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1 Introduction
In this note, we consider the following problem. Alice wants to send a message to Bob via
some channel. Eve has access to the channel and she may eavesdrop on anything sent over the
channel. Alice does not want Eve to know the content of her message to Bob.

The obvious solution is for Alice and Bob to first run the Diffie-Hellman protocol to
establish a shared secret. Then Alice can use the shared secret to encrypt her message using
symmetric cryptography.

For some channels, such as mail, this is very inconvenient, since each message may take a
long time to arrive, and even longer before it is read and acted upon.
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Of course, Alice and Bob could establish a shared secret and then simply use that secret
from then on. But Alice may need to talk to many people, not just Bob. Sharing secrets with
all of them and then managing the shared secrets is inconvenient.

Alice wants to be able to send a single encrypted message to Bob or one of her other
correspondents. She does not want to manage shared secrets with every correspondent, but
she may be willing to manage public information, just as she is already managing names, phone
numbers and adresses.

The answer to Alice’s problem is public key encryption, and the basic idea is explained
and defined in Section 2. Section 3 describes a public key encryption scheme based on the
Diffie-Hellman protocol, and Section 4 describes a public key encryption scheme based on
arithmetic in certain rings.

This text is intended for a reader that is familiar with mathematical language, basic number
theory, basic algebra (groups, rings, fields and linear algebra) and elementary computer science
(algorithms), as well as the Diffie-Hellman protocol.

This text is informal, in particular with respect to computational complexity. Every in-
formal claim in this text can be made precise, but the technical details are out of scope for this
note.

This text uses colour to indicate who is supposed to know what. When discussing cryptog-
raphy, red denotes secret information that is only known by its owner, Alice or Bob. Green
denotes information that Alice and Bob want to protect, typically messages. Blue denotes in-
formation that the adversary Eve will see. Information that is assumed to be known by both
Alice and Bob (as well as Eve) is not coloured.

We also use colour for theorems about computation, where blue denotes information that
an algorithm gets as input and can use directly, while red denotes information that exists, but
has to be computed somehow before it can be used directly. Information that is considered
fixed (such as the specific group in use, group order, generator, etc.) and that the algorithm
may depend on is not coloured.

2 Public Key Encryption
Alice, Bob and a number of other people want to be able to send confidential messages to
each other. For various reasons, using the Diffie-Hellman protocol to establish a shared secret
every time they want to send messages is not possible or practical. Furthermore, Alice does
not want to manage a long-term secret for each correspondent. She is willing to manage public
information for each correspondent.

In this situation, what is needed is public key encryption.

Definition 1. A public key encryption scheme consists of three algorithms (K ,E ,D):

• The key generation algorithmK takes no input and outputs an encryption key ek and a
decryption key dk. To each encryption key ek there is an associated message setMek.

• The encryption algorithm E takes as input an encryption key ek and a message m ∈Mek
and outputs a ciphertext c .
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• The decryption algorithm D takes as input a decryption key dk and a ciphertext c and
outputs either a message m or the special symbol ⊥ indicating decryption failure.

We require that for any key pair (ek,dk) output byK and any message m ∈Mek

D(dk,E (ek, m)) = m.

Just as for symmetric encryption, the users of a system require confidentiality and some
sense of integrity. However, since the encryption key is known anyone can create a ciphertext,
so the informal notion of integrity does not work for public key encryption. Instead, we have
a notion of non-malleability where it should be hard to modify a ciphertext in a predictable
way.

Definition (informal) 2. A public key encryption scheme provides confidentiality if it is hard
to learn anything at all about the decryption of a ciphertext from the ciphertext itself, possibly
except the length of the decryption.

Definition (informal) 3. A public key encryption scheme is non-malleable if it is hard to cre-
ate a new ciphertext based on a given ciphertext such that the decryption of the new ciphertext
is not ⊥, but predictably related to the given ciphertext.

3 Schemes Based on Diffie-Hellman
We shall develop a public key encryption scheme based on the Diffie-Hellman protocol. The
initial situation is that Alice, Carol and Bob will use the Diffe-Hellman protocol to establish
a shared secret, and then send the message encrypted using a symmetric encryption scheme.

