1X
n−1 ∈ Z[X], we have

that in R

(∑

i

aiXi

)
∑

j

yjXj

 =

∑

i

Xi

∑

j

ai+jyn−j =
∑

i

biX
i +
∑

i

qwiX
i.

40

In other words, there exists a polynomial w ∈ Z[X] such that

(∑

i

siXi

)
∑

j

yjXj

 =

∑

i

giX
i −
∑

i

qwiX
i.

It follows that with a = (s0, s1, . . . , sn−1, w0, w1, . . . , an−1), we have

aH = (s0, s1, . . . , sn−1, g0, g1, . . . , gn−1).

Since s and g have “small” coefficients, the length of this vector is a small multiple of√
2n.

We have already noted that an “average” lattice of dimension 2n will not have
vectors much shorter than

√
2n/(2πe) det(Λ)1/(2n). The determinant of our lattice is

qn, so we compare a small multiple of
√

2n with
√

2nq/(2πe). If n is not too small,
our lattice will have a very short vector. It is then not too unreasonable to hope that
a short vector in the lattice will be this short vector (or one closely related to it).

In other words, if we can find short vectors in the lattice Λ, we have a reasonable
hope of finding the NTRU decryption key.

8 Lattice algorithms

We have now seen how we can attack several cryptosystems by either finding a closest
vector in a lattice or finding a short vector in a lattice. It follows that in order to
understand the security of these cryptosystems, we must understand how to find short
vectors and closest vectors.

We begin by developing an algorithm for enumerating all the lattice vectors in a ball
around the origin. It will turn out that this algorithm is sensitive to certain properties
of the basis. We shall then study the famous LLL algorithm which will produce a
basis that is (among other things) a much better starting point for the enumeration
algorithm.

8.1 Enumerating short vectors

We would like to find a short vector in a lattice. One idea would simply be to enumerate
all linear combinations of the basis vectors with some bound on the coefficients. Un-
fortunately, short vectors could in principle come from linear combinations with large
coefficients. Instead, we shall use the Gram-Schmidt basis to bound the size of the
coefficients.

We shall find all points x in a lattice with ‖x‖2 ≤ A2 for some bound A2.
Let b1,b2, . . . ,bn be a basis for Λ, and let b∗1, . . . ,b

∗
n be the corresponding Gram-

Schmidt basis. Note that for any vector x ∈ Λ, we can write it as a linear combination
of the Gram-Schmidt basis vectors x =

∑
i αib

∗
i and then

‖x‖2 =
n∑

i=1

α2
i ‖b∗i ‖2.

41

Recall that b∗n is the part of bn that is orthogonal to all the earlier basis vectors.
This means when x =

∑
i aibi =

∑
i αib

∗
i , then an = αn. Therefore, if α‖b∗n‖ > A

then ‖x‖ > A.
We therefore begin by enumerating vectors with n-th coordinate an between−bA/‖b∗n‖c

and +bA/‖b∗n‖c.
Given an, we can now consider the possibilities for an−1. Of course, this time, the

contribution in the direction of b∗n−1 is that given by an−1bn−1 and anbn, where the
latter’s contribution is anµn,n−1‖b∗n−1‖. So given an, we want to enumerate all the
(n− 1)-th coordinates an−1 such that

(an−1 + anµn,n−1)2‖b∗n−1‖2 + a2
n‖b∗n‖2 ≤ A2.

In general, given ai+1, . . . , an, we consider the possibilities for ai. Again, we want
to enumerate all ai such that

(ai +

n∑

j=i+1

ajµji)
2‖b∗i ‖2 +

n∑

j=i+1

(aj +

n∑

k=j+1

akµk,j)
2‖b∗j‖2 ≤ A2.

For some choices of ai+1, . . . , an there may be no possible choices for ai, in which case
we stop and continue with other choices for ai+1, . . . , an.

Whenever we find a non-empty region for a1 and enumerate those values, we enu-
merate lattice vectors of length less than A. It is clear that for any lattice point x of
length less than A, this point must be among the lattice point eventually enumerated.

This enumeration algorithm must enumerate a large number of possible coordinates.
For the ith coordinate, we can upper-bound the number of possibilities for ai by A/‖b∗i ‖,
so the total number of coordinates enumerated is bounded by

n∏

i=1

A

‖b∗i ‖
=

An

det(Λ)
.

e Exercise 56. The above discussion describes an algorithm for enumerating all the vectors
in a lattice shorter than some bound. Implement this algorithm.

e Exercise 57. Consider the lattice given by the basis matrix C given in Exercise 35.
Enumerate all the vectors in the lattice of length at most 3.

We can also solve the closest vector problem if we can first find an estimate for the
closest vector and a reasonable upper bound on how far the estimate is from the closest
point. Given this, we can enumerate all the short vectors and thereby all the lattice
points close to the estimate, one of which must be closest.

There are faster algorithms for finding a shortest or closest vector.

8.2 LLL algorithm

As we saw, if we have an orthogonal basis, we can solve the closest vector problem, and
if we have a nearly orthogonal basis, we can solve closest vector problem if the closest
vector is close enough to a lattice point.

42

The natural question is how to find a reasonably good basis that will allow us to
solve the closest vector problem. The first goal should be to be precise about what we
mean by “reasonably good”.

d Definition 11. Let b1,b2, . . . ,bn be a lattice basis, with corresponding orthogonal
basis b∗1, . . . ,b

∗
n and Gram-Schmidt coefficients µij for 1 ≤ j < i ≤ n, as defined in (6).

Let 1
4 < δ < 1 be a real number. We say that the basis is δ-LLL-reduced if

|µij | ≤
1

2
for all 1 ≤ j < i ≤ n, and (8)

δ‖b∗i−1‖2 ≤ ‖b∗i ‖2 + µ2
i,i−1‖b∗i−1‖2 for all 2 ≤ i ≤ n. (9)

When a basis satisfies (8) we cannot easily make the basis vectors more orthogonal.
When the basis satisfies (9), the basis vectors of the Gram-Schmidt orthogonalization
will be ordered roughly according to length.

e Exercise 58. A common choice for δ is 3/4. Show that in this case (9) implies

‖b∗i−1‖2 ≤ 2‖b∗i ‖2 for all 2 ≤ i ≤ n.

Hint: You may use the fact that (8) also must hold.

That an LLL-reduced basis is somehow a good basis can be seen from the following
fact, which we state without proof.

t Fact 24. Suppose b1,b2, . . . ,bn with corresponding basis matrix B is a 3/4-LLL-
reduced basis for a lattice Λ. Then ‖b1‖ ≤ 2(n−1)/2λ1(Λ). Also, if z ∈ Rn, then

‖z−
⌊
zB−1

⌉
B‖ ≤ (1 + 2n(9/2)n/2)‖z− x‖ for any x ∈ Λ.

We know that λ1(Λ) ≤ √γ det(Λ)1/n, which means that if we have an LLL-reduced
basis and use ‖b1‖ as our search bound, the enumeration approach from the previous
section will have to enumerate at most

(2(n−1)/2γ1/2 det(Λ)1/n)n

det(Λ)
= 2n(n−1)/2γn/2.

While it does not affect the upper bound we deduced, having the Gram-Schmidt vectors
not too small will decrease the total number of points the algorithm will iterate over.

We also note that the LLL-reduced basis will give us an estimate for the closest
vector problem. (There are better ways to use the LLL-reduced basis.)

Having an LLL-reduced basis is therefore very useful. The question is how to find
an LLL-reduced basis.

We will now discuss two ways to modify a lattice basis. The first is to use the initial
basis vectors to modify the later basis vectors. This clearly results in a new basis for the
same lattice, but the new basis will have the same Gram-Schmidt orthogonalization.

e Exercise 59. Let b1,b2, . . . ,bn be a lattice basis, and let c1, . . . , cn be another basis

43

for the lattice defined by

ci = bi −
i−1∑

j=1

αijbj , αij ∈ Z. (10)

Let b∗1, . . . ,b
∗
n and c∗1, . . . , c

∗
n be the corresponding Gram-Schmidt orthogonalization.

Show that b∗i = c∗i for i = 1, 2, . . . , n.

With this result in mind, we now turn to (7) which describes the relationship between
a basis and its Gram-Schmidt orthogonalization,

B =

1 0
. . .

µij 1

B∗.

By adding or subtracting a suitable integer multiple of the rightmost column of the
Gram-Schmidt coefficient matrix, we can ensure that |µn,n−1| ≤ 1/2. Then, by sub-
tracting suitable integer multiples of the two rightmost columns, we can ensure that
|µn−1,n−2| ≤ 1/2 and |µn,n−2| ≤ 1/2. In this way we can ensure that any element below
the diagonal in the coefficient matrix has absolute value at most 1/2.

Since column arithmetic in the coefficient matrix on the right-hand side of the equa-
tion corresponds to row arithmetic in the basis matrix on the left hand side, the above
procedure essentially tells us how to modify a lattice basis so that its Gram-Schmidt
coefficients satisfy (8). The next exercise details a more algorithmic way to do this
computation.

e Exercise 60. Let b1,b2, . . . ,bn be a lattice basis, let b∗1,b
∗
2, . . . ,b

∗
n be the Gram-

Schmidt orthogonalization with coefficients µij , 1 < i ≤ n.

Suppose |µij | ≤ 1/2 for 1 ≤ j < i < k for some k ≤ n. Define b
(i)
k for 1 ≤ i ≤ k by

b
(k)
k = bk and

b
(i)
k = b

(i+1)
k −

⌊
〈b(i+1)
k ,b∗i 〉
〈b∗i ,b∗i 〉

⌉
bi.

Consider now the new basis b1, . . . ,bk−1,b
(1)
k ,bk+1, . . . ,bn.

