
Digital Signatures

KG

November 25, 2016

Contents

1 Introduction 1

2 Digital Signatures 2

3 Hash Functions 3
3.1 Attacks . 4
3.2 Compression Functions . 5
3.3 Constructing a Compression Function 7

4 RSA Signatures 8
4.1 Attacks . 8
4.2 Secure Variants . 10

5 Schnorr Signatures 10
5.1 How to Prove That You Know a Secret 10
5.2 Schnorr Signatures . 13
5.3 The Digital Signature Algorithm . 14

6 Securing Diffie-Hellman 15

7 The Public Key Infrastructure Problem Revisited 15

1 Introduction

In this note, we consider the following problem. Alice wants to send a message to Bob
via some channel. Eve has access to the channel and she may tamper with anything
sent over the channel, and even introduce her own messages. Alice wants her message to
Bob to arrive without modification, or if it has been tampered with, Bob should notice.

Various solutions using public key encryption schemes are possible, but a different
primitive is more convenient, namely digital signatures. The basic idea is explained
and defined in Section 2. Section 3 discusses hash functions and how they can be
used to make some signature schemes more convenient. Section 4 and Section 5 discuss

1

digital signature schemes based on the RSA problem and the discrete logarithm problem,
respectively. Finally, in Section 6 we use digital signatures to construct a secure version
of the Diffie-Hellman protocol.

This text is intended for a reader that is familiar with mathematical language, basic
number theory, basic algebra (groups, rings, fields and linear algebra) and elementary
computer science (algorithms), as well as the Diffie-Hellman protocol, discrete loga-
rithms and the RSA public key cryptosystem.

This text is informal, in particular with respect to computational complexity. Every
informal claim in this text can be made precise, but the technical details are out of
scope for this note.

This text uses colour to indicate who is supposed to know what. When discussing
cryptography, red denotes secret information that is only known by its owner, Alice or
Bob. Green denotes information that Alice and Bob want to protect, typically messages.
Blue denotes information that the adversary Eve will see. Information that is assumed
to be known by both Alice and Bob (as well as Eve) is not coloured.

2 Digital Signatures

Alice, Bob and a number of other people want to be able to send messages to each
other, and they want to notice any tampering with those messages. Alice does not
want to manage a long-term secret for each correspondent, so symmetric key techniques
such as message authentication codes cannot be used. Alice is willing to manage public
information for each correspondent.

In this situation, what is needed is digital signatures.

Definition 1. A digital signature scheme consists of three algorithms (K,S,V).

• The key generation algorithm K takes no input and outputs a signing key sk and
a verification key vk . To each key pair there is an associated message seg denoted
by Msk or Mvk .

• The signing algorithm S takes as input a signing key sk and a message m ∈Msk

and outputs a signature σ.

• The verification algorithm V takes as input a verification key vk , a message m ∈
Mvk and a signature σ, and outputs either 0 or 1.

We require that for any key pair (vk , sk) output by K and any message m ∈Mvk

V(vk ,m,S(sk ,m)) = 1.

We interpret a 1 from the verification algorithm as a valid signature, and a 0 as
an invalid signature. A valid signature that was created without the signing key is a
forgery.

Definition (informal) 2. A signature scheme is secure if it is hard to create a valid
signature on a message without the signing key, even when you can see valid signatures
on many different messages.

2

3 Hash Functions

A vital component for designing practical digital signature schemes is the hash function.
The idea is that we can easily build signature schemes, but often we get a scheme with
a very small message space. Moreover, many of the schemes we build suffer from a
weakness where it is very easy to come up with signatures on random messages, even
without the signing key.

If we combine our primitive signature schemes with a suitable hash function, we can
extend the message space and protect against these designed-in weaknesses.

The idea for the construction is that instead of signing the message itself, we shall
sign a hash of the message. Let (K,S ′,V ′) be a signature scheme and let h : S → T
be a hash function such that T is a subset of the signature scheme’s message space.
We construct a new signature scheme (K,S,V) with message space S as follows. The
key generation algorithm is unchanged. The signing algorithm creates a signature of a
message m under the signing key sk be computing S ′(sk , h(m)). On input of vk , m and
σ, the verification algorithm outputs V ′(vk , h(m), σ).