Let G be a finite cyclic group of order n and let g be a generator. Let (G,P ,C ,Es ,Ds ) be
a symmetric cryptosystem. Note that G is the key set for the symmetric cryptosystem.

When Alice wants to send a message mA ∈ P to Bob, she uses Diffie-Hellman to estab-
lish a shared secret, encrypts her message using the symmetric cryptosystem and sends the
ciphertext to Bob. Bob decrypts the ciphertext.

1. Alice chooses a number r A uniformly at random from the set {0,1,2, . . . , n − 1}. She
computes xA= g r A and sends xA to Bob.

2. Bob receives xA from Alice. He chooses a number b A uniformly at random from the
set {0,1, . . . , n− 1}, computes yA= g xA and zA= x b A

A .

3. Alice receives yA from Bob. Alice computes zA = y r A
A , encrypts the message as w ←

Es (zA, mA), and sends w to Bob.

The situation where both Alice and Carol send messages to Bob is illustrated in Figure 1.
But a variation on this topic is possible. Before anything happens, Bob executes part of the

Diffie-Hellman protocol. He samples a random number b and computes y = g b . Whenever
someone contacts him, he immediately responds with y. When he receives the symmetric
ciphertext, he computes the shared secret and decryptes the ciphertext. This variation is illus-
trated in the middle part of Figure 1.
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Figure 1: From Diffie-Hellman to public key encryption scheme. (top) Alice and Carol use
Diffie-Hellman to establish shared secrets with Bob and send him encrypted messages. (mid-
dle) Bob uses a single random number for all the Diffie-Hellman protocol runs. (bottom) Bob
publishes his Diffie-Hellman message. Alice and Carol complete the Diffie-Hellman protocol
to establish a shared secret and send Bob encrypted messages.
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It is possible to prove that Bob does not lose any security by doing this. The proof is out
of scope for this note.

Obviously, repeatedly sending the same value y is wasteful. Bob therefore announces pub-
licly what he is doing and publishes the value y. When Alice and Carol want to send a message
to Bob, they already know y. Therefore, they do not have to wait to receive it. Instead, they
can immediately compute the shared secret and encrypt the message. This final situation is
shown in the bottom of Figure 1.

What has happened is that we have turned the Diffie-Hellman protocol combined with a
symmetric cryptosystem into a public key encryption scheme.

The public key encryption scheme (K ,E ,D) is based on a finite cyclic group G of order
n with generator g and a symmetric cryptosystem (G,P ,C ,Es ,Ds ).

• The key generation algorithmK samples a number b uniformly at random from the set
{0,1,2, . . . , n− 1}. It computes y = g b and outputs ek= y and dk= b . The message set
associated to ek isP .

• The encryption algorithm E takes as input an encryption key y and a message m ∈ P .
It samples a number r uniformly at random from the set {0,1,2, . . . , n − 1}. Then it
computes x = g r and z = y r , and encrypts the message as w = Es (z, m). It outputs the
ciphertext c = (x, w).

• The decryption algorithm D takes as input a decryption key b and a ciphertext c =
(x, w). It computes z = x b and decrypts the message as m =Ds (z, w). IfDs outputs the
special symbol⊥ indicating decryption failure, thenD outputs⊥, otherwise it outputs
m.

Exercise 1. The above is an informal description of a public key encryption scheme. Write
down carefully what the three algorithmsK , E and D are. Show that the triple (K ,E ,D) is
a public key encryption scheme.

3.1 ElGamal
The security of the above scheme depends both on the security of the Diffie-Hellman protocol
and the security of the symmetric cryptosystem.

In order to illustrate certain attacks, it is convenient to consider a variant of the above
public key encryption scheme that uses an extremely simple symmetric cryptosystem, namely
a variant of the Shift cipher given by (G,G,G,Es ,Ds ), where Es (k, m) = mk and Ds (k, w) =
wk−1.

The resulting scheme is known as the ElGamal (or textbook ElGamal) public key encryp-
tion scheme.

• The key generation algorithm is as described above.