1. Show that the new basis has the same Gram-Schmidt orthogonalization as the old
basis.

2. Let µ′ij be the Gram-Schmidt coefficients of the new basis. Show that |µ′ij | ≤ 1/2
for 1 ≤ j < i ≤ k.

3. Show that the above procedure essentially gives us an algorithm that for any
lattice basis computes a new, equivalent basis with the same Gram-Schmidt or-
thogonalization that also satisfies (8).

4. Show that the resulting algorithm will compute the new basis using at most 2n3

arithmetic operations.

44

This result tells us that we can not only modify a lattice basis such that (8) holds
without changing the Gram-Schmidt orthogonalization, but we can also do this rela-
tively quickly.

Next, we want to modify our basis by changing the order of the basis vectors. Unlike
the previous modification, this will change the resulting Gram-Schmidt orthogonal basis.

Before we describe and analyse this change, we need to define a new kind of volume
for lattices that weights the basis vectors differently. For a basis b1,b2, . . . ,bn with
corresponding Gram-Schmidt orthogonalization b∗1,b

∗
2, . . . ,b

∗
n, define

d(b1,b2, . . . ,bn) =
n∏

i=1

i−1∏

j=1

‖b∗j‖ =
n∏

i=1

‖b∗i ‖n−i+1.

Suppose b1, . . . ,bn satisfies (8), but not (9), and i is the first index where the latter
condition fails. Now suppose we change the order of the ith and i + 1th basis vectors,
so instead of considering the basis b1,b2, . . . ,bi,bi+1, . . . ,bn, we instead consider the
basis c1, . . . , cn given by

cj =

bi+1 j = i

bi j = i+ 1

bj otherwise.

e Exercise 61. Let b1, . . . ,bn and c1, . . . , cn be as above, and let b∗1, . . . ,b
∗
n and c∗1, . . . , c

∗
n

be the corresponding Gram-Schmidt orthogonalizations. Let µij be the Gram-Schmidt
coefficients for b∗1, . . . ,b

∗
n.

1. Show that b∗j = c∗j when j 6= i, i+ 1.

2. Show that c∗i = c∗i+1 + µi+1,ib
∗
i .

3. Show that
k∏

j=1

‖b∗j‖ =
k∏

j=1

‖c∗j‖

when i 6= k.

4. Show that
d(c1, . . . , cn)

d(b1, . . . ,bn)
≤
√
δ.

e Exercise 62. Show that for any lattice Λ ∈ Zn, then regardless of basis, there is a lower
bound to d(b1, . . . ,bn) that is strictly larger than zero.

We are now ready to prove that a basis satisfying (8) and (9) can be computed
relatively quickly.

t Theorem 25. Let B be a basis for a lattice Λ ∈ Zn. Then a δ-LLL-reduced basis C
can be computed using less than 10n3 log d(B)/ log δ−1 arithmetic operations.

45

Proof. We begin by constructing a sequence of lattice bases B1,B2, . . . as follows.
The initial basis is B1 = B.
We construct the (k+1)th basis from the kth basis Bk using the following two steps.

1. Use the algorithm from Exercise 60 to create a basis B′k.

2. If the basis B′k does not satisfy (9), and i is the first index where this condition
fails we change the order of the ith and the (i+ 1)th basis vectors.

It is clear that if Bk satisfies (8) and (9), then Bk+1 = Bk.
Furthermore, unless we changed the order of two basis vectors when creating Bk+1,

then Bk+1 satisfies (8) and (9).
Every time we do change the order of two basis vectors, Exercise 61 says that

d(Bk+1)

d(Bk)
≤
√
δ,

from which we get that
d(Bk+1) ≤ δk/2d(B1).

Since d(Bk+1) ≥ 1, it follows that when k > 2 log d(B1)/ log δ−1 there can be no more
changes of order, and we have computed a δ-LLL-reduced basis.

By Exercise 60 the first step requires at most 2n3 arithmetic operations. To do the
second step, we need the Gram-Schmidt coefficients which we can compute using at
most 2n3 arithmetic operations by Exercise 36. Finally, we can find the first index for
which (9) does not hold using less than 3n2 arithmetic operations. This means that
we can compute Bk+1 from Bk using less than 5n3 arithmetic operations. The claim
follows.

e Exercise 63. The proof of Theorem 25 essentially describes an algorithm for computing
an LLL-reduced basis for a lattice. Implement this algorithm and restate Theorem 25 as
a statement about the algorithm’s time complexity (in terms of arithmetic operations,
ignoring any other form of computation involved).

We must make two remarks about this theorem and its proof. The first remark is
about measuring complexity in terms of arithmetic operations. Often, this is safe, but in
this case we will need to do arithmetic with rational numbers, and in some computations
the size (number of digits) of the rational numbers involved will increase exponentially,
even when the number of operations is limited. Fortunately, it can be proved that the
size of the rational numbers involved do not grow too badly, although it significantly
affects the time required to run the algorithm.

The second remark is about the implied algorithm, which is extremly inefficient. In
practice, there is no need to constantly recompute all the Gram-Schmidt coefficients.
In other words, there is significant scope for optimization in the algorithm. Also, the
proof significantly overestimates the cost of the implied algorithm.

e Exercise 64. Consider the lattice Λ given in Example 12 and the basis matrix B given
in the example and the basis matrix C given in Exercise 35. For each basis, compute a

46

3/4-LLL-reduced basis.

9 Key Encapsulation Mechanisms

Most of the public key cryptosystems we have studied so far follows a similar pattern: a
random key for a symmetric cryptosystem is encapsulated inside some object, and this
key is then encrypted with the symmetric cryptosystem. The ciphertext then consists
of the encapsulated key and the encrypted message. To decrypt the pair, we extract
the symmetric key from the encapsulation and then use it to decrypt.

It is convenient to precisely define what a key encapsulation mechanism is.

d Definition 12. A key encapsulation mechanism (KEM) consists of three algorithms
(K, E ,D) and an associated symmetric key set Ks:

• The key generation algorithm K takes no input and outputs an encapsulation key
ek and a decapsulation key dk .

• The encapsulation algorithm E takes as input an encapsulation key ek and outputs
an encapsulation (ciphertext) c and a key k ∈ Ks.

• The decapsulation algorithm D takes as input a decapsulation key dk and an
encapsulation (ciphertext) c and outputs either a key k or the special symbol ⊥
indicating decryption failure.

We require that for any key pair (ek , dk) output by K and any pair (c, k) output by E ,
we have that D(dk , c) = k.

Remark. Sometimes we allow the KEM to generate keys from a different set than our
symmetric encryption scheme uses. In this case, as we see in Section 7.1 and 7.3 we
then use a key derivation function to get keys suitable for our symmetric encryption
scheme.

The benefit of doing this is that we do not have to redesign our KEM if we change
our symmetric encryption scheme. Instead, we only have to change the key derivation
function, which is typically much easier.

Security for a KEM is mostly the same as for public key encryption, except that
non-malleability is not immediately interesting.

Informally: A key encapsulation mechanism provides confidentiality if it
is hard to learn anything at all about the decapsulation of an encapsulation
from the encapsulation itself.

We shall not discuss key encapsulation mechanisms any further here, except to note
that if we have a KEM we can construct a key exchange protocol, given in Figure 3,
that is very similar to the Diffie-Hellman protocol.

e Exercise 65. Extract the key encapsulation methods used from the public key encryption
schemes from Sections 3, 4.4, 7.1 and 7.3. Describe the algorithms and prove that they

47

Alice

(ek , dk)← K
— wait for c from Bob —
zA ← D(dk , c)

Bob

(c, zB)← E(ek)

ek

c

Figure 3: A key exchange protocol based on a key encapsulation mechanism (K, E ,D).

are key encapsulation methods.

10 The Public Key Infrastructure Problem

As we have seen, we can construct plausible cryptosystems where anyone who knows
the encryption key can encrypt messages, but only those who know the decryption key
can decrypt messages.

One problem remains. Alice wants to send a message to Bob. How does she get
Bob’s encryption key? Suppose Alice finds a key that she thinks belong’s to Bob, but
which in reality belongs to Eve who has the corresponding decryption key. Eve can
then easily decrypt Alice’s ciphertext.

One possible solution is a public key directory, modeled on a telephone directory,
listing people and their public keys. It seems impractical to have printed copies of this
directory, so it would have to be an online service, which begs the question: How can
Alice be sure that the encryption key she just fetched came from the directory, and not
from Eve?

The public key infrastructure problem is Alice’s problem of getting hold of Bob’s
public key.

Another interesting problem is what happens when Bob receives Alice’s ciphertext.
How does he know that it comes from Alice, and not from Eve?

It turns out that both of these problems have reasonable solutions involving digital
signatures.

48

Factoring Using Quantum Computers

KG

October 24, 2019

Contents

1 Introduction 1

2 Background 2
2.1 Rational Approximations . 2
2.2 Discrete Fourier Transform . 3

3 Quantum Computation 7
3.1 Computing on Quantum Registers . 8
3.2 Quantum Fourier Transform . 9

4 Factoring Using a Quantum Computer 9

1 Introduction

In this note, we shall describe a machine for quickly factoring an RSA modulus n, which
is the product of two large primes p and q. Let g ∈ Z be relatively prime to n.

Consider the function f : Z→ Z given by a 7→ ga mod n. This function is periodic,
and the period is the same as the multiplicative order of g + 〈n〉 in Z∗n. The period of
this function therefore divides (p − 1)(q − 1), and for most n and g the period will be
close to (p− 1)(q − 1).

We have previously seen that we can easily factor n if we know a multiple of (p −
1)(q−1). This means that if we can find the a multiple of the period of such a function,
then by adapting our previous results, we can factor n.

So to meet our goal of factoring, it suffices to construct a machine that is capable
of finding (a multiple of) the period of a periodic function f : Z→ Z. In the following,
r will be the period of f .

1

2 Background

2.1 Rational Approximations

A rational approximation of a real number is a fraction that is close to the real number.
Continued fractions are a useful tool to find rational approximations.

t Fact 1. Let a, b, c, d be integers such that |a/b−c/d| ≤ 1/(2d2). Then c/d is a convergent
for the continued fraction expansion of a/b, and this convergent can be found using the
Euclidian algorithm.

