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1 Introduction
In this note, we consider the following problem. Alice wants to send messages to Bob via
some communications channel. Eve has access to the channel and she may eavesdrop on and
possibly tamper with anything sent over the channel.

Alice does not want Eve to be able to eavesdrop on her messages. She wants to communi-
cate confidentially. Also, when Bob receives a message that looks like it came from Alice, then
Bob wants to be sure that Alice really sent the message and that Eve did not tamper with it.
Alice and Bob want integrity.

Alice and Bob share a secret, called the key. Cryptography where the sender and the re-
ceiver (the honest users) have the same knowledge is called symmetric cryptography, where the
word symmetry refers to the symmetry of knowledge.

We define what a symmetric cryptosystem is and what the security requirements are for such
cryptosystems in Section 2.

To illustrate standard attacks, it is useful to study some historic cryptosystems and how
those systems can be attacked. This is done in Section 3, which alternates between discussing
historical ciphers and discussing interesting attacks that apply to the historical ciphers. (Note
that Section 3 is no history of cryptography.)

Section 3 contains a few constructions that provide confidentiality against eavesdroppers.
These constructions do not provide integrity, nor do they provide confidentiality if Eve is
willing to tamper with ciphertexts.

The main tool for providing integrity is discussed in Section 4. How to combine the con-
structions provided in Sections 3 and 4 into cryptosystems providing both integrity and con-
fidentiality even when Eve tampers with the ciphertexts is discussed in Section 5.

This text is intended for a reader that is familiar with mathematical language, basic alge-
bra (groups, rings, fields, linear algebra and polynomials), elementary probability theory and
elementary computer science (algorithms).

This text is very informal. Every concept and result mentioned in the text can be made
precise, but the technical details are out of scope for this text.

While modern high-level constructions are discussed in this note, low-level constructions
are out of scope. This explains why this note defines what a block cipher is and gives an
informal explanation of what it means for a block cipher to be secure, but does not contain a
single example of a modern block cipher.

Another topic that is out of scope is proving the security of the modern constructions
discussed. We only include proofs for information theoretically secure constructions.

This text uses colour to indicate who is supposed to know what. Red denotes secret infor-
mation (typically keys) known only by Alice and Bob. Green denotes information that Alice
and Bob want to protect, typically messages. Blue denotes information that the eavesdropper
will see.

2 Basic Definitions
We begin with the definition of a symmetric cryptosystem and what it means for a cryptosys-
tem to be secure.
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Definition 1. A symmetric cryptosystem consists of

• a setK of keys;

• a setP of plaintexts;

• a set C of ciphertexts;

• an encryption algorithm E that on input of a key and a plaintext outputs a ciphertext;
and

• a decryption algorithmD that on input of a key and a ciphertext outputs either a plaintext
or the special symbol ⊥ (indicating an invalid ciphertext).

For any key k and any plaintext m, we have that

D(k,E (k, m)) = m.

The setP will usually be a set of finite sequences of letters from an alphabet.
We shall assume that the key Alice and Bob share has been chosen uniformly at random

from the set of keys.

Definition (informal) 2. A symmetric cryptosystem provides confidentiality if it is hard to
learn anything at all about the decryption of a ciphertext from the ciphertext itself, possibly
except the length of the decryption.

Definition (informal) 3. A symmetric cryptosystem provides integrity if it is hard to create
a ciphertext that decrypts to anything other than ⊥.

3 Confidentiality Against Eavesdroppers
In this section we shall consider the situation where Eve is eavesdropping on Alice and Bob.
Eve’s goal is to understand what Alice is saying to Bob.

We shall briefly discuss some historic cryptosystems. We do this to give a gentle intro-
duction to the basic concepts in cryptograpy and provide some insight into important attack
strategies.

The presentation in this section alternates between describing a cryptosystem and describ-
ing how to attack that cryptosystem, until we reach systems that are secure.

3.1 Shift Cipher
The shift cipher is also known as the Cæsar cipher.

Suppose first that we give our alphabet G some group structure. There is a natural bijection
between the English alphabet {A, B, C, . . . , Z} and the group Z+26, given by 0↔ A, 1↔ B, etc.
We add F and G by applying the bijection to get 5 and 6, adding them to 11, and then applying
the inverse bijection to get L.
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Figure 1: Example of shift cipher encryption with the key k = D (D corresponds to the num-
ber 3).

The plaintext m is a sequence of letters m1m2 . . . mL from the alphabet. The key is an
element k from G. We encrypt the message by adding the key to each letter, that is, the i th
ciphertext letter is

c i = m i + k, 1≤ i ≤ L. (1)

The ciphertext c is the sequence of letters c1c2 . . . c L.
To decrypt a ciphertext c = c1 . . . c L, we subtract the key from each ciphertext letter, that

is, the i th plaintext letter is
m i = c i − k, 1≤ i ≤ L.

Exercise 1. The above is an informal description. Write down carefully what the three sets
K , P , C and the two algorithms E and D are. Show that they constitute a symmetric
cryptosystems.

Exercise 2. How many different keys are there for the shift cipher when the alphabet has 26
elements?