• The encryption algorithm E takes as input an encryption key y and a message m ∈ G.
It samples a number r uniformly at random from the set {0,1,2, . . . , n − 1}. Then it
computes x = g r and w = my r . It outputs the ciphertext c = (x, w).
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• The decryption algorithm D takes as input a decryption key b and a ciphertext c =
(x, w). It computes m = w x−b .

Exercise 2. The above is an informal description of a public key encryption scheme. Write
down carefully what the three algorithmsK , E and D are. Show that the triple (K ,E ,D) is
a public key encryption scheme.

Information Leakage For certain groups, the ElGamal public key cryptosystem may leak
information about the message. This may or may not be problematic.

Exercise 3. Suppose p is a prime such that p−1 is divisible by a large prime and the discrete log-
arithm problem is hard in F∗p . Consider ElGamal based on G = F∗p . Let y be the encryption
key, and let c = (x, w) be an encryption of m under y. Show that

�
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p

�
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�
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�
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is 1; and

−
�

w
p

�

otherwise.

Exercise 4. Suppose p is a prime such that the discrete logarithm problem is hard in F∗p . Sup-
pose also that p − 1 is divisible by a (small) prime `, and that m ∈ G has order `. Show that
m can be recovered from an encryption of m using essentially a small multiple of

p
` group

operations.

Malleability When the attacker only sees the encryption key and one ciphertext, we say that
we have a chosen plaintext attack. Quite often the attacker will be able to deduce some infor-
mation about the decryption of other ciphertexts. We typically consider a situation where the
adversary wants to learn something about the decryption of one or more ciphertexts, and may
ask for the decryption of one or more other ciphertexts. This is known as a chosen ciphertext
attack.

We begin by showing that ElGamal is malleable, in that even if you do not know the
decryption of a ciphertext, it is still possible to create new ciphertexts that decrypt to the
same or related messages.

Exercise 5. Suppose c = (x, w) is an encryption of an unknown message m. Show how to
create an encryption c ′ = (x ′, w ′) of m where x ′ 6= x. Also show how to create an encryption
of mm′ for any m′ ∈G.

We can now use these properties of ElGamal to attack confidentiality under a chosen ci-
phertext attack.

Exercise 6. Suppose Alice sends Bob the ciphertext c = (x, w) and Eve learns this ciphertext.
Suppose further that Eve is capable of tricking Bob into decrypting one ciphertext that is
different from c . Show how Eve can learn the decryption of c .

The above exercises show that ElGamal, and in particular ElGamal over F∗p , does not
provide confidentiality. Neither does ElGamal provide non-malleability.

However, if the symmetric cryptosystem used provides confidentiality and integrity, it
can be proven under reasonable assumptions that the public key encryption scheme from
Exercise 1 is non-malleable and provides confidentiality.
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4 RSA
In this section we shall develop the famous RSA public key encryption scheme. We begin
with the Pohlig-Hellman exponentiation cipher, which can be interpreted as a public key
encryption scheme, albeit an insecure one. The problem is that if the group order is known,
it is easy to recover the decryption key from the encryption key.

The exponentiation cipher can be adapted to a different algebraic structure, where we are
able to prove that recovering a decryption key is as hard as factoring certain integers. While
this does not prove that the scheme is secure if it is hard to factor those integers, it turns out
that factoring seems to be the best way to attack the cryptosystem. We show a number of
flaws in this cryptosystem and discuss various ways of improving the system.

4.1 Preliminaries
The Pohlig-Hellman exponentiation cipher is based on a cyclic group G of order N . The key
is an integer k relatively prime to N , and the two block cipher maps are

(k, x) 7→ xk and (k, y) 7→ yk−1
,

where k−1 is any inverse of k modulo N .
Observe now that we can turn the Pohlig-Hellman cipher into a public key encryption

scheme as follows. The key generation algorithm chooses an integer e from the integers be-
tween 0 and N that are invertible modulo N . It then finds some inverse d of e modulo the
group order N . The encryption key ek is e , while the decryption key dk is d .

The encryption algorithm takes as input an encryption key ek = e and a message m ∈ G
and outputs the ciphertext c = me .