Let N be an integer satisfying N > n2 > r2. Suppose we also have an integer k that
is close to a multiple of the fraction N/r, that is, satisfying

k = l
N

r
+ δk where l, N, r ∈ Z and |δk| ≤ 1/2. (1)

Then ∣∣∣∣
k

N
− l

r

∣∣∣∣ ≤
1

2N
.

This means that l/r is a rational approximation of the rational number k/N . This
rational approximation can be found quickly using the Euclidian algorithm, but note
that as there may be factors in common between l and r, we may not find r exactly.

This means that if we know N and find k satisfying (1), then we can often find a
rational approximation l/r, which will give us r (up to cancellation of common factors).

e Example 1. Consider the rational number k/N = 1365/2048. In a procedure which is
essentially the Euclidian algorithm, we get

1365

2048
=

1

1 + 683
1365

683

1365
=

1

1 + 682
683

682

683
=

1

1 + 1
682

from which we get the continued fraction

1365

2048
=

1

1 +
1

1 +
1

1 + 1
682

.

We get the convergents

0,
1

1
,

1

2
,

2

3
,

1365

2048

where we see that 2/3 is a good rational approximation. Indeed, so would 4/6, 8/12,
etc. also be.

2

e Example 2. Consider the real number k/N = 1195/2048. Following the procedure from
the previous example we get

1195

2048
=

1

1 + 853
1195

853

1195
=

1

1 + 342
853

342

853
=

1

2 + 169
342

169

342
=

1

2 + 4
169

4

169
=

1

42 + 1
4

from which we get the continued fraction

1195

2048
=

1

1 +
1

1 +
1

2 +
1

2 + 1
42+ 1

4

.

We get the convergents

0,
1

1
,

1

2
,

3

5
,

7

12
,

297

509
,

1195

2048

from which we see that 7/12 and 297/509 are good rational approximations.

2.2 Discrete Fourier Transform

Let α = (α0, α1, . . . , αN−1) ∈ CN . Then a normalized discrete Fourier transform of α
is β ∈ CN given by

βk =
1√
N

∑

j

αj exp

(
2πi

kj

N

)
, 0 ≤ k < N .

Since it is normalized, it preserves the norm of vectors, so ‖α‖ = ‖β‖. In fact, it is a
linear map given by a unitary matrix (a normalized Vandermonde matrix).

e Exercise 1. Let ω = exp(2πi/N) ∈ C, which is a primitive Nth root of unity. Let
V = (vkj) be the Vandermonde matrix with vkj = ωkj , 0 ≤ k, j < N .

1. Show that the ωj = ωN−j , where z̄ denotes complex conjugation.

2. Show that
∑N−1

j=0 (ωk)j = 0 for any k 6≡ 0 (mod N).

3. Show that V V ∗ = NI, where V ∗ denotes the conjugate transpose of V .

4. Show that when β is the discrete Fourier transform of α, then

β =
1√
N
Vα.

3

Figure 1: Plot of the terms in the final sum in (3) for N = 2048, r = 12 and t0 = 7,
and for k = 1192, 1195, 1196.

e Exercise 2. Let U be an N ×N unitary matrix. Show that for any vector α ∈ CN ,

‖Uα‖ = ‖α‖.

We want to study the Fourier coefficients of a very special complex vector. Let t0
be an integer such that 0 ≤ t0 < r, and let m be minimal such that mr + t0 ≥ N . Let
α ∈ CN be given by

αk =

{
1√
m

k = t0 + jr, and

0 otherwise.
(2)

Note that ‖α‖ = 1 and that 1−mr/N = 1− (N − t0)/N ≤ r/N ≤ 1/r.
Applying the discrete Fourier transform gives us

βk =
1√
N

m−1∑

j=0

1√
m

exp

(
2πi

k(t0 + jr)

N

)

=
1√
N

1√
m

exp

(
2πi

kt0
N

)m−1∑

j=0

exp

(
2πi

kjr

N

)
.

(3)

e Example 3. Consider the vector α from (2) for N = 2048, r = 12 and t0 = 7. The terms
of the sum in the expression for βk from (3) has been plotted in the complex plane for
k = 1192, 1195, 1196 in Figure 1.

Since the Fourier coefficient βk is the sum of all the plotted complex numbers, it is
easy to imagine that the sum of these complex numbers will tend to cancel out in the left
and right cases, while for the middle case with k = 1195 there will be no cancellation.
In other words, the amplitude of β1192 and β1196 will be small, while β1195 will be large.

We shall only care about the absolute value, which means that we shall only care
about the sum factor. Furthermore, we shall only care about those k that are close to a
multiple of the fraction N/r, that is those k satisfying (1). For such a k, our sum factor

4

becomes

m−1∑

j=0

exp

(
2πi

kjr

N

)
=

m−1∑

j=0

exp

(
2πi

jr

N

(
l
N

r
+ δk

))

=
m−1∑

j=0

exp(2πi jl︸︷︷︸
∈Z

) exp

(
2πi

jr

N
δk

)

=

m−1∑

j=0

exp

(
2πi

jr

N
δk

)
=

m−1∑

j=0

(
exp

(
2πi

r

N
δk

))j

=
1− exp

(
2πi r

N δkm
)

1− exp
(
2πi r

N δk
) = S.

e Exercise 3. Let z ∈ R.

1. Prove that |1− exp(2πiz)|2 = 4 sin2(πz).

2. If 0 ≤ |z| ≤ π/2, prove that
sin z

z
≥ 2

π
.

Recall that when z is a very small real number, | sin z| ≤ |z|, while for |z| < π/2
we know that | sin z| is increasing. Since N is large relative to r, r/N will be small.
Furthermore, (m− 1)r+ t0 ≤ N < mr+ t0, which means that mr/N is slightly smaller
than 1. Using Exercise 3 we get

|S|2 =
sin2

(
π r

N δkm
)

sin2
(
π r

N δk
) ≥ sin2 (πδk)

sin2
(
π r

N δk
) ≥ sin2(πδk)

(πδkr/N)2
=
N2

r2

(
sinπδk
πδk

)2

≥ N2

r2

(
2

π

)2

.

This means that for the indexes k satisfying (1), the discrete Fourier coefficient
satisfies

|βk|2 ≥
1

N

1

m

N2

r2
4

π2
=

1

mr

N

r

4

π2
≥ 1

mr

mr

N

N

r

4

π2
=

1

r

4

π2
.

Next, we want to sum these values for all k satisfying (1), and since there are at least
r − 1 such k, we get an approximate lower bound

(r − 1)
1

r

4

π2
≈ 4

π2
. (4)

This result essentially says that when we sum the squared absolute values of all
the Fourier coefficients, those corresponding to values of k satisfying (1) constitute a
relatively large fraction of the total sum.

e Example 4. Figure 2 shows a plot of the amplitude of the discrete Fourier transform of
a function of the form (2). The locations of the amplitude peaks for the discrete fourier
transform are given in Table 1.

5

0 500 1,000 1,500 2,000
0

0.1

0.2

0.3

0.4

Figure 2: The amplitude of the discrete Fourier transform of a function of the form (2)
with period r = 12 and N = 2048.

Table 1: The locations of the maximal amplitudes from Figure 2, with reference to (1).

k bk/(N/r)e |δ| rat. approx.
0 0.0 0.0 -

171 1.0 0.002 1/12
341 2.0 0.002 1/6
512 3.0 0.0 1/4
683 4.0 0.002 1/3
853 5.0 0.002 5/12
1024 6.0 0.0 1/2
1195 7.0 0.002 7/12
1365 8.0 0.002 2/3
1536 9.0 0.0 3/4
1707 10.0 0.002 5/6
1877 11.0 0.002 11/12

The cumulative probability of these values is approximately 0.79. We see that for
only a few of these values will the rational approximation of k/N give us the period
r = 12, but for all except k = 0, it is within a small multiple. (The explanation is that
the multiple l and the period r have common factors, which cancel.)

Note, however, that we cannot compute the discrete Fourier transform, since N is
too large, and even if we could, we could not easily find out which values of k are
included in the sum. So the discrete Fourier transform does not immediately help us
find a k satisfying (1).

However, if we could arrange some probabilistic process in such a way that it will
sample an integer from {0, 1, . . . , N − 1} with probability according to the squared
absolute value of the Fourier coefficients, then the above results says that it is reasonably
likely that we will sample a k satisfying (1).

6

3 Quantum Computation

A quantum bit (often called qubit) is a physical system with two states. We interpret
the two states as 0 and 1. A quantum system can be in a superposition of its two states,
which is described by two complex numbers α and β such that |α|2 + |β|2 = 1. The two
values |α|2 and |β|2 are the probabilities of measuring 0 and 1, respectively. We write
the state as

α|0〉+ β|1〉.
A physical system can have more than two states, of course. If we number the states

from 0 and to N − 1, a superposition of states is described a complex vector α with
norm 1 and we write the state as

N−1∑

j=0

αj |j〉.

Two physical systems (with N and N ′ states, respectively) can be entangled, which
means that the outcome of measuring one of the systems will influence the outcome of
measuring the other system. We write the system state as

N−1∑

k=0

N ′−1∑

j=0

αkj |k〉|j〉.

If we measure the second system, we will get the outcome j0 with probability

N−1∑

k=0

|αkj0 |2

and if j0 was the outcome, we will get the quantum state

N−1∑

k=0

αkj0√∑N−1
k=0 |αkj0 |2

|k〉|j0〉.

When later measuring the first system, the probability of outcome k0 will be

|αk0j0 |2∑N−1
k=0 |αkj0 |2

.

Multiple quantum bits can be entangled, which means that the outcome of measuring
one bit may influence the outcome of measuring the other bits. In this case, a system
of l qubits will have N = 2l states. A system of multiple entangled qubits is called a
quantum register.