3.1.1 Attack: Exhaustive Search

The easiest attack on the shift cipher is an exhaustive search for the key, or a brute force attack.
The two assumptions required for this attack is that only one key will give a reasonable de-
cryption, and that we will be able to recognize that decryption. Both of these assumptions
are almost always true.

If there are few keys, we can decrypt with all possible keys in reasonable time. The correct
key will be the one that gives a reasonable decryption.

Exercise 3. Find all the possible decryptions of HGHUUT. How many are English words?
What about the possible decryptions of MBQ?

Exercise (for groups) 4. Choose a key for the Shift cipher at random and encrypt some message.
Give the ciphertext to someone else in the group and have them decrypt it without knowing
the key.

3.2 Affine Cipher
Now we give our alphabet R a ring structure, say like Z26. We add as before. We multiply F
and G by applying the bijection to get 5 and 6, multiplying them to get 30 which is 4 modulo
26, and then applying the inverse bijection to get E.

4



The plaintext m is a sequence of letters m1m2 . . . mL from the alphabet. The key is a
pair (k1, k2) of ring elements, the first of which must be invertible. We encrypt the message
letterwise using the formula

c i = k1m i + k2, 1≤ i ≤ L. (2)

The ciphertext c is the sequence of letters c1c2 . . . c L.
To decrypt a ciphertext c = c1 . . . c L, we compute the i th plaintext letter using the formulae

m i = k−1
1 (c i − k2), 1≤ i ≤ L.

Exercise 5. The above is an informal description. Write down carefully what the three sets
K , P , C and the two algorithms E and D are. Show that they constitute a symmetric
cryptosystems.

Exercise 6. How many different keys are there for the affine cipher when the alphabet has 26
elements?

3.2.1 Attack: Known Plaintext

Suppose Eve knows that Alice always begins her messages with HI. One ciphertext starts with
the letters UB. When the attacker knows the plaintext corresponding to a piece of ciphertext,
that is called known plaintext.

Eve knows that Alice used the affine cipher, which means that equation (2) was used to
encrypt H to U and I to B. She gets the following two equations:

U= k1H+ k2,
B= k1I+ k2.

(3)

This is a linear system of equations with two equations and two unknowns. As long as the
difference H− I is invertible in the ring (which it is), we can solve the system and recover the
key (k1, k2).

Exercise 7. Solve the linear system of equations given in (3) to find the key.

Exercise (for groups) 8. Choose a key for the affine cipher at random and encrypt some message.
Give the ciphertext along with some known plaintext to someone else in the group and have
them decrypt it without knowing the key.

Exercise 9. Develop a similar known plaintext attack for the Shift cipher from Section 3.1.

3.3 Substitution Cipher
The formulae (1) and (2) define bijections on the alphabet. We can generalize these schemes
by using any bijection or permutation on our alphabet. Let our alphabet be a set S.

The plaintext m is a sequence of letters m1m2 . . . mL from the alphabet. The key is a
permutation π on S. We encrypt the message letterwise using the formula

c i =π(m i ), 1≤ i ≤ L. (4)
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The ciphertext c is the sequence of letters c1c2 . . . c L.
To decrypt a ciphertext c = c1 . . . c L, we compute the i th plaintext letter using the formula

m i =π
−1(c i ), 1≤ i ≤ L.

Exercise 10. The above is an informal description. Write down carefully what the three sets
K , P , C and the two algorithms E and D are. Show that they constitute a symmetric
cryptosystems.
Exercise 11. How many different keys are there for the substitution cipher when the alphabet
has 26 elements?
Exercise 12. Explain how we can recover part of the key (a partial key) from known plaintext,
but not necessarily the full key.

3.3.1 Attack: Frequency Analysis

Known plaintext will reveal part of the key. But there are stronger attacks on the substitution
cipher, based on the number of times the various ciphertext letters appear.

If the permutation takes the plaintext letter A to the ciphertext letter Z, the number of Z’s
in the ciphertext will be the same as the number of A’s in the plaintext. This means that the
relative frequencies of the ciphertext letters will be the same as the relative frequencies of the
plaintext letters, up to permutation.

For most long English texts, the relative frequency of the various letters is constant. This
means that for encryptions of long English texts, the relative frequencies of ciphertext letters
is a simple permutation of the relative frequencies of letters in English text. It will be a simple
matter of matching plaintext letters and ciphertext letters and thereby recovering the key and
thus the plaintext.

For English texts of moderate length, the relative frequencies of the less common letters
will vary a lot, and reliable matching of plaintext letters to ciphertext letters will be impossible.
However, some letters, E in particular, are so common in English that they will usually be the
most common letters, even for fairly short texts.
Exercise 13. Gather a collection of English texts of varying topic and length. Compute the
frequency distributions. Use these distributions to estimate how long a text must be before
we can expect to identify with reasonable certainty (a) E, (b) the five most frequent letters, and
(c) the ten most frequent letters.

This means that even though we cannot reliably match every plaintext letter to every
ciphertext letter, we can match a few plaintext letters to a few ciphertext letters. This gives us
a partial key and a partial decryption.

The next step is to pretend that this partial decryption is a crossword puzzle, and guess
some plaintext words that fit with the partial decryption. We then treat these guesses as known
plaintext and recover more of the key. This gives us a better partial decryption. If the new
partial decryption does not make sense or is impossible, we guessed wrong. We backtrack and
guess again.