Signing a hash of the message could be a security problem if we could find two
messages that have the same hash. A signature on one of the messages would also be
a signature on the other message, which would be bad. Ideally, we would like the hash
function to be injective, but that would not allow us to expand the message space.
Instead, we shall settle for a hash function that merely “looks” injective.

Definition 3. Let h : S → T be a function. A preimage of t ∈ T is an element s ∈ S
such that h(s) = t. A second preimage for s1 ∈ S is an element s2 ∈ S such that s1 6= s2
while h(s1) = h(s2). A collision for h is a pair of distinct elements s1, s2 ∈ S such that
h(s1) = h(s2).

The following two definitions are informal. It is possible to give precise definitions,
but this is out of scope for this note.

Definition (informal) 4. Let h : S → T be a function. We say that it is one-way if it
is an infeasible computation to find a preimage of a random t ∈ T and to find a second
preimage for a random s ∈ S.

Definition (informal) 5. Let h : S → T be a function. We say that it is collision
resistant if it is an infeasible computation to find collisions for h and to find a second
preimage for a random s ∈ S.

We quickly note that if you can find second preimages, you can also find collisions.
The converse does not have to be true. It follows that if finding a collision is an
infeasible computation, the hash function will be collision resistant and it will behave
like an injective function in practice.

It would be natural if the ability to find preimages implied the ability to find second
preimages. This is not true, as implied by the following exercise.

Exercise 1. Let h : S → T be a hash function, and suppose that T ⊆ S, but |T | < |S|.

3

Let h′ : S → {0, 1} × T be the hash function defined by

h′(s) =

{
(0, s) s ∈ T ,

(1, h(s)) otherwise.

Show that for half of all elements of {0, 1}×T , it is easy to find preimages, but for none
of those preimages there exists a second preimage.

We see that if our hash function is collision resistant, the hash function behaves as
an injective function and the above signature scheme (K,S,V) is no less secure than
the original scheme (K,S ′,V ′).

If our hash function is one-way, the above scheme may actually be more secure than
the original scheme.

We note that there is a different security notion for hash functions, random-looking,
which is that the hash function should in some sense look like a typical “random”
function. We do not discuss this notion further, except to note that this is different
from the above notions.

3.1 Attacks

The main generic attack on hash functions is to hash random messages until a collision
is found. Let h : S → T be a hash function. Choose a large number of random messages
s1, s2, . . . , sl and compute their hashes. We store the messages and their hashes in a
list sorted by their hash values. By the birthday paradox, as soon as l is roughly

√
|T |,

we should have a reasonable likelyhood of finding a collision.
This result gives us a minimal size for the set T , namely that

√
|T | should be an

infeasible computation. However, the attack described above requires a lot of memory.

Exercise 2. Let l = 10b
√
|T |c. Let g : T → S be an injective function, and let f : T → T

be the function defined by f(t) = h(g(t)). Let t0 and t′0 be two distinct elements of T .
Define two sequences by the equations

ti = f(ti−1) and t′i = f(t′i−1).

a. Imagine that the two sequences are really sequences of random elements. Argue
that with reasonable probability, t′j = ti for some i, j smaller than l.

b. Suppose h is “random-looking”. Argue that the above result should apply even
when the sequences are determined solely by the random choice of t0 and t′0,
respectively.

c. Suppose t′j = tl for some j < 2l, and t′j 6= t0 for any j < l. Show how you can
find, given j, a collision in h using at most 3l evaluations of g and h.

d. Suppose h is “random-looking”. Argue that with reasonable probablity, you can
find a collision in h using about 6l hash evaluations.

4

3.2 Compression Functions

Typically, the domain of a hash function is much larger than the range. For example,
log2 |T | will typically be between one hundred and a few thousand, while log2 |S| is from
264 and upwards. A hash function where the domain is larger than the range, but not
by much, is called a compression function.

We are interested in compression functions for two reasons. First of all, it is probably
easier to construct compression functions than large-domain hash functions. And sec-
ond, we have efficient constructions that turn secure compression functions into secure
hash functions.

We begin by discussing the latter construction. So let f : S′ → T be a compression
function. Suppose further that there is a set A such that {0, 1} × A × T is either a
subset of S′ or trivially injects into S′. Then we can consider the restriction of f to
{0, 1} × A× T instead.