7

3.1 Computing on Quantum Registers

Computations on quantum bits can be done using quantum gates. Any such computa-
tion can be described by an invertible linear map that preserves the norm, that is, a
unitary matrix U . That is, the transition

N−1∑

j=0

αj |j〉 U7−→
N−1∑

j=0

βj |j〉

is given by by β = Uα.

e Example 5. Consider a system with two states. We want to compute the function
f(z) = 1− z, the negation function, on this state. The unitary matrix

U =

(
0 1
1 0

)

will compute exactly this function, mapping the quantum state (α0, α1) to (α1, α0).

e Example 6. Consider a system of three qubits. We want to compute the function
f(z1, z2, z3) = (z1, z2, z1z2 + z3 mod 2), that is, negate z3 if and only if both z1 and z2
are set. If we consider the natural basis |000〉, |001〉, . . . |110〉, |111〉, the matrix

U =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

will compute exactly this function, swapping the quantum states 110 and 111, while
leaving all other states unchanged. (It can be shown that this gate, the Toffoli gate, is
universal for classical computations. Which means that this gate is sufficient in order
to do any classical computation.)

e Example 7. Consider a system with two states. The gate given by the unitary matrix

U =
1√
2

(
1 1
1 −1

)

defines an operation that maps the state |0〉 to a superposition of |0〉 and |1〉, where
each outcome will be equally likely. (Such gates can be used to create superpositions.)

e Exercise 4. Show that the above three matrices are unitary.

8

Since unitary matrices are invertible, computations on quantum bits must also be
invertible. But with a bit of care and effort any classical computation can be repeated
on quantum bits.

In particular, we can compute the function f discussed above, even though it is not
invertible. Typically, we will have two quantum registers and map |k〉|j〉 to |k〉|j+f(k)〉,
which is an invertible computation, at least if we use modular addition.

If we compute on a superposition, our result will be a superposition of the function
values. In the example above

N−1∑

k=0

N ′−1∑

j=0

αkj |k〉|j〉 7−→
N−1∑

k=0

N ′−1∑

j=0

αkj |k〉|j + f(k)〉.

3.2 Quantum Fourier Transform

Example 6 and the discussion in the previous section show that any classical compu-
tation can be replicated on a quantum computer. However, Example 7 shows that
there are operations on quantum bits that do not correspond directly to classical com-
putations. One such operation that will be important for us is the quantum Fourier
transform.

The quantum Fourier transform on a system with N states is defined by

N−1∑

j=0

αj |j〉 QFT7−→
N−1∑

j=0

βj |j〉

where

βk =
1√
N

N−1∑

j=0

αj exp(2πijk/N).

This is of course exactly the same as our normalized discrete Fourier transform.
Unlike the discrete Fourier transform, it turns out that a quantum Fourier transform

of a quantum system made up of l quantum bits (withN = 2l) can be implemented using
about l2 elementary quantum gates. The reason for this is that the classical discrete
Fourier transform must be computed using operations that involve all the complex
numbers α0, α1, The quantum Fourier transform is computed by manupulating the
l quantum bits, which only indirectly manipulates the quantum probabilities α0, α1,

4 Factoring Using a Quantum Computer

Our goal is now to set up a quantum system with an amplitude distribution like (2). We
can then apply the quantum Fourier transform, which will result in a quantum system
where we know that the likelihood of measuring a k satisfying (1) is at least 4/π2. And
if we measure such a k, computing a rational approximation will give us the period of
the function f , which will allow us to factor n.

9

We begin with a two entangled quantum registers, one with log2N qubits and the
other with dlog2 ne qubits. The first register should contain a superposition of the
integers 0, 1, 2, . . . , N − 1, all with the same amplitude, while the second register should
contain 0. We have the state

N−1∑

j=0

1√
N
|j〉|0〉.

Using a quantum circuit, we compute f on the first register, storing the result in the
second register. Since any classical computation can be done on a quantum computer,
computing f is easy. Our two quantum registers now contain a superposition of (k, f(k))
for k = 0, 1, . . . , N − 1, all being equally likely, and we have the new state

N−1∑

j=0

1√
N
|j〉|f(j)〉.

Next, we measure the second register. Suppose we measure the value s. Since we
have not yet measured the first register, we do not know what it contains, but since it
was entangled with the second register, every value we could possible measure must be
consistent with s. Suppose t0 is the smallest non-negative integer such that f(t0) = s.
Then the only values we can measure in the first register are the integers t0 + jr.

Since we had a uniform probability before we measured the second register, we must
have a uniform probability after measuring. We now have m possible states, so we have
the state

m−1∑

j=0

1√
m
|t0 + jr〉|s〉.

In other words, if we ignore the second register which is constant, our first register now
has exactly the amplitudes given by (2).

We then use a second quantum circuit to compute the Quantum Fourier Transform
on the first register. And then we measure the first register. As discussed, we will with
significant probability measure a k satisfying (1), which will allow us to factor n.

e Example 8. Consider n = 35. We choose g = 2 and want to compute (something close
to) the period of a 7→ 2a mod 35. To this end, we have a quantum computer with two
registers, the first of which has 2048 qubits.

We initialise the quantum registers with a superposition of all possible values in the
first register and zero in the second register. We apply the exponentiation function
and measure the function value in the second register. Suppose we get the answer 23,
which implies that the amplitude of the collapsed first register corresponds to that from
Example 3.

We then compute the quantum Fourier transform of the first register, and the end
result is the amplitude shown in Example 4.

Then we measure the first register. Suppose we get the answer 1195. Rational
approximation as in Example 2 gives us a period of 12.

10

We now compute
23 ≡ 8 (mod 35)

and we immediately get that gcd(8− 1, 35) = 7.
(Even if we had measured 1365 and gotten the wrong period from the rational

approximation in Example 1, we would still have factored 35. But that would have
been just lucky.)

As of today, quantum computers with a few qubits capable of running this algorithm
have been demonstrated. It is unclear if we will ever be able to build larger quantum
computers, but for applications requiring long-term security, quantum computers will
at least constitute a source of uncertainty for a long time.

11

Digital Signatures

KG

October 24, 2019

Contents

1 Introduction 1

2 Digital Signatures 2

3 Hash Functions 3
3.1 Attacks . 4
3.2 Compression Functions . 5
3.3 Constructing a Compression Function 7

4 RSA Signatures 8
4.1 Attacks . 8
4.2 Secure Variants . 10

5 Schnorr Signatures 10
5.1 How to Prove That You Know a Secret 10
5.2 Schnorr Signatures . 13
5.3 The Digital Signature Algorithm . 14

6 Hash-based Signatures 15
6.1 Lamport’s One-time Signatures . 15
6.2 Merkle Signatures . 16

7 Securing Diffie-Hellman 19

8 The Public Key Infrastructure Problem Revisited 19

1 Introduction

In this note, we consider the following problem. Alice wants to send a message to Bob
via some channel. Eve has access to the channel and she may tamper with anything
sent over the channel, and even introduce her own messages. Alice wants her message to
Bob to arrive without modification, or if it has been tampered with, Bob should notice.

1

Various solutions using public key encryption schemes are possible, but a different
primitive is more convenient, namely digital signatures. The basic idea is explained
and defined in Section 2. Section 3 discusses hash functions and how they can be
used to make some signature schemes more convenient. Section 4 and Section 5 discuss
digital signature schemes based on the RSA problem and the discrete logarithm problem,
respectively. Finally, in Section 7 we use digital signatures to construct a secure version
of the Diffie-Hellman protocol.

This text is intended for a reader that is familiar with mathematical language, basic
number theory, basic algebra (groups, rings, fields and linear algebra) and elementary
computer science (algorithms), as well as the Diffie-Hellman protocol, discrete loga-
rithms and the RSA public key cryptosystem.

This text is informal, in particular with respect to computational complexity. Every
informal claim in this text can be made precise, but the technical details are out of
scope for this note.

This text uses colour to indicate who is supposed to know what. When discussing
cryptography, red denotes secret information that is only known by its owner, Alice or
Bob. Green denotes information that Alice and Bob want to protect, typically messages.
Blue denotes information that the adversary Eve will see. Information that is assumed
to be known by both Alice and Bob (as well as Eve) is not coloured.

2 Digital Signatures

Alice, Bob and a number of other people want to be able to send messages to each
other, and they want to notice any tampering with those messages. Alice does not
want to manage a long-term secret for each correspondent, so symmetric key techniques
such as message authentication codes cannot be used. Alice is willing to manage public
information for each correspondent.

In this situation, what is needed is digital signatures.

d Definition 1. A digital signature scheme consists of three algorithms (K,S,V).

• The key generation algorithm K takes no input and outputs a signing key sk and
a verification key vk . To each key pair there is an associated message set denoted
by Msk or Mvk .

• The signing algorithm S takes as input a signing key sk and a message m ∈Msk

and outputs a signature σ.

• The verification algorithm V takes as input a verification key vk , a message m ∈
Mvk and a signature σ, and outputs either 0 or 1.

We require that for any key pair (vk , sk) output by K and any message m ∈Mvk

V(vk ,m,S(sk ,m)) = 1.

We interpret a 1 from the verification algorithm as a valid signature, and a 0 as

2

an invalid signature. A valid signature that was created without the signing key is a
forgery.

Informally: A signature scheme is secure if it is hard to create a valid
signature on a message without the signing key, even when you can see valid
signatures on many different messages.

3 Hash Functions

A vital component for designing practical digital signature schemes is the hash function.
The idea is that we can easily build signature schemes, but often we get a scheme with
a very small message space. Moreover, many of the schemes we build suffer from a
weakness where it is very easy to come up with signatures on random messages, even
without the signing key.

If we combine our primitive signature schemes with a suitable hash function, we can
extend the message space and protect against these designed-in weaknesses.