If, on the other hand, the new partial decryption makes sense, we probably guessed right.
Now we treat the new partial decryption as a crossword puzzle. We repeat this process of
guessing and verifying until we have the complete decryption.
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Exercise (for groups) 14. Choose a key for the substitution cipher and encrypt some sufficiently
long message. Give the ciphertext to someone else in the group and have them decrypt it
without knowing the key. You may also give them a small amount of known plaintext.

3.4 Towards Block Ciphers
One approach to preventing frequency analysis is to use a permutation on pairs of letters.
That is, our permutation acts on the set S of all pairs of letters, not the set of letters.
Exercise 15. For a substitution cipher based on permutations on pairs, write down carefully
what the three setsK ,P ,C and the two algorithms E andD are. Show that they constitute
a symmetric cryptosystems.

Unfortunately, the frequencies of pairs are uneven, which means that frequency analysis
still works, although it is less effective. A permutation on triples of letters would be better,
but still not perfect.

Even better would be l -tuples. The number l is called the block length. Unfortunately,
representing a random permutation over a large set is impractical. (Merely writing down a
permutation requires at least log2(|S |l !)≈ |S |l (ln |S |l − 1)/ ln2 binary digits.)

One idea would be to use not a random permutation, but instead use a random member
of some family of permutations.

The Hill cipher is an example of such a family of permutations, namely the permutations
described by invertible matrices. We give our alphabet R a ring structure, say like Z26. We
denote a l -tuple of letters as ~m ∈ Rl . An invertible l × l matrix K acts upon such l -tuples in
the obvious fashion, and we denote this action by K ~m.

The plaintext m is a sequence of l -tuples of letters ~m1 ~m2 . . . ~mL. The key is an invertible
l × l matrix K . We encrypt the message using the formula

~c i =K ~m i , 1≤ i ≤ L.

The ciphertext c is the sequence of l -tuples ~c1~c2 . . .~c L.
To decrypt a ciphertext c = ~c1 . . .~c L, we compute the i th plaintext tuple using the formula

~m i =K−1~c i , 1≤ i ≤ L.

Exercise 16. The above is an informal description. Write down carefully what the three sets
K , P , C and the two algorithms E and D are. Show that they constitute a symmetric
cryptosystems.
Exercise 17. How many different keys are there for the Hill cipher with block length 2 when
the alphabet has 29 elements?
Exercise 18. How many blocks of ciphertext-plaintext correspondences do you need to recover
K with reasonable probability, when the block length is 2 and the alphabet has 29 elements?
(For the purposes of this exercise only, you may assume that the known plaintext consists of
random letters from the alphabet.)

Exercise (for groups) 19. Choose a key for the Hill cipher and encrypt some message. Give
the ciphertext along with some known plaintext to someone else in the group and have them
decrypt it without knowing the key.
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A second example of a family of permutations is the Pohlig-Hellman exponentiation ci-
pher. This time, we do not consider tuples of letters, but rather a very large alphabet. We give
our large alphabet G the structure of a cyclic group of order n.

The plaintext m is a sequence of group elements m1m2 . . . mL. The key is an integer k
between 0 and n that is relatively prime to n. We encrypt the message using the formula

c i = k m i , 1≤ i ≤ L.

The ciphertext c is the sequence of group elements c1c2 . . . c L.
To decrypt a ciphertext c = c1c2 . . . c L, we compute the i plaintext tuple using the formula

m i = k−1c i , 1≤ i ≤ L,

where the inverse k−1 of k is computed modulo n.
Note that the expression k m i where k is an integer and m i is a group element is very

different from the expression k m i when k and m i are elements in a ring. The former notation
is short for m i +m i + · · ·+m i , where the sum contains k terms.
Exercise 20. The above is an informal description. Write down carefully what the three sets
K , P , C and the two algorithms E and D are. Show that they constitute a symmetric
cryptosystems.

It is generally believed that if the group G is carefully chosen, it is hard to find the key,
even with known or chosen plaintext.

3.4.1 Attack: Distinguishing

The permutations used in the Hill cipher (linear, invertible maps) are very different from most
permutations. For any two l -tuples ~m, ~m′ of letters from the alphabet, an invertible matrix
K satisfies the equation

K ~m+K ~m′ =K( ~m+ ~m′).
The same observation holds for the permutations used in the Pohlig-Hellman cipher. For any
two elements m, m′ ∈G, we get that

k m+ k m′ = k(m+m′).

Most permutations would not satisfy these equations. This means that the permutations
do not look like randomly chosen permutations. It is easy to distinguish the Hill cipher and
Pohlig-Hellman cipher permutations from random permutations.

We can use this property to make simple deductions about plaintext based only on cipher-
text properties.
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Exercise 21. Suppose c , c ′ and c ′′ are ciphertexts such that c i+c ′i = c ′′i for one or more indexes
i . What can you say about the corresponding plaintexts?

3.5 Block Ciphers
We shall now work with a set S, typically the set of l -tuples of letters from our alphabet.

Definition 4. A block cipher is a pair of maps π,π−1 :K ×S→ S such that for all k ∈K and
s ∈ S we have that

π(k ,π−1(k , s)) = s and π−1(k ,π(k , s)) = s .