We shall now construct a hash function h : S → T . The domain S is the set of all
finite sequences of elements from A, denoted by A∗. Let t0 ∈ T be a fixed element of
T .

The value s we want to hash is a sequence s1s2 . . . sL of elements from A. The
function h is computed using the formula

t1 = f(1, s1, t0), ti = f(0, si, ti−1), 2 ≤ i ≤ L.

Then h(s) = tL.
The cost (in terms of compression function evaluations) of computing h is linear in

the length of the message to be hashed. If it is easy to compute f , then computing h is
quite efficient.

If the compression function is one-way and collision resistant, we would like the
above defined hash function to be both one-way and collision resistant.

Theorem 1. Given a collision (s, s′) in the above constructed hash function, we can
find a collision in the compression function f using at most 2L evaluations of f , where
the length of s and s′ is at most L.

Proof. Let s = s1s2 . . . sL and s′ = s′1s
′
2 . . . sL′ , with L ≤ L′.

We know that
f(0, sL, tL−1) = f(0, s′L′ , t

′
L′−1).

Either we have found our collision, or sL = sL′ and tL−1 = t′L′−1. The latter means
that

f(0, sL−1, tL−2) = f(0, s′L′−1, t
′
L′−2).

We continue in this way until either we find a collision or we reach the beginning of s.
Then if L = L′, we must have that s1 6= s′1 since s 6= s′, which gives us a collision since

f(1, s1, t0) = f(1, s′1, t0).

If L < L′, we must have that

f(1, s1, t0) = f(0, s′L′−L+1, t
′
L′−L),

5

which will also be a collision.
We can find this collision by first computing t′1, t

′
2, . . . , t

′
L′−L, then computing the

pairs (t1, t
′
L′−L+1), (t2, t

′
L′−L+2), . . . , (tL, t

′
L′). One of these pairs will be our collision.

The claim follows.

The theorem says that from any collision in the constructed hash function h, it is easy
to find a collision in the compression function f . Which means that if our compression
function is collision-resistant, the constructed hash function is also collision-resistant.

Exercise 3. Consider the above construction. Suppose you have an “oracle” that for
any t ∈ T will provide you with a reasonable-length preimage of t under h. Show that
you can use this oracle to find preimages for any t ∈ T under f .

As for collision resistance, the consequence of the above exercise is that if we can
construct a compression function where finding preimages is an infeasible computation,
we can construct a hash function where finding preimages is an infeasible computation.

To conclude that the hash function is one-way, we must also consider second preim-
ages. Unlike for preimages and collision, being able to find second preimages for h does
not seem to imply the ability to find second preimages of f . But the ability to find
second preimages for h implies the ability to find collisions for h, which implies the
ability to find collisions for f . That is, if we can find second preimages for h, then we
can find collisions in f .

This means that if f is one-way and collision-resistant, then h is one-way and
collision-resistant hash function.

Note that the construction uses the 0 and the 1 to differentiate the start of the
iteration. This is important in the proof, since without this differentiation, we could
have run into problems when messages of different length collided.

There are other ways to construct hash functions from compression functions.

Exercise 4. Suppose we have a compression function f : A × T → T , and that
{0, 1, . . . , 264 − 1} is a subset of A. Let t0 be a fixed element of T .

We define two hash functions for messages that are sequences of elements from A of
length less than 264, using the two recursive formulas

t1 = f(L, t0), ti+1 = f(si, ti), 1 ≤ i ≤ L,

and

ti = f(si, ti−1), 1 ≤ i ≤ L, tL+1 = f(L, tL).

In either case, the hash of the message is tL+1.
For each hash function, state and prove a result similar to that of Theorem 1 for

that hash function.

Note that to use the first construction in Exercise 4, you must know the length of
the message before you begin hashing it. There are reasonable cases where you want to
begin hashing a message before you know the entire message, and in particular before
you know the length of the entire message.

6

Hash functions are used for many things in cryptography, and frequently the security
requirements are different from what we need for digital signatures.

One example is to use a hash function as a message authentication code, simply by
computing µ(k,m) = h(k||m), where k||m denotes the concatenation of the key and the
message. As the following exercise shows, our construction cannot be used like this.

Exercise 5. Let h : A∗ → T be the hash function constructed above. Suppose you are
given a value t such that t = h(m). Show that you can easily compute h(m||m′) for any
m′, even when you do not know m, only t. (Here, m||m′ denotes the concatenation of
m and m′.)