The decryption algorithm takes as input a decryption key dk= d and a ciphertext c ∈G
out outputs the message m = c d .
Exercise 7. The above is an informal description of a public key encryption scheme. Write
down carefully what the three algorithmsK , E and D are. Show that the triple (K ,E ,D) is
a public key encryption scheme.

Unfortunately, this public key encryption scheme is trivially insecure. An adversary that
sees the encryption key e can easily compute an inverse of e modulo the group order N ,
which is assumed known. (It may be impossible to compute the exact inverse found by the
key generation algorithm, but any inverse can be used to compute the decryption map.)

However, if the group order was unknown, there would be no obvious way to compute a
decryption key from the encryption key. The first thing we do is to note that Pohlig-Hellman
works equally well in any finite group.
Exercise 8. Let G be a finite group of order N , and let e and d be inverses modulo (a multiple
of) N . Show that the maps x 7→ x e and y 7→ xd are inverse maps.

The key generation algorithm needs to compute inverses modulo the group order, which
usually requires that the key generation algorithm knows the group order. This means that we
cannot fix a single group. Instead, the key generation algorithm must choose a group in such
a way that it knows the group order. Then it must include in the encryption key a description
of the group such that the group order is hard to compute from that description.
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Before we continue, we observe that for the Pohlig-Hellman cipher, ed ≡ 1 (mod N ),
which means that ed − 1 is a multiple of N . Likewise, Exercise 8 says that if we know a
multiple of the group order, we can find something that is effectively a decryption key.

4.2 The RSA Cryptosystem
Before we define the famous RSA cryptosystem, we extend the result of Exercise 8 to a specific
ring.

Exercise 9. Let n be the product of two large primes p and q , and let e and d be inverses
modulo (a multiple of) lcm(p − 1, q − 1). Show that the maps x 7→ x e and y 7→ yd on Zn are
inverses.

Hint: Prove that p divides the difference x ed − x for any integer x. Repeat for q . Then
conclude that the product divides the difference.

The textbook RSA public key encryption scheme (K ,E ,D) works as follows.

• The key generation algorithmK chooses two large primes p and q . It computes n = pq ,
chooses e and finds d such that ed ≡ 1 (mod lcm(p − 1, q − 1)). Finally it outputs
ek= (n, e) and dk= (n, d ). The message set associated to ek is {0,1,2, . . . , n− 1}.

• The encryption algorithm E takes as input an encryption key (n, e) and a message m ∈
{0,1, . . . , n− 1}. It computes c = me mod n and outputs the ciphertext c .

• The decryption algorithmD takes as input a decryption key (n, d ) and a ciphertext c . It
computes m = c d mod n and outputs the message m.

Note that the encryption exponent e may be very small, even 3.

Exercise 10. The above is an informal description of a public key encryption scheme. Write
down carefully what the three algorithmsK , E and D are. Show that the triple (K ,E ,D) is
a public key encryption scheme.

Hint: Use Exercise 9.

As we saw in Section 4.1, a public key encryption scheme is obviously useless if it is easy
to deduce the decryption key from the encryption key. We shall now consider this problem
for the RSA cryptosystem.

Let p and q be distinct, large primes, and let n = pq . Consider the group Z∗n , which is
isomorphic to Z∗p ×Z∗q . It is clear that if we know p and q , we can find N = (p − 1)(q − 1).
Conversely, if we know n and N , then we can easily recover the factorization.

Proposition 1. Let n be a product of two distinct primes p and q, and let N be the order of Z∗n .
Then p and q are zeros of the polynomial f (X ) =X 2+(N − n− 1)X + n.

Proof. First note that N = n− (p + q)+ 1, so

p + q = n+ 1−N .

Now consider the polynomial f (X ) = (X − p)(X − q) =X 2− (p + q)X + n.
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Note that if we know N , then we know the polynomial’s coefficients, and if we know the
coefficients, we can easily compute the zeros of the polynomial using the usual formula for
the zeros of a quadratic polynomial.

If we only know n and a multiple of l of N , we cannot use the above result, but we can
still recover the factorization of n.