In other words, a block cipher is a family of permutations on a set S indexed by a key set
K .
Exercise 22. The Hill cipher is based on a block cipher. Identify the block cipher by explaining
what the key setK , the set S and the functions π,π−1 are.
Exercise 23. The Pohlig-Hellman cipher is based on a block cipher. Identify the block cipher
by explaining what the key setK , the set S and the functions π,π−1 are.

Despite the name, a block cipher by itself is not a cryptosystem. But we construct a cryp-
tosystem based on a block cipher.

The plaintext m is a sequence of elements m1m2 . . . mL from the set S. The key is an
element k inK . We encrypt the message elementwise using the formula

c i =π(k, m i ), 1≤ i ≤ L.

The ciphertext c is the sequence of set elements c1c2 . . . c L.
To decrypt a ciphertext c = c1 . . . c L, we compute the i th plaintext element using the for-

mula
m i =π

−1(k, c i ), 1≤ i ≤ L.
Exercise 24. The above is an informal description of a block cipher used in electronic code book
(ECB) mode. Write down carefully what the three sets K , P , C and the two algorithms E
and D are. Show that they constitute a symmetric cryptosystems.

Our hope is that this scheme will be both practical and as good as the substitution cipher
when used on l -tuples. But as we have seen, the Hill cipher is easy to attack.

Definition (informal) 5. A block cipher is secure if it is hard to distinguish a pair of randomly
chosen inverse permutations (π,π−1) from the pair of inverse permutations (π(k, ·),π−1(k, ·)),
where k has been chosen uniformly at random fromK .

Note that whoever is trying to distinguish is only allowed to see the functions evaluated
at various points. He is never allowed to see the permutation π or the key k.

The idea is that if it is hard to distinguish the block cipher’s permutations from “average”
permutations, we may as well use the block cipher with a random key instead of a random
permutation. If there is an attack on the block cipher cryptosystem that does not work on
the substitution cipher, that will be one way to distinguish the block cipher.

We note that for a block cipher to be secure, the key set must be very large. Otherwise,
one can recognize the block cipher permutations with high probability by enumerating all
the keys and observing how the corresponding permutation affects one or two elements of
the set.
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3.5.1 Sketch: Feistel Ciphers

How to construct secure block ciphers is out of scope of this note. However, we shall very
briefly discuss one popular design for block ciphers, the Feistel cipher.

Block ciphers are typically built by repeatedly applying one or more simple block ciphers
called rounds. A single round will be very easy to break, but the composition of sufficiently
many rounds may be hard to break. Given the rounds ρ1,ρ2, . . . ,ρn with corresponding in-
verse rounds, we get a block cipher π by composition:

π(k, m) = ρn(kn , · · ·ρ2(k2,ρ1(k1, m)) · · · ) and

π−1(k, m) = ρ−1
1 (k, · · ·ρ−1

n−1(kn−1,ρ−1
n (kn , m)) · · · )

The round keys k1, k2, . . . , kn are derived from the key k. Using the same key for each round is
problematic. Using independent keys such that k = (k1, k2, . . . , kn) leads to impractically large
keys. Instead, a key schedule is usually used to derive round keys from the block cipher key.
This high-level design is shown in Figure 3. We note that for good ciphers, the key schedule
and the rounds are highly dependent on eachother.

One convenient way to design rounds is the Feistel round. The construction assumes that
S =G×G for some finite group G. It uses a round function F :K ×G→G to construct the
the permutation

ρ(k, (L, R)) = (R, L+ F (k, R)).
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It is easy to see that the inverse permutation is

ρ−1(k, (L′, R′)) = (R′− F (k, L′), L′).

Choosing a suitable round function is a hard problem, especially when the goal is to find a
round function that can be computed very quickly and that does not require many rounds.
Again, this problem is out of scope for this note.

3.5.2 Practical: Padding

The plaintext set for the cryptosystem from Exercise 24 is the set of finite sequences of ele-
ments from S, where each set element is typically an l -tuple of letters from the alphabet. In
other words, the plaintext set is the set of letter sequences whose length is divisible by l .

But when l is large, it is unreasonable to expect message lengths to be a multiple of l . We
usually need to encrypt arbitrary sequences of letters. Since we need to decrypt correctly, we
cannot just append some fixed letter until the sequence length is a multiple of l .

We extend a cryptosystem to accept sequences of any length by constructing a suitable
injective function, a so-called padding scheme.

Definition 6. LetP andP ′ be sets. A padding scheme forP andP ′ consists of two functions
ι :P →P ′ and λ :P ′→P ∪{⊥} satisfying

λ(ι(m)) = m for all m ∈P .

Exercise 25. Suppose you have a cryptosystem (K ,P ′,C ,E ′,D ′) and a padding scheme (ι,λ)
for P and P ′. Based on the padding scheme and the cryptosystem, construct a new cryp-
tosystem (K ,P ,C ,E ,D). Show that it is indeed a cryptosystem.

Typically, the alphabet will be {0,1} and our set is S = {0,1}l , bit strings of length l . The
plaintext setP ′ will then be bit strings of length divisible by l .

One padding scheme is the following: We first add one 1-bit, then we add 0-bits until the
total length is divisible by l . If the block size l is 8, the bit string 10101 will become 10101100.
If the block size l is 5, the bit string 01010 becomes 0101010000.