3.3 Constructing a Compression Function

Let G be a cyclic group of prime order n, and let x and y be non-zero elements. Then we
can construct a compression function fx,y : {0, 1, 2, . . . , n−1}×{0, 1, 2, . . . , n−1} → G
as

fx,y(u, v) = xuyv.

When x and y are clear from context, we shall write simply f for fx,y.
If it is hard to compute discrete logarithms in G, then it is hard to find both preim-

ages and collisions for this compression function, provided x and y have been chosen at
random from G.

Theorem 2. Suppose we know a collision ((u, v), (u′, v′)) for f . Then we can compute
logx y using 3 arithmetic operations.

Proof. If we have a collision, we know that

xuyv = xu
′
yv
′
.

Since (u, v) 6= (u′, v′) and the above equation holds, we have that u 6= u′ and v 6= v′.
This means that

y = x−(u−u
′)(v−v′)−1

.

The claim follows.

Exercise 6. Suppose you have an “oracle” that for any x, y, z of your choice will find
one preimage of z under the hash function fx,y. Explain how you can use this oracle to
compute discrete logarithms in G.

Using this compression function and the construction from the previous section, we
have a one-way and collision-resistant hash function. However, this hash function is of
theoretical interest only, since we have much faster constructions that also have other
interesting properties.

7

4 RSA Signatures

We briefly recall the textbook RSA public key cryptosystem. The key generation algo-
rithm chooses two primes p and q and finds e and d such that ed ≡ 1 (mod lcm(p −
1, q − 1)). The encryption key is (n, e), where n = pq and the decryption key is (n, d).

To encrypt a message m ∈ {0, 1, . . . , n− 1}, we compute c = me mod n. To decrypt
a ciphertext c, we compute m = cd mod n.

It turns out that we can construct a very simple signature scheme based on this.
The textbook RSA signature scheme (K,S,V) works as follows.

• The key generation algorithm K chooses two large primes p and q. It computes
n = pq, chooses e and finds d such that ed ≡ 1 (mod lcm(p − 1, q − 1)). Finally
it outputs vk = (n, e) and sk = (n, d). The message set associated to vk is
{0, 1, 2, . . . , n− 1}.

• The signing algorithm S takes as input a signing key (n, d) and a message m ∈
{0, 1, 2, . . . , n− 1}. It computes σ = md mod n and outputs the signature σ.

• The verification algorithm V takes as input a verification key (n, e), a message
m ∈ {0, 1, 2, . . . , n − 1} and a signature σ ∈ {0, 1, 2, . . . , n − 1}. It outputs 1 if
σe ≡ m (mod n), otherwise 0.

Exercise 7. The above is an informal description of a signature scheme. Write down
carefully what the three algorithms K, S and V are. Show that the triple (K,S,V) is a
signature scheme.

4.1 Attacks

As for textbook RSA public key encryption, as long as the RSA modulus n chosen by
the key generation algorithm is hard to factor, the above digital signature scheme is
useful. But it is not entirely secure.

Exercise 8. Suppose (n, 3) is a verification key. Forge a signature on the message 8.

Exercise 9. Suppose (n, e) is a verification key. Explain how to create a random message
with a forged signature.

Malleability Just like the RSA encryption scheme, the RSA signature scheme is
malleable, and this can be used to create forgeries.

Exercise 10. Suppose you have two messages m,m′ and signatures σ, σ′ on those mes-
sages under the verification key (n, e). Show how to construct a signature on the product
mm′ mod n.

Exercise 11. Suppose Eve wants to have Alice’ signature on a message m. Suppose also
that she is capable of getting Alice to sign any other message. Show how Eve can use
this to forge a signature on m.

8

Short Messages We want to use the idea from Section 3 with a hash function h :
S → T that is both collision resistant and one-way, and where T is a set of integers all
smaller than any RSA modulus we choose. This hashed RSA signature scheme works
as follows.

• The key generation algorithm is exactly the same as the RSA key generation
algorithm.

• The signing algorithm S takes a signing key sk = (n, d) and a message m ∈ S as
input. It computes σ = (h(m))d mod n and outputs the signature σ.