The idea for the construction is that instead of signing the message itself, we shall
sign a hash of the message. Let (K,S ′,V ′) be a signature scheme and let h : S → T
be a hash function such that T is a subset of the signature scheme’s message space.
We construct a new signature scheme (K,S,V) with message space S as follows. The
key generation algorithm is unchanged. The signing algorithm creates a signature of a
message m under the signing key sk by computing S ′(sk , h(m)). On input of vk , m and
σ, the verification algorithm outputs V ′(vk , h(m), σ).

Signing a hash of the message could be a security problem if we could find two
messages that have the same hash. A signature on one of the messages would also be
a signature on the other message, which would be bad. Ideally, we would like the hash
function to be injective, but that would not allow us to expand the message space.
Instead, we shall settle for a hash function that merely “looks” injective.

d Definition 2. Let h : S → T be a function. A preimage of t ∈ T is an element s ∈ S
such that h(s) = t. A second preimage for s1 ∈ S is an element s2 ∈ S such that s1 6= s2
while h(s1) = h(s2). A collision for h is a pair of distinct elements s1, s2 ∈ S such that
h(s1) = h(s2).

The following two definitions are informal. It is possible to give precise definitions,
but this is out of scope for this note.

Informally: Let h : S → T be a function. We say that it is one-way if it
is an infeasible computation to find a preimage of a random t ∈ T and to
find a second preimage for a random s ∈ S.

Informally: Let h : S → T be a function. We say that it is collision
resistant if it is an infeasible computation to find collisions for h and to find
a second preimage for a random s ∈ S.

We quickly note that if you can find second preimages, you can also find collisions.
The converse does not have to be true. It follows that if finding a collision is an

3

infeasible computation, the hash function will be collision resistant and it will behave
like an injective function in practice.

It would be natural if the ability to find preimages implied the ability to find second
preimages. This is not true, as implied by the following exercise.

e Exercise 1. Let h : S → T be a hash function, and suppose that T ⊆ S, but 4|T | = |S|.
Let h′ : S → {0, 1} × T be the hash function defined by

h′(s) =

{
(0, s) s ∈ T ,

(1, h(s)) otherwise.

Show that for 1/4th of all elements of {0, 1} × T , it is easy to find preimages, but for
none of those preimages there exists a second preimage.

We see that if our hash function is collision resistant, the hash function behaves as
an injective function and the above signature scheme (K,S,V) is no less secure than
the original scheme (K,S ′,V ′).

If our hash function is one-way, the above scheme may actually be more secure than
the original scheme.

We note that there is a different security notion for hash functions, random-looking,
which is that the hash function should in some sense look like a typical “random”
function. We do not discuss this notion further, except to note that this is different
from the above notions.

3.1 Attacks

The main generic attack on hash functions is to hash random messages until a collision
is found. Let h : S → T be a hash function. Choose a large number of random messages
s1, s2, . . . , sl and compute their hashes. We store the messages and their hashes in a
list sorted by their hash values. By the birthday paradox, as soon as l is roughly

√
|T |,

we should have a reasonable likelyhood of finding a collision.
This result gives us a minimal size for the set T , namely that

√
|T | should be an

infeasible computation. However, the attack described above requires a lot of memory.

e Exercise 2. Let l = 10b
√
|T |c. Let g : T → S be an injective function, and let f : T → T

be the function defined by f(t) = h(g(t)). Let t0 and t′0 be two distinct elements of T .
Define two sequences by the equations

ti = f(ti−1) and t′i = f(t′i−1).

1. Imagine that the two sequences are really sequences of random elements. Argue
that with reasonable probability, t′j = ti for some i, j smaller than l.

2. Suppose h is “random-looking”. Argue that the above result should apply even
when the sequences are determined solely by the random choice of t0 and t′0,
respectively.

4

3. Suppose t′j = tl for some j < 2l, and t′j 6= t0 for any j < l. Show how you can
find, given j, a collision in h using at most 3l evaluations of g and h.

4. Suppose h is “random-looking”. Argue that with reasonable probablity, you can
find a collision in h using about 6l hash evaluations.

3.2 Compression Functions

Typically, the domain of a hash function is much larger than the range. For example,
log2 |T | will typically be between one hundred and a few thousand, while log2 |S| is 264

or higher. A hash function where the domain is larger than the range, but not by much,
is called a compression function.

We are interested in compression functions for two reasons. First of all, it is probably
easier to construct compression functions than large-domain hash functions. And sec-
ond, we have efficient constructions that turn secure compression functions into secure
hash functions.

We begin by discussing the latter construction. So let f : S′ → T be a compression
function. Suppose further that there is a set A such that {0, 1} × A × T is either a
subset of S′ or trivially injects into S′. Then we can consider the restriction of f to
{0, 1} × A× T instead.

We shall now construct a hash function h : S → T . The domain S is the set of all
finite sequences of elements from A, denoted by A∗. Let t0 ∈ T be a fixed element of
T .

The value s we want to hash is a sequence s1s2 . . . sL of elements from A. The
function h is computed using the formula

t1 = f(1, s1, t0), ti = f(0, si, ti−1), 2 ≤ i ≤ L.

Then h(s) = tL.
The cost (in terms of compression function evaluations) of computing h is linear in

the length of the message to be hashed. If it is easy to compute f , then computing h is
quite efficient.

If the compression function is one-way and collision resistant, we would like the
above defined hash function to be both one-way and collision resistant.

t Theorem 1. Given a collision (s, s′) in the above constructed hash function, we can
find a collision in the compression function f using at most 2L evaluations of f , where
the length of s and s′ is at most L.

Proof. Let s = s1s2 . . . sL and s′ = s′1s
′
2 . . . sL′ , with L ≤ L′.

We know that
f(0, sL, tL−1) = f(0, s′L′ , t

′
L′−1).

Either we have found our collision, or sL = sL′ and tL−1 = t′L′−1. The latter means
that

f(0, sL−1, tL−2) = f(0, s′L′−1, t
′
L′−2).

5

We continue in this way until either we find a collision or we reach the beginning of s.
Then if L = L′, we must have that s1 6= s′1 since s 6= s′, which gives us a collision since

f(1, s1, t0) = f(1, s′1, t0).

If L < L′, we must have that

f(1, s1, t0) = f(0, s′L′−L+1, t
′
L′−L),

which will also be a collision.
We can find this collision by first computing t′1, t

′
2, . . . , t

′
L′−L, then computing the

pairs (t1, t
′
L′−L+1), (t2, t

′
L′−L+2), . . . , (tL, t

′
L′). One of these pairs will be our collision.

The claim follows.

The theorem says that from any collision in the constructed hash function h, it is easy
to find a collision in the compression function f . Which means that if our compression
function is collision-resistant, the constructed hash function is also collision-resistant.

e Exercise 3. Consider the above construction. Suppose you have a “magic box” that for
any t ∈ T will provide you with a reasonable-length preimage of t under h. Show that
you can use this oracle to find preimages for any t ∈ T under f .

As for collision resistance, the consequence of the above exercise is that if we can
construct a compression function where finding preimages is an infeasible computation,
we can construct a hash function where finding preimages is an infeasible computation.

To conclude that the hash function is one-way, we must also consider second preim-
ages. Unlike for preimages and collision, being able to find second preimages for h does
not seem to imply the ability to find second preimages of f . But the ability to find
second preimages for h implies the ability to find collisions for h, which implies the
ability to find collisions for f . That is, if we can find second preimages for h, then we
can find collisions in f .

This means that if f is one-way and collision-resistant, then h is one-way and
collision-resistant hash function.

Note that the construction uses the 0 and the 1 to differentiate the start of the
iteration. This is important in the proof, since without this differentiation, we could
have run into problems when messages of different length collided.

There are other ways to construct hash functions from compression functions.

e Exercise 4. Suppose we have a compression function f : A × T → T , and that
{0, 1, . . . , 264 − 1} is a subset of A. Let t0 be a fixed element of T .

We define two hash functions for messages that are sequences of elements from A of
length less than 264, using the two recursive formulas

t1 = f(L, t0), ti+1 = f(si, ti), 1 ≤ i ≤ L,

and

ti = f(si, ti−1), 1 ≤ i ≤ L, tL+1 = f(L, tL).

6

In either case, the hash of the message is tL+1.
For each hash function, state and prove a result similar to that of Theorem 1 for

that hash function.

Note that to use the first construction in Exercise 4, you must know the length of
the message before you begin hashing it. There are reasonable cases where you want to
begin hashing a message before you know the entire message, and in particular before
you know the length of the entire message.

Hash functions are used for many things in cryptography, and frequently the security
requirements are different from what we need for digital signatures.

One example is to use a hash function as a message authentication code, simply by
computing µ(k,m) = h(k||m), where k||m denotes the concatenation of the key and the
message. As the following exercise shows, our construction cannot be used like this.

e Exercise 5. Let h : A∗ → T be the hash function constructed at the start of the section.
Suppose you are given a value t such that t = h(m). Show that you can easily compute
h(m||m′) for any m′, even when you do not know m, only t. (Here, m||m′ denotes the
concatenation of m and m′.)

3.3 Constructing a Compression Function

Let G be a cyclic group of prime order n, and let x and y be non-zero elements. Then we
can construct a compression function fx,y : {0, 1, 2, . . . , n−1}×{0, 1, 2, . . . , n−1} → G
as

fx,y(u, v) = xuyv.

When x and y are clear from context, we shall write simply f for fx,y.
If it is hard to compute discrete logarithms in G, then it is hard to find both preim-

ages and collisions for this compression function, provided x and y have been chosen at
random from G.

t Theorem 2. Suppose we know a collision ((u, v), (u′, v′)) for f . Then we can compute
logx y using 3 arithmetic operations.

Proof. If we have a collision, we know that

xuyv = xu
′
yv
′
.

Since (u, v) 6= (u′, v′) and the above equation holds, we have that u 6= u′ and v 6= v′.
This means that

y = x−(u−u
′)(v−v′)−1

.