To remove the padding, we remove up to l − 1 trailing 0-bits and exactly one 1-bit. If the
block size l is 8, the string 0101010101 becomes the bit string 010101010. If the block size
l is 5, the string 01010 becomes 010, while the string 1010100000 cannot be decoded and
therefore becomes ⊥.

If decoding fails as in the last example, we have a padding error. Padding errors have subtle
effects on the security of cryptographic protocols.

3.5.3 Attack: Block Repetitions

We make two observations about ECB mode (the cryptosystem from Exercise 24):

• Any repetition among plaintext blocks will cause corresponding repetitions among ci-
phertext blocks.

• If we encrypt the same message twice, we get the same ciphertext.
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Both of these observations allow an eavesdropper to learn something about the message from
the ciphertext, and thereby break confidentiality. Both observations are independent of which
block cipher we use. The problem is not with the concept of block cipher, but with how we
use the block cipher.

Exercise 26. Suppose a message has been encrypted with ECB mode using a block cipher with
block length 4, and that you know that the message is either

SELL THE HOUSE NOW DO NOT SELL THE CABIN

or

SELL THE HOUSE AND EVERYTHING ELSE NOW.

(Ignore spaces and punctuation.) Explain how you can decide which message is the decryption
by only looking at the ciphertext.

3.6 A Correct Use of a Block Cipher
We now allow our block cipher to operate on a group G instead of a set. (Note that our
permutations will still act on the set of group elements. Since most permutations on G do
not respect the group operation, neither should the block cipher permutations.)

The plaintext m is a sequence of elements m1m2 . . . mL from the group G. The key is
an element k inK . We encrypt the message elementwise by first choosing a random group
element c0 and then using the formula

c i =π(k, m i + c i−1), 1≤ i ≤ L.

The ciphertext c is the sequence of set elements c0c1c2 . . . c L.
To decrypt a ciphertext c = c0c1 . . . c L, we compute the i th plaintext element using the

formula
m i =π

−1(k, c i )− c i−1, 1≤ i ≤ L.

Exercise 27. The above is an informal description of a block cipher used in cipherblock chaining
(CBC) mode. Write down carefully what the three sets K , P , C and the two algorithms E
and D are. Show that they constitute a symmetric cryptosystems.

What happens when we encrypt is that we start at a random group element. This random
element is added to the first message block, which is then permuted, resulting in essentially
a random-looking group element. This element is added to the second message block, which
is again permuted, resulting in essentially a second random-looking group element. This pro-
cess continues, producing a ciphertext that consists of a sequence of random-looking group
elements.

It is possible to prove a precise variant of the following statement. Its proof is out of scope
for this note.

Security claim (informal) 1. A secure block cipher used in CBC mode provides confidentiality
against eavesdroppers.
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Figure 5: Cipherblock chaining (CBC) mode encryption diagram using the block cipher
(π,π−1). To get the decryption diagram, reverse the direction of the vertical arrows, replace
+ by − and π by π−1.

Exercise 28. Consider the attacks discussed in previous sections. Explain why they fail against
a secure block cipher used in CBC mode.

Exercise 29. CBC mode is insecure if c0 is not random, but predictable. Suppose the group G
is Z+2128 . We play the following game.

1. You are allowed to observe encryptions of many plaintexts of your choice.

2. You are allowed to observe c0, which has been chosen at random.

3. You choose an integer m between 0 and 2127.

4. You are given an encryption of 2m + m′, where m′ has been chosen at random from
{0,1}. The above c0 is used for this encryption.

Show how you can play this game and be able to determine m′.

3.7 Vigenère Cipher
Frequency analysis worked very well against the substitution cipher from Section 3.3. One
approach to preventing frequency analysis might be to encrypt different plaintext letters with
different substitution ciphers.

The idea is that the frequencies produced by the encryption will be the average of the fre-
quencies produced by the different substitution ciphers, which should tend towards a uniform
distribution, thereby preventing frequency analysis.

Again, we let our alphabet be a group G, such as Z+26.
The plaintext m is a sequence of elements m1m2 . . . mL from the group G. The key is a

sequence of elements k1, k2, k3, . . . , k l from G. We encrypt the message elementwise with the
formula

c i = m i + k j , where 1≤ i ≤ L, 1≤ j ≤ l and j ≡ i (mod l ).

The ciphertext c is the sequence of elements c1c2 . . . c L.
To decrypt a ciphertext c = c1c2 . . . c L, we compute the i th plaintext element using the

formula
m i = c i − k j , where 1≤ i ≤ L, 1≤ j ≤ l and j ≡ i (mod l ).

13
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Figure 6: Example of Vigenère cipher encryption with the key k = JAPE.

Exercise 30. The above is an informal description. Write down carefully what the three sets
K , P , C and the two algorithms E and D are. Show that they constitute a symmetric
cryptosystems.

Exercise (for groups) 31. Choose a key for the Vigenère cipher and encrypt some message. Give
the ciphertext along with sufficient known plaintext to someone else in the group and have
them decrypt it without knowing the key.