• The verification algorithm V takes as input a verification key (n, e), a message
m ∈ S and a signature σ ∈ {0, 1, 2, . . . , n − 1}. It outputs 1 if σe ≡ h(m)
(mod n), otherwise 0.

Exercise 12. Explain why the attacks from Exercises 8 and 9 fail against this scheme.
Hint: The hash function is one-way.

Exercise 13. Suppose that the hash function used is also random-looking. Explain why
the attacks from Exercises 10 and 11 become much more difficult.

However, most practical hash functions have outputs that are very short relative to
an RSA modulus, and this allows us to develop an attack.

Exercise 14. Let (n, e) be a verification key with corresponding signing key (n, d). Sup-
pose you have messages m1,m2, . . . ,ml, and integers `1, `2, . . . , `l, σ1, σ2, . . . , σl and sij ,
1 ≤ i, j ≤ l, such that

h(mi) =

l∏
j=1

`
sij
j , 1 ≤ i ≤ l and

h(mi) ≡ σei (mod n).

We shall assume that the matrix S = (sij) is invertible modulo e, and that R = (rki) is
an inverse modulo e.

a. Show that
l∑
i=1

rkisij = δkj + tkje

where δkj = 1 if k = j, otherwise δkj = 0.

b. Show that
l∏
i=1

σrkii ≡ `dk
∏
j=1

`
tkj
j (mod n).

c. Explain how we can easily compute `dk mod n from the above.

9

d. Suppose you are given a message m such that

h(m) =

l∏
i=1

`uii .

Explain how you, given the above, can easily compute h(m)d mod n.

If we let `1, `2, . . . , `l be small primes, then if our hash function h has small integers
as output, we can quickly find messages m,m1,m2, . . . ,ml such that their hashes are
products of powers of our small primes. Which means that if we get signatures on
m1,m2, . . . ,ml, we can construct a forgery on m.

4.2 Secure Variants

It turns out that it is quite easy to fix the hashed RSA signature scheme discussed
above. All we need is a random-looking, one-way, collision-resistant hash function whose
domain is almost all of {0, 1, 2, . . . , n − 1}. In which case the hashed RSA scheme is
secure, and is known as the full domain hashed RSA signature scheme, or RSA-FDH.

Exercise 15. Explain why the attack from Exercise 14 fails against RSA-FDH.

5 Schnorr Signatures

In this section, we shall develop the well-known Schnorr signature scheme. While the
Schnorr scheme is not used much as a signature scheme, its development is interesting
and many other signature schemes are very similar to the Schnorr system.

For the remainder of this section, let G be a group of prime order n, and let g be a
generator.

5.1 How to Prove That You Know a Secret

We begin with a very different question. Suppose Alice knows a secret number a ∈
{0, 1, 2, . . . , n − 1}. Bob does not know the secret number, but he knows x ∈ G such
that x = ga. Alice wants to convince Bob that she really knows a.

Of course there is an adversary. Eve may want to cheat Bob by pretending to know
a. Or Eve may want to cheat Alice by somehow learning a.

The latter point explains why Alice cannot convince Bob simply by revealing a to
Bob. While Bob is honest, Alice may at some point in time also want to convince Eve
that she knows a, after which Eve could cheat Bob by pretending to know a.

One thing Alice could do was to choose a random number r, compute α = gr and
γ = r + a mod n, and then show Bob α and γ. Bob accepts that Alice knows a if

gγ
?
= αx.

The idea is that the above protocol does not reveal a to Bob, because Alice just as
well could choose a random γ and compute α as gγx−1.

10

Exercise 16. Use the above security argument to show how Eve can cheat Bob and
pretend that she knows a, even though she only knows x.

We can improve on this procedure as follows. Instead of showing Bob both α and
γ at once, Alice first shows Bob α. Then Bob is allowed to choose if he wants to see
γ = r or γ = r + a mod n. He accepts that Alice knows a if

gγ
?
= α or gγ

?
= αx, respectively.

Note that we can encode Bob’s choice β as a 0 or a 1, in which case the above
formulas can be reduced to

γ = r + βa mod n and gγ
?
= αxβ . (1)

Exercise 17. a. Suppose Bob tells Eve what his choice β will be before Eve chooses
α. Explain how Eve can choose α and then respond such that Bob will accept
that she knows the secret, even though she only knows x.