The claim follows.

e Exercise 6. Suppose you have a “magic box” that for any x, y, z of your choice will find
one preimage of z under the hash function fx,y. Explain how you can use this “magic
box” to compute discrete logarithms in G.

7

Using this compression function and the construction from the previous section, we
have a one-way and collision-resistant hash function. However, this hash function is of
theoretical interest only, since we have much faster constructions that also have other
interesting properties.

4 RSA Signatures

We briefly recall the textbook RSA public key cryptosystem. The key generation algo-
rithm chooses two primes p and q and finds e and d such that ed ≡ 1 (mod lcm(p −
1, q − 1)). The encryption key is (n, e), where n = pq and the decryption key is (n, d).

To encrypt a message m ∈ {0, 1, . . . , n− 1}, we compute c = me mod n. To decrypt
a ciphertext c, we compute m = cd mod n.

It turns out that we can construct a very simple signature scheme based on this.
The textbook RSA signature scheme (K,S,V) works as follows.

• The key generation algorithm K chooses two large primes p and q. It computes
n = pq, chooses e and finds d such that ed ≡ 1 (mod lcm(p − 1, q − 1)). Finally
it outputs vk = (n, e) and sk = (n, d). The message set associated to vk is
{0, 1, 2, . . . , n− 1}.

• The signing algorithm S takes as input a signing key (n, d) and a message m ∈
{0, 1, 2, . . . , n− 1}. It computes σ = md mod n and outputs the signature σ.

• The verification algorithm V takes as input a verification key (n, e), a message
m ∈ {0, 1, 2, . . . , n − 1} and a signature σ ∈ {0, 1, 2, . . . , n − 1}. It outputs 1 if
σe ≡ m (mod n), otherwise 0.

e Exercise 7. The above is an informal description of a signature scheme. Implement the
three algorithms K, S and V. Show that the triple (K,S,V) is a signature scheme.

4.1 Attacks

As for textbook RSA public key encryption, as long as the RSA modulus n chosen by
the key generation algorithm is hard to factor, the above digital signature scheme is
useful. But it is not entirely secure.

e Exercise 8. Suppose (n, 3) is a verification key. Forge a signature on the message 8.

e Exercise 9. Suppose (n, e) is a verification key. Explain how to create a random message
with a forged signature.

Malleability Just like the RSA encryption scheme, the RSA signature scheme is
malleable, and this can be used to create forgeries.

8

e Exercise 10. Suppose you have two messages m,m′ and signatures σ, σ′ on those mes-
sages under the verification key (n, e). Show how to construct a signature on the product
mm′ mod n.

e Exercise 11. Suppose Eve wants to have Alice’ signature on a message m. Suppose also
that she is capable of getting Alice to sign any other message. Show how Eve can use
this to forge a signature on m.

Short Messages We want to use the idea from Section 3 with a hash function h :
S → T that is both collision resistant and one-way, and where T is a set of integers all
smaller than any RSA modulus we choose. This hashed RSA signature scheme works
as follows.

• The key generation algorithm is exactly the same as the RSA key generation
algorithm.

• The signing algorithm S takes a signing key sk = (n, d) and a message m ∈ S as
input. It computes σ = (h(m))d mod n and outputs the signature σ.

• The verification algorithm V takes as input a verification key (n, e), a message
m ∈ S and a signature σ ∈ {0, 1, 2, . . . , n − 1}. It outputs 1 if σe ≡ h(m)
(mod n), otherwise 0.

e Exercise 12. Explain why the attacks from Exercises 8 and 9 fail against this scheme.
Hint: The hash function is one-way.

e Exercise 13. Suppose that the hash function used is also random-looking. Explain why
the attacks from Exercises 10 and 11 become much more difficult.

However, most practical hash functions have outputs that are very short relative to
an RSA modulus, and this allows us to develop an attack.

e Exercise 14. Let (n, e) be a verification key with corresponding signing key (n, d). Sup-
pose you have messages m1,m2, . . . ,ml, and integers `1, `2, . . . , `l, σ1, σ2, . . . , σl and sij ,
1 ≤ i, j ≤ l, such that

h(mi) =
l∏

j=1

`
sij
j , 1 ≤ i ≤ l and

h(mi) ≡ σei (mod n).

We shall assume that the matrix S = (sij) is invertible modulo e, and that R = (rki) is
an inverse modulo e.

1. Show that
l∑

i=1

rkisij = δkj + tkje

where δkj = 1 if k = j, otherwise δkj = 0.

9

2. Show that
l∏

i=1

σrkii ≡ `dk
l∏

j=1

`
tkj
j (mod n).

3. Explain how we can easily compute `dk mod n from the above.

4. Suppose you are given a message m such that

h(m) =
l∏

i=1

`uii .

Explain how you, given the above, can easily compute h(m)d mod n.

If we let `1, `2, . . . , `l be small primes, then if our hash function h has small integers
as output, we can quickly find messages m,m1,m2, . . . ,ml such that their hashes are
products of powers of our small primes. Which means that if we get signatures on
m1,m2, . . . ,ml, we can construct a forgery on m.

4.2 Secure Variants

It turns out that it is quite easy to fix the hashed RSA signature scheme discussed
above. All we need is a random-looking, one-way, collision-resistant hash function whose
domain is almost all of {0, 1, 2, . . . , n − 1}. In which case the hashed RSA scheme is
secure, and is known as the full domain hashed RSA signature scheme, or RSA-FDH.

e Exercise 15. Explain why the attack from Exercise 14 fails against RSA-FDH.

5 Schnorr Signatures

In this section, we shall develop the well-known Schnorr signature scheme. While the
Schnorr scheme is not used much as a signature scheme, its development is interesting
and many other signature schemes are very similar to the Schnorr system.

For the remainder of this section, let G be a group of prime order n, and let g be a
generator.

5.1 How to Prove That You Know a Secret

We begin with a very different question. Suppose Alice knows a secret number a ∈
{0, 1, 2, . . . , n − 1}. Bob does not know the secret number, but he knows x ∈ G such
that x = ga. Alice wants to convince Bob that she really knows a.

Of course there is an adversary. Eve may want to cheat Bob by pretending to know
a. Or Eve may want to cheat Alice by somehow learning a.

The latter point explains why Alice cannot convince Bob simply by revealing a to
Bob. While Bob is honest, Alice may at some point in time also want to convince Eve
that she knows a, after which Eve could cheat Bob by pretending to know a.

10

One thing Alice could do was to choose a random number r, compute α = gr and
γ = r + a mod n, and then show Bob α and γ. Bob accepts that Alice knows a if

gγ
?
= αx.

The idea is that the above protocol does not reveal a to Bob, because Alice just as
well could choose a random γ and compute α as gγx−1.

e Exercise 16. Explain how Eve can choose α and γ to convince Bob that she knows a,
even though she only knows x.

Hint: Use the above explanation of why the scheme does not reveal a.

We can improve on this procedure as follows. Instead of showing Bob both α and
γ at once, Alice first shows Bob α. Then Bob is allowed to choose if he wants to see
γ = r or γ = r + a mod n. He accepts that Alice knows a if

gγ
?
= α or gγ

?
= αx, respectively.

Note that we can encode Bob’s choice β as a 0 or a 1, in which case the above
formulas can be reduced to

γ = r + βa mod n and gγ
?
= αxβ . (1)

e Exercise 17. 1. Suppose Bob tells Eve what his choice β will be before Eve chooses
α. Explain how Eve can choose α and γ to convince Bob that she knows a, even
though she only knows x.

If Bob does not tell Eve his choice early, explain why Eve can guess his choice,
proceed as above and successfully cheat Bob, all with probability 1/2.

2. Suppose that Eve has chosen α and that she knows the correct response to make
Bob accept, regardless of Bob’s choice. That is, Eve knows γ0 and γ1 such that
gγβ = αxβ . Show that Eve can easily compute a from γ0 and γ1.

We wanted to ensure that if Alice runs this protocol with Eve, then Eve learns
nothing about Alice’s secret. We shall argue that if Eve can learn something from
Alice, she can learn the same thing without Alice.

So suppose Eve gets α from Alice, chooses β, receives γ and from that exchange
learns something about a.

Now Eve decides to do without Alice. Instead, she makes a guess β′ at what chal-
lenge she will choose upon seeing α. Then she proceeds according to the first part of
Exercise 17. With probability 1/2, she will guess her choice of challenge correctly, in
which case her conversation would proceed exactly as if she were talking to Alice, which
means that she would learn something about a. Of course, with probability 1/2, Eve
will not guess correctly, so she may not learn anything, but in this case she can just try
again.

We also wanted to ensure that Eve cannot cheat Bob. From the above exercise we
know that Eve can successfully pretend to know a with probability 1/2, but unless she
knows a, she cannot succeed with any greater probability.

11

It follows that Alice can convince Bob that she almost certainly knows a by repeating
the above protocol many times. For each repetition, Eve would have probability 1/2 of
cheating successfully, but for k repetitions her success probability sinks to 2−k.

Doing k repetitions is quite inefficient, of course. Instead, we can do something
slightly different. The problem is that Eve can guess Bob’s choice and choose α based
on that. But note that in (1), there is nothing that forces β to be just 0 or 1.

The protocol can then work as follows.

1. Alice chooses r uniformly at random from {0, 1, 2, . . . , n − 1}, computes α = gr,
and sends α to Bob.

2. Bob chooses β uniformly at random from {0, 1, 2, . . . , 2k−1} and sends β to Alice.

3. Alice computes γ = r + βa mod n and sends γ to Bob.

Bob accepts that Alice knows a if

gγ
?
= αxβ .

By the above arguments, the probability that Eve cheats Bob should not be much larger
than 2−k. One problem is that our argument for why Eve does not learn anything
from Alice was exactly the argument that proved that Eve could cheat Bob. Which
means that strictly speaking, we no longer have an argument for why Eve will not learn
anything by talking to Alice.