3.7.1 Attack: Frequency Analysis II

There is an easy attack against the Vigenère cipher if we have known plaintext. If we subtract
the known plaintext from the corresponding ciphertext, we get the key repeated over and
over. However, there are stronger attacks based on frequency analysis.

We begin with an English text and create a subsequence of letters by starting at the i th
letter and then adding every l th letter. It so happens that such subsequences tend to have the
same frequency distribution as the entire text.

Exercise 32. In Exercise 13, you gathered a collection of English texts. Extract subsequences as
above and compute the frequency distributions. Compare these distributions to the frequency
distribution of the whole text, and estimate how long subsequences must be before we can
expect to identify with reasonable certainty (a) E, (b) the five most frequent letters, and (c) the
ten most frequent letters.

What happens to such subsequences when we encrypt the text with the Vigenère cipher
using a key of length l ? The letters in the subsequence are encrypted by adding the same letter
from the key to it. In other words, the subsequence is encrypted using a shift cipher.

Earlier, we attacked the shift cipher by exhaustive search, but recognizing subsequences
of English text is more difficult than recognizing English text. A better approach is to use
frequency analysis. We know that E will likely be the most common letter in the plaintext
subsequence, which corresponds to the most common letter in the ciphertext subsequence.

To recover a key of length l , all we have to do is run l frequency analysis attacks against
the shift cipher.

Exercise (for groups) 33. Choose a key for the Vigenère cipher and encrypt some sufficiently
long message. Give the ciphertext along with key length to someone else in the group and
have them decrypt it without knowing the key.

There is one minor problem: The key length may vary and we do not know it. The
simplest approach is to try every possible length, beginning with l = 1. When we have the
wrong key length, the attack will fail to produce a sensible decryption.

14



If everything has to be done by hand, there are faster ways to determine the key length.
The oldest method relies on repetitions in the plaintext affecting the ciphertext. A newer
method uses the so-called index of coincidence.

Exercise (for groups) 34. Choose a key for the Vigenère cipher and encrypt some sufficiently
long message. Give the ciphertext to someone else in the group and have them use the index
of coincidence to determine the key length.

3.8 One Time Pad
Suppose the key for the Vigenère cipher is completely random, that is, each key letter is sam-
pled from the uniform distribution and each letter is independent of the other letters. What
happens if the key is at least as long as the message and used for only one message? When used
like this, the cipher is known as the one time pad.

Again, our alphabet is a group G, such as Z+26.
The (single) plaintext m is a sequence of L group elements m1m2 . . . mL ∈ GL. The key

k is a sequence of L group elements k1k2 . . . kL ∈ GL. We encrypt the message elementwise
using the formula

c i = m i + k i , where 1≤ i ≤ L.

The ciphertext c is the sequence of L group elements c1c2 . . . c L.
To decrypt a ciphertext c = c1c2 . . . c L, we compute the i th plaintext element using the

formula
m i = c i − k i , where 1≤ i ≤ L.

Exercise 35. The above is an informal description. Write down carefully what the three sets
K , P , C and the two algorithms E and D are. Show that they constitute a symmetric
cryptosystems.

Security claim 2. If the key is used to encrypt only once, the one time pad provides confidentiality
against eavesdroppers.

Note that this claim is unconditional, unlike the corresponding claim for CBC mode in
Section 3.6, which is conditional on the use of a secure block cipher. This is good. Unfortu-
nately, we must note that the one time pad is impractical in almost every application.

We shall prove this security claim by proving that Eve’s knowledge about the message after
she saw the ciphertext, denoted by

Pr[m = m1m2 . . . mL | c = c1c2 . . . c L],

is the same as the knowledge she had before she saw the ciphertext, denoted by

Pr[m = m1m2 . . . mL].

Theorem 1. If the above scheme has been used to encrypt exactly one message, then

Pr[m = m1m2 . . . mL | c = c1c2 . . . c L] = Pr[m = m1m2 . . . mL].
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Proof. The assumption on the key means that from Eve’s a priori point of view, the key letters
are uniformly and independently distributed, which is expressed as the statement

Pr[k = k1k2 . . . kL] = |G|
−L.

We first compute the probabilities

Pr[c = c1c2 . . . c L | m = m1m2 . . . mL]

= Pr[k = (c1−m1)(c2−m2) . . . (c L−mL)] = |G|
−L

and

Pr[c =c1c2 . . . c L]

=
∑

m1 m2...mL

Pr[c = c1c2 . . . c L | m = m1m2 . . . mL]Pr[m = m1m2 . . . mL]

= |G|−L
∑

m1 m2...mL

Pr[m = m1m2 . . . mL] = |G|
−L.

Then we compute the a posteriori probability

Pr[m =m1m2 . . . mL | c = c1c2 . . . c L]

=
Pr[m = m1m2 . . . mL ∧ c = c1c2 . . . c L]

Pr[c = c1c2 . . . c L]

=
Pr[c = c1c2 . . . c L | m = m1m2 . . . mL]Pr[m = m1m2 . . . mL]

Pr[c = c1c2 . . . c L]
= Pr[m = m1m2 . . . mL],

which completes the proof.

The a posteriori probability is the same as the a priori probability, which means that Eve
has learned nothing new by observing the ciphertext. We have proved that the one time pad
provides confidentiality against eavesdroppers.