If Bob does not tell Eve his choice early, explain why Eve can guess his choice,
proceed as above and successfully cheat Bob, all with probability 1/2.

b. Suppose that Eve has chosen α and that she knows the correct response to make
Bob accept, regardless of Bob’s choice. That is, Eve knows γ0 and γ1 such that
gγβ = αxβ . Show that Eve can easily compute a from γ0 and γ1.

We wanted to ensure that if Alice runs this protocol with Eve, then Eve learns
nothing about Alice’s secret. We shall argue that if Eve can learn something from
Alice, she can learn the same thing without Alice.

So suppose Eve gets α from Alice, chooses β, receives γ and from that exchange
learns something about a.

Now Eve decides to do without Alice. Instead, she makes a guess β′ at what chal-
lenge she will choose upon seeing α. Then she proceeds according to the first part of
Exercise 17. With probability 1/2, she will guess her choice of challenge correctly, in
which case her conversation would proceed exactly as if she were talking to Alice, which
means that she would learn something about a. Of course, with probability 1/2, Eve
will not guess correctly, so she may not learn anything, but in this case she can just try
again.

We also wanted to ensure that Eve cannot cheat Bob. From the above exercise we
know that Eve can successfully pretend to know a with probability 1/2, but unless she
knows a, she cannot succeed with any greater probability.

It follows that Alice can convince Bob that she almost certainly knows a by repeating
the above protocol many times. For each repetition, Eve would have probability 1/2 of
cheating successfully, but for k repetitions her success probability sinks to 2−k.

Doing k repetitions is quite inefficient, of course. Instead, we can do something
slightly different. The problem is that Eve can guess Bob’s choice and choose α based
on that. But note that in (1), there is nothing that forces β to be just 0 or 1.

The protocol can then work as follows.

11

1. Alice chooses r uniformly at random from {0, 1, 2, . . . , n − 1}, computes α = gr,
and sends α to Bob.

2. Bob chooses β uniformly at random from {0, 1, 2, . . . , 2k−1} and sends β to Alice.

3. Alice computes γ = r + βa mod n and sends γ to Bob.

Bob accepts that Alice knows a if

gγ
?
= αxβ .

By the above arguments, the probability that Eve cheats Bob should not be much larger
than 2−k. One problem is that our argument for why Eve does not learn anything
from Alice was exactly the argument that proved that Eve could cheat Bob. Which
means that strictly speaking, we no longer have an argument for why Eve will not learn
anything by talking to Alice.

However, if Eve chooses her challenge without looking at Alice’s α, then the argu-
ment from the first part of Exercise 17 applies, and we can use it to show that in this
case Eve cannot learn anything about Alice’s message.

Unfortunately, for the same reason, Bob cannot reveal his challenge before Alice
reveals her α. The question is, how can we force Bob to choose his challenge before
Alice reveals her α, but without Bob revealing his challenge?

Exercise 18. Let h : S → T be a hash function such that {0, 1, 2, . . . , 22k − 1} ×
{0, 1, 2, . . . , 2k − 1} is a subset of the domain.

Suppose Bob chooses t and β and computes ω = h(t, β). He sends ω to Alice. The
protocol then proceeds by Alice sending α to Bob, who responds with his already chosen
β and the random number t. Alice verifies that ω equals h(t, β) and responds with the
correct γ, which Bob verifies as usual.

Under reasonable assumptions on the hash function h, it can be shown that ω
does not reveal anything about β, and that Bob cannot find different t′, β′ such that
h(t′, β′) = ω.

Argue why Eve cannot cheat Alice (to learn something about a) or Bob (to convince
him that Eve knows a) using the above protocol.

A different approach can be used if we have a “random-looking” hash function
h : S → T where G×G is a subset of S and T = {0, 1, . . . , 2k − 1}. Instead of choosing
a random challenge, Bob can instead compute the challenge as β = h(x, α).

Since Eve no longer chooses her challenge when trying to cheat Alice, Eve will not
be looking at α before deciding on her challenge, so as we have argued above, she should
not learn anything new.

When Eve is trying to cheat Bob, however, she can know what challenge Bob will
choose without actually sending α to Bob. She cannot know β until after she has chosen
α, but she will still have the ability to look at many αs with corresponding βs, before
she sends one α to Bob. While this does give her increased power, it can easily be
neutralized by increasing k.