However, if Eve chooses her challenge without looking at Alice’s α, then the argu-
ment from the first part of Exercise 17 applies, and we can use it to show that in this
case Eve cannot learn anything about Alice’s message.

Unfortunately, for the same reason, Bob cannot reveal his challenge before Alice
reveals her α. The question is, how can we force Bob to choose his challenge before
Alice reveals her α, but without Bob revealing his challenge?

e Exercise 18. Let h : S → T be a hash function such that {0, 1, 2, . . . , 22k − 1} ×
{0, 1, 2, . . . , 2k − 1} is a subset of the domain.

Suppose Bob chooses t and β and computes ω = h(t, β). He sends ω to Alice. The
protocol then proceeds by Alice sending α to Bob, who responds with his already chosen
β and the random number t. Alice verifies that ω equals h(t, β) and responds with the
correct γ, which Bob verifies as usual.

Under reasonable assumptions on the hash function h, it can be shown that ω
does not reveal anything about β, and that Bob cannot find different t′, β′ such that
h(t′, β′) = ω.

Argue why Eve cannot cheat Alice (to learn something about a) or Bob (to convince
him that Eve knows a) using the above protocol.

A different approach can be used if we have a “random-looking” hash function
h : S → T where G×G is a subset of S and T = {0, 1, . . . , 2k − 1}. Instead of choosing
a random challenge, Bob can instead compute the challenge as β = h(x, α).

Since Eve no longer chooses her challenge when trying to cheat Alice, Eve will not
be looking at α before deciding on her challenge, so as we have argued above, she should
not learn anything new.

12

When Eve is trying to cheat Bob, however, she can know what challenge Bob will
choose without actually sending α to Bob. She cannot know β until after she has chosen
α, but she will still have the ability to look at many αs with corresponding βs, before
she sends one α to Bob. While this does give her increased power, it can easily be
neutralized by increasing k.

Of course, if Eve can compute β before sending α to Bob, so can Alice. We can
therefore greatly simplify the process. Alice chooses r, computes α = gr, β = h(x, α),
and γ = r + βa mod n. She then sends α, β and γ to Bob. Bob verifies that

β
?
= h(x, α) and gγ

?
= αxβ .

An equivalent verification equation can be

α
?
= gγx−β .

If the hash function is collision resistant (and a “random-looking” hash function should
be), this equation will hold in practice if and only if

h(x, gγx−β)
?
= β.

This gives us further scope for simplification and making the formulas tidier. The
process now works as follows. Alice chooses r, computes α = gr, β = h(x, α) and
γ = r − βa mod n. She then sends β and γ to Bob. Bob verifies that

h(x, gγxβ)
?
= β.

5.2 Schnorr Signatures

The Schnorr signature scheme is based on the ideas on how to prove that you know
something, but the proofs are augmented by including something extra in the hash that
generates the challenge.

Suppose P is a set of messages and we have a “random-looking” hash function
h : S → T , where G×G× P is a subset of S and T = {0, 1, . . . , 2k − 1}.

The Schnorr signature scheme (K,S,V) works as follows.

• The key generation algorithm K samples a number a uniformly at random from
the set {0, 1, 2, . . . , n − 1}. It computes x = ga and outputs vk = x and sk = a.
The message set associated to vk is P.

• The signing algorithm S takes as input a signing key a and a message m ∈ P.
It samples a number r uniformly at random from the set {0, 1, 2, . . . , n − 1}. It
computes α = gr, β = h(x, α,m) and γ = r− βa mod n. It outputs the signature
(β, γ).

• The verification algorithm V takes as input a verification key x, a message m ∈ P
and a signature (β, γ). It outputs 1 if

h(x, gγxβ ,m)
?
= β,

otherwise 0.

13

e Exercise 19. The above is an informal description of a signature scheme. Implement
the three algorithms K, S and V. Show that the triple (K,S,V) is a signature scheme.

The Schnorr signatures and related schemes are famously sensitive to random num-
ber generation, as the following exercise shows.

e Exercise 20. Let x be a verification key for the Schnorr signature scheme. Suppose
that under this verification key, (β, γ) is a valid signature on m, and (β′, γ′) is a valid
signature on m′, m 6= m′. Suppose further that

gγxβ = gγ
′
xβ
′
.

Explain why the existence of these two signatures suggest a malfunction in random
number generation, and show how to recover the signing key corresponding to x using
only a handful of arithmetic operations.

5.3 The Digital Signature Algorithm

The Digital Signature Algorithm is a variant of the Schnorr signature scheme. We shall
describe two variants of DSA, to show again how a hash function can improve both the
practicality and security of a signature scheme.

Let f : G → {0, 1, . . . , n − 1} be a “random-looking” hash function. Our first
signature scheme (K,S,V) works as follows.

• The key generation algorithm K is the same as for the Schnorr signature scheme.

• The signing algorithm S takes as input a signing key a and a message m ∈
{0, 1, . . . , n − 1}. It samples a number r uniformly at random from the set
{0, 1, . . . , n− 1}. It computes β = f(gr) and

γ = r−1(m+ βa) mod n.

It outputs the signature (β, γ).

• The verification algorithm V takes as input a verification key x, a message m ∈
{0, 1, . . . , n− 1} and a signature (β, γ). It outputs 1 if

f(gmγ
−1

xβγ
−1

)
?
= β,

otherwise 0. (Note that the exponent arithmetic happens modulo n.)

e Exercise 21. The above is an informal description of a signature scheme. Implement
the three algorithms K, S and V. Show that the triple (K,S,V) is a signature scheme.

e Exercise 22. Show how you can create a forgery for a random message for this scheme.
Hint: Choose u and v. Compute β = f(guxv). Now solve v ≡ βγ−1 (mod n) and

u ≡ mγ−1 (mod n).

14

e Exercise 23. Modify the above scheme to accept messages from S, by using a hash
function h : S → {0, 1, . . . , n−1}. Suppose h is one-way and collision resistant. Explain
how this stops the attack from Exercise 22.

6 Hash-based Signatures

Signature schemes based on factoring (Section 4) or discrete logarithms (Section 5)
are all vulnerable to Shor’s algorithm if someone ever builds a sufficiently large and
reliable quantum computer. For encryption or key exchange algorithms, potential future
quantum computers will often be a problem, since today’s adversaries may be storing
today’s intercepted ciphertexts so that they can read the corresponding messages after
they have built a sufficiently large quantum computer. The quantum computer threat
is less acute for many applications of digital signatures, since being able to forge a
signature in a decade or two will not compromise today’s use of the system. However,
sufficiently large quantum computers may be built, so it makes sense to prepare by
designing quantum-safe signature schemes.

6.1 Lamport’s One-time Signatures

We begin by describing Lamport’s one-time signature scheme, based on a hash function
h : S → T . Lamport’s one-time signature scheme (K1,S1,V1) works as follows.

• The key generation algorithm K1 samples L pairs of elements (si0, si1) from S2 ,
i = 1, 2, . . . , L. It computes tij ← h(sij) for i ∈ {1, 2, . . . , L}, j ∈ {0, 1}. It then
outputs vk = ((t10, t11), . . . , (tL0, tL1)) and sk = ((s10, s11), . . . , (sL0, sL1)).

• The signing algorithm S1 takes as input a signing key sk = ((s10, s11), . . . , (sL0, sL1))
and a messagem = m1m2 . . .mL ∈ {0, 1}L. The signature is (s1,m1 , s2,m2 , . . . , sL,mL).

• The verification algorithm V1 takes as input a verification key vk = ((t10, t11), . . . ,
(tL0, tL1)), a messagem = m1m2 . . .mL ∈ {0, 1}L and a signature (u1, u2, . . . , uL).
It outputs 1 if ti,mi = h(ui) for i = 1, 2, . . . , L, otherwise 0.

Remark. Obviously, the scheme can be augmented with another hash function h′ : P →
{0, 1}L to increase the size of the plaintext set. This is secure if the hash function h′ is
collision resistant.

e Exercise 24. A common hash function will have T = {0, 1}256. If we use this hash
function with Lamport’s scheme, what is the length of a signature (in bits)? And what
is the length of the secret key (in bits)? Compare with the length of the signatures of
RSA signatures (suppose n ≈ 22048) and Schnorr signatures (suppose p ≈ 2256).

e Exercise 25. The above is an informal description of a signature scheme. Implement
the three algorithms K1, S1 and V1. Show that the triple (K1,S1,V1) is a signature
scheme.

15

e Exercise 26. Lamport’s scheme is a one-time scheme. Show that if you see signatures
on two messages that differ in at least two positions, you can create a forgery.

Remark. The Lamport scheme’s verification key is quite large, since two hash values
are needed to verify a single bit. One way to reduce its size is to use a hash function
h : T → T and a pair of hash chains of length k to sign an integer in {0, 1, . . . , k}.

An ith preimage of t is a value s such that

(h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸
i times

)(s) = t.

Given two hash values t and t′, we can encode an integer i as an ith preimage of t and
an (k − i)th preimage of t′.

In this way, at the cost of 2k hash computations during key generation and k hash
computations during signing and verification, we can sign k distinct values which makes
signatures much shorter.

Remark. A one-time scheme (K1,S1,V1) is of limited use. One way to make this scheme
more useful is to use a tree of signatures. Each leaf node contains a key pair. Each
internal node in the tree contains a key pair and a signature on the verification keys of
the child nodes.

The verification key would be the root node’s verification key. To sign a message,
we sign it using one of the leaf node signing keys. The total signature consists of the
one-time signature along with all the verification keys and one-time signatures needed
to connect the message to the root verification key.

There are a number of problems with this approach. Even though the depth of the
tree is logarithmic in the total number of messages we want to sign, signatures are very
long. Also, we need to keep track of which keys have been used, which means that the
system is stateful. We also need to keep track of many signing keys, which means that
the system state is large.