Exercise (for groups) 36. The one time pad is not secure if the key is used more than once.
Choose a key of sufficient length for the one time pad and encrypt two different messages
using the same key. Give the ciphertext along with part of one message to someone else in the
group and have them decrypt it without knowing the key. To ease decryption, the messages
should consist of mostly long words.

3.9 Stream Ciphers
There are many possible definitions of stream ciphers, but we shall consider only the notion
of synchronious or additive stream ciphers. The idea is that a key stream generator expands
a key and an initialization vector into something that looks like a key for the one time pad,
which is then used to encrypt the message.
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Definition 7. A key stream generator is a function f :K ×I →GN .

Definition (informal) 8. A key stream generator is secure if it is hard to distinguish the func-
tion values f (k, iv1), f (k, iv2), . . . , f (k, ivn) from random values when k has been chosen uni-
formly at random fromK and the values iv1, iv2, . . . , ivn have been chosen uniformly at ran-
dom from I .

Again, our alphabet is a group G, such as Z+26.
The plaintext m is a sequence of group elements m1m2 . . . mL of length L≤N . The key k

is an element inK . We encrypt the message by first choosing iv uniformly at random from
I , then computing the L first elements z1z2 . . . zL of f (k, iv) = z1z2 . . . zN . We encrypt the
plaintext elementwise using the formula

w i = m i + z i , where 1≤ i ≤ L.

The ciphertext c is the pair (iv, w1w2 . . . wL).
To decrypt a ciphertext c = (iv, w1w2 . . . wL), we first compute the L first elements z1z2 . . . zL

of f (k, iv) and then compute the i th plaintext element using the formula

m i = w i − z i , where 1≤ i ≤ L.

Exercise 37. The above is an informal description of a stream cipher based on a key stream
generator. Write down carefully what the three setsK ,P ,C and the two algorithms E and
D are. Show that they constitute a symmetric cryptosystems.

It is possible to prove a precise variant of the following statement. Its proof is out of scope
for this note.

Security claim (informal) 3. A stream cipher using a secure key stream generator provides con-
fidentiality against eavesdroppers.

3.9.1 Key Stream Generators from Block Ciphers

Let π,π−1 :K ×G → G be a block cipher. Suppose the set I × {1,2, . . . ,N} is a subset of
the set of group elements of G. We shall use this block cipher to construct two key stream
generators, fOFB/π :K ×G→GN and fCTR/π :K ×I →GN .

For any iv ∈G and k ∈K , let

z1 =π(k, iv) and z i =π(k, z i−1), where 2≤ i ≤N .

Then fOFB/π(k, iv) = z1z2 . . . zN .
For any iv ∈I and k ∈K , let

z i =π(k, (iv, i)), where 1≤ i ≤N .

Then fCTR/π(k, iv) = z1z2 . . . zN .
It is possible to prove a precise variant of the following statement. Its proof is out of scope

for this note.
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Security claim (informal) 4. Output feedback mode fOFB/π and counter mode fCTR/π using a
secure block cipher are secure key stream generators.

From a practical point of view, counter mode is very easy to parallelize and can therefore
be made very fast. Output feedback mode is inherently unparallelizable.

4 Integrity
In this section we shall consider the situation where Eve controls the communications chan-
nel between Alice and Bob. Eve’s goal is to tamper with the messages sent by Alice so that
Bob receives a different message, without noticing. For the moment, we shall not care about
confidentiality.

The main tool we shall use is the message authentication code, where Alice adds an authen-
tication tag to her message that allows Bob the verify that the message is unchanged.

Definition 9. A message authentication code is a function µ :K ×P →T .

Definition (informal) 10. A message authentication code is secure if it is hard to guess the
function valueµ(k, m) for any m, even after seeing the valuesµ(k, m1),µ(k, m2), . . . ,µ(k, mn)
for any m1, m2, . . . , mn ∈ P . Here, k has been chosen uniformly at random from K , and
m 6= m i for i = 1,2, . . . , n.

When Alice wants to send a message m to Bob, she sends the pair (m,µ(k, m)). When
Bob receives the pair (m′, t ), he checks that µ(k, m′) = t . If it is, he accepts that the message
came from Alice. Otherwise, he discards the message.

Note that nothing prevents Eve from replaying old messages by sending them to Bob.
Defending against such attacks is out of scope for this note.

One of the most popular MAC constructions – HMAC – is based on so-called hash func-
tions, which are out of scope for this note. We shall discuss two constructions of message
authentication codes.

4.1 Polynomial evaluation MACs
We begin our discussion with a one-time polynomial-evaluation MAC. This MAC is insecure
if it is used on more than one message. Such a MAC is impractical, so we shall also discuss
how a block cipher can be used to make a more practical variant.

Our alphabet is a finite field F, say a field with a prime p number of elements.
The plaintext m is a sequence of field elements m1m2 . . . mL. The key (k1, k2) is a pair of

field elements. The function µOTPE is computed as

µOTPE(k1, k2, m) = k2+
L
∑

i=1

m i k i
1+ kL+1

1 . (5)

Exercise 38. The above is an informal description. Write down carefully what the three sets
K ,P , T and the function µOTPE are. Show that µOTPE is a message authentication code.

We shall first prove the following statement.