Of course, if Eve can compute β before sending α to Bob, so can Alice. We can
therefore greatly simplify the process. Alice chooses r, computes α = gr, β = h(x, α),

12

and γ = r + βa mod n. She then sends α, β and γ to Bob. Bob verifies that

β
?
= h(x, α) and gγ

?
= αxβ .

An equivalent verification equation can be

α
?
= gγx−β .

If the hash function is collision resistant (and a “random-looking” hash function should
be), this equation will hold in practice if and only if

h(x, gγx−β)
?
= β.

This gives us further scope for simplification and making the formulas tidier. The
process now works as follows. Alice chooses r, computes α = gr, β = h(x, α) and
γ = r − βa mod n. She then sends β and γ to Bob. Bob verifies that

h(x, gγxβ)
?
= β.

5.2 Schnorr Signatures

The Schnorr signature scheme is based on the ideas on how to prove that you know
something, but the proofs are augmented by including something extra in the hash that
generates the challenge.

Suppose P is a set of messages and we have a “random-looking” hash function
h : S → T , where G×G× P is a subset of S and T = {0, 1, . . . , 2k − 1}.

The Schnorr signature scheme (K,S,V) works as follows.

• The key generation algorithm K samples a number a uniformly at random from
the set {0, 1, 2, . . . , n − 1}. It computes x = ga and outputs vk = x and sk = a.
The message set associated to vk is P.

• The signing algorithm S takes as input a signing key a and a message m ∈ P.
It samples a number r uniformly at random from the set {0, 1, 2, . . . , n − 1}. It
computes α = gr, β = h(x, α,m) and γ = r− βa mod n. It outputs the signature
(β, γ).

• The verification algorithm V takes as input a verification key x, a message m ∈ P
and a signature (β, γ). It outputs 1 if

h(x, gγxβ ,m)
?
= β,

otherwise 0.

Exercise 19. The above is an informal description of a signature scheme. Write down
carefully what the three algorithms K, S and V are. Show that the triple (K,S,V) is a
signature scheme.

13

The Schnorr signatures and related schemes are famously sensitive to random num-
ber generation, as the following exercise show.

Exercise 20. Let x be a verification key for the Schnorr signature scheme. Suppose
that under this verification key, (β, γ) is a valid signature on m, and (β′, γ′) is a valid
signature on m′, m 6= m′. Suppose further that

gγxβ = gγ
′
xβ
′
.

Explain why the existence of these two signatures suggest a malfunction in random
number generation, and show how to recover the signing key corresponding to x using
only a handful of arithmetic operations.

5.3 The Digital Signature Algorithm

The Digital Signature Algorithm is a variant of the Schnorr signature scheme. We shall
describe two variants of DSA, to show again how a hash function can improve both the
practicality and security of a signature scheme.

Let f : G → {0, 1, . . . , n − 1} be a “random-looking” hash function. Our first
signature scheme (K,S,V) works as follows.

• The key generation algorithm K is the same as for the Schnorr signature scheme.

• The signing algorithm S takes as input a signing key a and a message m ∈
{0, 1, . . . , n − 1}. It samples a number r uniformly at random from the set
{0, 1, . . . , n− 1}. It computes β = f(gr) and

γ = r−1(m+ βa) mod n.

It outputs the signature (β, γ).

• The verification algorithm V takes as input a verification key x, a message m ∈
{0, 1, . . . , n− 1} and a signature (β, γ). It outputs 1 if

f(gmγ
−1

xβγ
−1

)
?
= β,

otherwise 0. (Note that the exponent arithmetic happens modulo n.)

Exercise 21. The above is an informal description of a signature scheme. Write down
carefully what the three algorithms K, S and V are. Show that the triple (K,S,V) is a
signature scheme.

Exercise 22. Show how you can create a forgery for a random message for this scheme.
Hint: Choose u and v. Compute β = f(guxv). Now solve v ≡ βγ−1 (mod n) and

u ≡ mγ−1 (mod n).

Exercise 23. Modify the above scheme to accept messages from S, by using a hash
function h : S → {0, 1, . . . , n−1}. Suppose h is one-way and collision resistant. Explain
how this stops the attack from Exercise 22.