6.2 Merkle Signatures

A one-time scheme (K1,S1,V1) is of limited use. However, we can use a Merkle tree to
turn the one-time scheme into a somewhat more practical scheme that can sign many
messages. The idea is to create a hash tree (Merkle tree) where each internal node
contains the hash of its children, while each leaf node contains the hash of a verification
key.

We need to define an indexing scheme for the nodes in a binary tree. We shall index
each node by its level and another integer, and we define the indexing recursively. Let
(0, 0) be the index of the root node. Then if a node has index (i, j), its left child will
have index (i+ 1, 2j), while its right child will have index (i+ 1, 2j+ 1). An index (i, j)
will therefore satisfy 0 ≤ j < 2i.

Note that the index (i, j) describes the path to the node from the root node, by
considering the j written as an i-digit binary number. We begin at the most significant
digit and interpret a 0 as “left” and a 1 as “right”. The indexes of the nodes in the
path to (k, j) will be (0, 0), (1, bj/2k−1c), (2, bj/2k−2c), . . . , (k − 1, bj/2c), (k, j).

16

t0,0

t1,0 t1,1

t2,0 t2,1 t2,2 t2,3

t3,0 t3,1 t3,2 t3,3 t3,4 t3,5 t3,6 t3,7

vk0

m0

vk1

m1

vk2

m2

vk3

m3

vk4

m4

vk5

m5

vk6

m6

vk7

m7

Figure 1: A Merkle tree with depth 3, allowing for up to 8 signed messages, signed
with the one-time signature keys in the leaf nodes. Here t3,j = h(vk j) and ti,j =
h(ti+1,2j , ti+1,2j+1). The hash values needed to verify that the one-time verification key
vk5 is part of a tree with root t0,0 are circled. Given these hash values, the hash values
on the path to the root can be computed.

It is convenient to define some notation for the tree. We denote the node on the
ith level in the path to (k, j) as ji = bj/2k−ic. Since the left child always has an even
index, while the right child has an odd index, the index of a nodes’ sibling, as well as
the left and right node in a sibling pair, is given by

sib(j) =

{
j − 1 j odd,

j + 1 j even,
left(j) =

{
j j even,

j − 1 j odd,
right(j) = left(j) + 1.

If the hash function is collision resistant, then the root node in practice defines which
verification keys are attached to the leaf nodes. In order to verify that the verification
key vk j is attached to the leaf node (k, j), we need only compute the hashes on the
path from the root to (k, j) and verify that this hash chain is consistent with the hash
on the root node. However, to recompute the hash chain, we need the hashes stored on
the siblings of the nodes in the path.

Merkle’s signature scheme (K2,S2,V2) based on a hash function h and a one-time
signature scheme (K1,S1,V1) works as follows for tree depth k.

• The key generation algorithm K2 uses K1 to generate 2k key pairs (vk0, sk0), . . . ,
(vk2k−1, sk2k−1). It then computes the hashes on the internal nodes in the Merkle
tree as

ti,j =

{
h(ti+1,2j , ti+1,2j+1) i = 0, 1, . . . , k − 2,

h(vk2j , vk2j+1) i = k − 1.
(2)

It then outputs vk = t0,0 and sk = ((vk0, sk0), . . . , (vk2k−1, sk2k−1)).

17

• The signing algorithm S2 takes as input a signing key sk = ((vk0, sk0), . . . ,
(vk2k−1, sk2k−1)) and a message m. It chooses an index j and signs the mes-
sage m as

σ1 = S1(sk j ,m).

Then it recomputes the hash values in the Merkle tree using (2). The signature
is (j, σ1, vk j , t1,sib(j1), t2,sib(j2), . . . , tk−1,sib(jk−1), tk,sib(j)).

• The verification algorithm V2 takes as input a verification key vk = t0,0, a message
m and a signature σ = (j, σ1, vk , s1, s2, . . . , sk). It verifies that V1(vk j ,m, σ1) = 1,
and then computes a subset of the Merkle tree hashes as t′k,j = h(vk), t′i,sib(j) = si
and t′i−1,ji−1

= h(t′i,left(ji), t
′
i,right(ji)

). Finally, it outputs 1 if t′0,0 = t0,0.

e Exercise 27. Suppose we have a hash function will have T = {0, 1}256, and that we use
this hash function and Lamport’s one-time signatures (using the same hash function)
with the above Merkle signatures. How long would a signature be (in bits), as a function
of the number of messages that can be signed? How many hash function computations
would be required during key generation. What would be the size of the secret key?

e Exercise 28. The above is an informal description of a signature scheme. Implement the
three algorithms (K2,S2,V2), up to the underlying one-time signature scheme. Show
that the triple (K2,S2,V2) is a signature scheme.

e Exercise 29. The Merkle signature scheme is not a one-time scheme. Show that you
can create a forgery if you see two signatures for distinct messages, but where both
signatures have the same j.

If there are sufficiently many potential messages to be signed in this system, we
could just choose leaf nodes at random and expect to avoid collisions. However, this is
impractical because of the effort involved in generating the key pair, which is essentially
proportional to the number of leaf nodes.

Remark. In practice, the effort required to generate a key pair is proportional to the
number of messages to be signed over the life of the key. This is impractical. However,
there are a number of options for improving the Merkle tree, including the ideas from
the final two remarks in Section 6.1.

• Instead of having one large Merkle tree, we can create a tree of Merkle trees,
attaching the root of one tree to the leaf nodes of the parent tree. This would
allow a trade-off between reducing key generation time and increasing the length
of the signatures.

• We could use n-ary trees instead of binary trees, which would shorten signatures,
allowing a trade-off between computational requirements and signature length.

• Signing key material could be generated by a pseudo-random generator, which
means that the secret key would not have to include all the signing keys, which
would make the signing key much smaller, at little computational cost.

18

• Instead of keeping track of which leaf nodes had been used, we could derive which
leaf node to use from a hash of the message. If the hash function was collision
resistant, this would be secure. This would allow us to operate the signature
scheme without a state.

There are a number of interesting constructions for such hash functions.

7 Securing Diffie-Hellman

As we have seen, the Diffie-Hellman protocol is subject to a man-in-the-middle attack,
where Eve essentially runs the Diffie-Hellman protocol separately with Alice and Bob.
Since Alice and Bob cannot distinguish each other’s bits from Eve’s bits, they will be
cheated.

Signatures are one tool Alice and Bob can use to protect their Diffie-Hellman key
exchange. In this case, Alice has a signing key pair (skA, vkA) and Bob has a signing
key pair (skB , vkB), and they both know the other’s verification key.

1. Alice chooses a number a uniformly at random from the set {0, 1, 2, . . . , n − 1}.
She computes x = ga and sends x to Bob.

2. Bob receives x from Alice. He chooses a number b uniformly at random from
the set {0, 1, 2, . . . , n − 1} and computes y = gb and zB = xb. He computes
σB = S(skB ,m), where m is a message containing Alice’ and Bob’s names, that
Alice initiated the key exchange, and x and y. Bob then sends y and σB to Alice.

3. Alice receives y and σB from Bob. Alice verifies σB and computes zA = ya. She
also computes σA = S(skA,m

′), where m′ is a message containing Alice’ and
Bob’s names, that Alice initiated the key exchange, and x, y and σB . Alice then
sends σB to Bob.

4. Bob receives σA from Alice. Bob verifies σA.

If either party’s signature verification fails, that party stops immediately.
We note, without giving further details, that digital signatures can also be used with

public key encryption to solve the problem of who sent a given ciphertext.

8 The Public Key Infrastructure Problem Revisited

Before asymmetric encryption was invented, a shared secret was required for secure com-
munication over insecure channels. As we have seen, the Diffie-Hellman key exchange,
public key encryption and digital signatures have removed the need for a preexisting
shared secret, but public keys (for encryption or signature verification) still need to be
exchanged before communicating.

A public key infrastructure is an infrastructure set up to move public keys from Alice
to Bob in such a way that Bob can be sure that the public key he receives really belongs
to Alice and is her current key, even if Alice and Bob have never communicated before.

19

As is often said, nothing will come of nothing, so Alice and Bob cannot hope to
solve this problem on their own. One possible solution is the so-called web of trust. In
this scheme, Alice and all her friends sign each other’s public keys together with their
unique names. Alice’ public key, her name and her friend’s signature is often called
a certificate. The certificate is interpreted as Alice’ friend saying that the public key
belongs to the named person, namely Alice.

Alice’ friends in turn sign their friends’ public keys, and so forth. If we consider
people as vertices in a graph, with edges between friends who have signed each other’s
public keys, Alice and Bob need to find a path between themselves in this graph.

A more practical system relies on a trusted third party, usually called a certificate
authority. Again, the trusted third party signs Alice’ public key along with her unique
name. If Alice and Bob both trust each other’s certificate authorities, they can simply
send their certificate to the other party, and then use an appropriate public key protocol.

In practice, private keys are sometimes compromised, which means that Eve learns
the key. When Alice discovers that someone knows her private key (and can thus
impersonate her), Alice would like her certificate to stop working. She notifies her
certificate authority that the certificate has been compromised.

The certificate authority was not involved when Alice and Bob communicated, so
somehow Bob must be told that Alice’ certificate has been revoked. The traditional
approach is for the certificate authority to maintain a list of revoked certificates (a cer-
tificate revocation list). Anyone who relies on the certificate authority will periodically
fetch an updated list of revoked certificates.

Since certificate revocation lists are fetched only periodically, there will typically be
some time between Alice notifies her certificate authority until Bob stops accepting the
certificate. Another problem with certificate revocation lists is that if there are many
certificate authorities, managing the revocation lists becomes impractical.

One popular solution is for a certificate authority to provide a certificate status
service. Any user may ask for the status of a given certificate. The certificate authority
will reply with a signed message. If the certificate is valid (that is, not revoked), the
message contains a statement to that effect and the current time. If the certificate has
been revoked, the message contains a statement to that effect and the time of revocation.

20