18



Security claim 5. Let m, m′ be two messages of length at most L. Let t , t ′ ∈ F. The probability
that µOTPE(k1, k2, m′) = t ′ given that µOTPE(k1, k2, m) = t is at most (L+ 1)/p.

Note that this means that when Alice sends a single message m to Bob with the tag t =
µOTPE(k1, k2, m), and Bob receives the message m′ 6= m and the tag t ′, the probability that
Bob accepts that message as coming from Alice is at most (L+ 1)/p.

Proof. For simplicity, we shall assume that both messages have length exactly L. We want to
compute the probability

Pr[µOTPE(k1, k2, m′) = t ′ |µOTPE(k1, k2, m) = t ].

This means computing how many pairs (k1, k2) satisfy the two equations

t ′ = k2+ kL+1
1 +

L
∑

i=1

m′i k i
1 and t = k2+ kL+1

1 +
L
∑

i=1

m i k i
1.

It is clear from the equations that for every value of k1, there is at most one value of k2 that
satisfies the equations.

Combining the two equations, we get that k1 must satisfy the equation

t ′− t =
L
∑

i=1

(m′i −m i )k
i
1.

A solution to this equation is a zero of a polynomial equation of degree at most L, which
means that there are at most L solutions.

The conclusion is that out of p2 possible keys (k1, k2), there are at most L pairs that satisfy
both equations. It now follows that we have a bound on the probability.

When the messages have different length, the exact same argument applies, but the poly-
nomial we consider has degree at most L+ 1.

Exercise 39. Show that the scheme is not secure if we

a. replace k i
1 with k i−1

1 in the sum in (5);

b. remove the term k2 from (5); or

c. remove the term kL+1
1 from (5).

The above construction is just a one-time MAC, which is usually impractical. However,
if we use a block cipher π,π−1 : K ′ × S → S with F ⊆ S, we can construct an alternative
polynomial-evaluation MAC that can be used more than once, using

µPE/π(k1, k2, m) =π(k2, kL+1
1 +

L
∑

i=1

m i k i
1).

Exercise 40. The above is an informal description. Write down carefully what the three sets
K ,P , T and the function µPE/π are. Show that µPE/π is a message authentication code.
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4.2 Block-cipher-based MACs
One simple MAC based on a block cipher π,π−1 : K × G → G is CBC-MAC, which is
somewhat similar to Cipherblock Chaining mode from Section 3.6.

Fix some element t0 ∈G. The plaintext m is a sequence of group elements m1m2 . . . mL.
The key k is an element ofK . Let

ti =π(k, ti−1+m i ), where 1≤ i ≤ L.

Then µCBC(k, m) = tL.
Exercise 41. The above is an informal description. Write down carefully what the three sets
K ,P , T and the function µCBC are. Show that µCBC is a message authentication code.

This MAC is only secure when restricted to messages of fixed length. If messages of differ-
ent lengths are allowed, it is not secure.
Exercise 42. Find an attack against this MAC when messages of different length are allowed.

There are many secure variants of this MAC. One variant is based on a block cipher
π,π−1 : K × F → F over a field F. The idea is to modify the final plaintext block with
an unpredictable value.

Fix a non-zero element g ∈ F. The plaintext m is a sequence of field elements m1m2 . . . mL.
The key k is an element ofK . Let t0 = 0, h =π(k, 0) and

ti =π(k, ti−1+m i ), where 1≤ i ≤ L− 1.

Then µCBC′(k, m) =π(k, h g + tL−1+mL).

Security claim (informal) 6. The modified CBC-MAC using a secure block cipher is a secure
MAC.

5 Confidentiality and Integrity
Finally, we consider the situation where Eve controls the communications channel between
Alice and Bob. Eve’s goal is both to read Alice’s messages to Bob and tamper with them.

We shall combine the secure cryptosystems we saw in Section 3 with the message authen-
tication codes we saw in Section 4 into cryptosystems that provide both confidentiality and
integrity.

First we consider a general principle in cryptography: Never use the same key for two dif-
ferent things. This means that we should use different keys for the cryptosystem and the MAC
when we combine them. That leaves us with three obvious ways of combining a cryptosystem
with a MAC:

Encrypt-then-MAC First encrypt the message, then MAC the ciphertext:

c ′ = E (k e , m); t =µ(k m , c ′); c = (c ′, t ).

MAC-then-encrypt MAC the message, then encrypt the message and the tag:

t =µ(k m , m); c = E (k e , (m, t )).
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Encrypt-and-MAC Encrypt the message and attach a MAC tag of the message:

c ′ = E (k e , m); t =µ(k m , m); c = (c ′, t ).

In all three cases, the decryption algorithm verifies the MAC and if the verification fails, the
output of the decryption algorithm is ⊥.

Encrypt-and-MAC is in general insecure. If you encrypt the same message twice, you will
always get the same tag, something that Eve will notice. Therefore, it fails confidentiality.

MAC-then-encrypt is often secure, but there are special cases where it is not secure. In
particular, such schemes will often fail when combined with padding schemes.

Encrypt-then-MAC is always secure, which means that this is the best choice.
Note that nothing prevents Eve from replaying old ciphertexts by sending them to Bob.

Defending against such attacks is out of scope for this note.
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