14

6 Securing Diffie-Hellman

As we have seen, the Diffie-Hellman protocol is subject to a man-in-the-middle attack,
where Eve essentially runs the Diffie-Hellman protocol separately with Alice and Bob.
Since Alice and Bob cannot distinguish each other’s bits from Eve’s bits, they will be
cheated.

Signatures are one tool Alice and Bob can use to protect their Diffie-Hellman key
exchange. In this case, Alice has a signing key pair (skA, vkA) and Bob has a signing
key pair (skB , vkB), and they both know the other’s verification key.

1. Alice chooses a number a uniformly at random from the set {0, 1, 2, . . . , n − 1}.
She computes x = ga and sends x to Bob.

2. Bob receives x from Alice. He chooses a number b uniformly at random from
the set {0, 1, 2, . . . , n − 1} and computes y = gb and zB = xb. He computes
σB = S(skB ,m), where m is a message containing Alice’ and Bob’s names, that
Alice initiated the key exchange, and x and y. Bob then sends y and σB to Alice.

3. Alice receives y and σB from Bob. Alice verifies σB and computes zA = ya. She
also computes σA = S(skA,m

′), where m′ is a message containing Alice’ and
Bob’s names, that Alice initiated the key exchange, and x, y and σB . Alice then
sends σB to Bob.

4. Bob receives σA from Alice. Bob verifies σA.

If either party’s signature verification fails, that party stops immediately.
We note, without giving further details, that digital signatures can also be used with

public key encryption to solve the problem of who sent a given ciphertext.

7 The Public Key Infrastructure Problem Revisited

Before asymmetric encryption was invented, a shared secret was required for secure com-
munication over insecure channels. As we have seen, the Diffie-Hellman key exchange,
public key encryption and digital signatures have removed the need for a preexisting
shared secret, but public keys (for encryption or signature verification) still need to be
exchanged before communicating.

A public key infrastructure is an infrastructure set up to move public keys from Alice
to Bob in such a way that Bob can be sure that the public key he receives really belongs
to Alice and is her current key, even if Alice and Bob have never communicated before.

As is often said, nothing will come of nothing, so Alice and Bob cannot hope to
solve this problem on their own. One possible solution is the so-called web of trust. In
this scheme, Alice and all her friends sign each other’s public keys together with their
unique names. Alice’ public key, her name and her friend’s signature is often called
a certificate. The certificate is interpreted as Alice’ friend saying that the public key
belongs to the named person, namely Alice.

15

Alice’ friends in turn sign their friends’ public keys, and so forth. If we consider
people as vertices in a graph, with edges between friends who have signed each other’s
public keys, Alice and Bob need to find a path between themselves in this graph.

A more practical system relies on a trusted third party, usually called a certificate
authority. Again, the trusted third party signs Alice’ public key along with her unique
name. If Alice and Bob both trust each other’s certificate authorities, they can simply
send their certificate to the other party, and then use an appropriate public key protocol.

In practice, private keys are sometimes compromised, which means that Eve learns
the key. When Alice discovers that someone knows her private key (and can thus
impersonate her), Alice would like her certificate to stop working. She notifies her
certificate authority that the certificate has been compromised.

The certificate authority was not involved when Alice and Bob communicated, so
somehow Bob must be told that Alice’ certificate has been revoked. The traditional
approach is for the certificate authority to maintain a list of revoked certificates (a cer-
tificate revocation list). Anyone who relies on the certificate authority will periodically
fetch an updated list of revoked certificates.

Since certificate revocation lists are fetched only periodically, there will typically be
some time between Alice notifies her certificate authority until Bob stops accepting the
certificate. Another problem with certificate revocation lists is that if there are many
certificate authorities, managing the revocation lists becomes impractical.

One popular solution is for a certificate authority to provide a certificate status
service. Any user may ask for the status of a given certificate. The certificate authority
will reply with a signed message. If the certificate is valid (that is, not revoked), the
message contains a statement to that effect and the current time. If the certificate has
been revoked, the message contains a statement to that effect and the time of revocation.

16

	Introduction
	Digital Signatures
	Hash Functions
	Attacks
	Compression Functions
	Constructing a Compression Function

	RSA Signatures
	Attacks
	Secure Variants

	Schnorr Signatures
	How to Prove That You Know a Secret
	Schnorr Signatures
	The Digital Signature Algorithm

	Securing Diffie-Hellman
	The Public Key Infrastructure Problem Revisited