Exercise 11. Let n be a product of two distinct primes p and q . Let x and y be integers such
that

x ≡ y (mod p) and x 6≡ y (mod q).

Show that gcd(x − y, n) = p.

Lemma 2. Let n be a product of two distinct large primes p and q, and let k be an odd multiple
of lcm(p − 1, q − 1)/2. Then for at least half of all integers z between 0 and n that are relatively
prime to n,

zk ≡±1 (mod p) and zk ≡∓1 (mod q). (1)

Proof. Suppose first that neither p−1 nor q−1 divide k. Then (p−1)/2 and (q−1)/2 both
divide k and

k
(p − 1)/2

and
k

(q − 1)/2

are both odd, so the Legendre symbol tells us that the equations

xk ≡−1 (mod p) and yk ≡−1 (mod q)

hold for half of all integers x ∈ {1,2, . . . , p − 1} and half of all integers y ∈ {1,2, . . . , q − 1}.
Otherwise, suppose without loss of generality that q − 1 divides k, while p − 1 does not

divide k. Again, the Legendre symbol tells us that

xk ≡−1 (mod p) and yk ≡ 1 (mod q)

for half of all integers x ∈ {1,2, . . . , p − 1} and any integer y ∈ {1,2, . . . , q − 1}.
In either case, the Chinese remainder theorem says that (1) holds for half of all integers z

between 0 and n that are relatively prime to n.

Proposition 3. Let n be a product of two distinct primes p and q. For anyκ> 0, given a multiple
l of N , we can compute p and q with probability 1− 2−κ using at most d4κ log2 l e arithmetic
operations and κ log2 l gcd computations.

Proof. Write l = 2t s , p−1= 2tp sp and q−1= 2tq sq with s , sp and sq all odd. We may assume
that tp ≥ tq . It is then clear that 2tp−1 s is an odd multiple of lcm(p − 1, q − 1)/2.

Lemma 2 then says that for half of all z between 0 and n that are relatively prime to n,

gcd(z2t p s + 1, n) = p or q .

For each value z chosen uniformly at random from {x | 0 < x < n, gcd(x, n) = 1} the
probability that the above gcd computation does not produce a proper factor of n is 1/2. The
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probability that a proper factor of n has not appeared after κ independently sampled z values
is 2−κ.

Obviously, we do not know tp . But for each value of z chosen, we can simply try all
possible values for tp . Since we know that tp ≤ t < log2 l , this requires at most log2 l gcd
computations per z value.

We can compute the greatest common divisor by computing z2i s modulo n before comput-
ing the gcd. We can compute this using the standard recursive exponentiation algorithm using
4 log2 l arithmetic operations. By computing first z20 s first, we can compute z21 s , . . . , z2t−1 s suc-
cessively, thereby computing all t values modulo n using just 4 log2 l arithmetic operations.
Doing this for at most κ distinct z values then requires at most 4κ log2 l arithmetic opera-
tions.

Exercise 12. The proof of Proposition 3 essentially describes an algorithm for factoring a prod-
uct of two large primes p and q given a multiple l of lcm(p−1, q−1). Write out this algorithm
carefully and restate Proposition 3 as a statement about the algorithm’s time complexity (in
terms of arithmetic operations and gcd computations, ignoring any other form of computa-
tion involved).

Proposition 3 says that if anyone knows a multiple of N , then they can factor. It follows
that if we believe that it is difficult to factor integers like n, then it is also hard to deduce the
group order of Z∗n or any multiple of it, and therefore it is hard to deduce the RSA decryption
key from the RSA encryption key.

4.3 Attacks
We have seen that as long as the RSA modulus n chosen by the key generation algorithm is
hard to factor, the above public key encryption scheme is not obviously useless. In fact, it
turns out that it is useful.

The best strategy for recovering a completely unknown m from c = me mod n — com-
puting eth roots — seems to be to factor n. However, as the security definitions in Section 2
make clear, the adversary does not need to recover a completely unknown m to break the
system. In this section, we shall consider a few attacks on the public key encryption scheme
from Exercise 10 that work essentially without computing eth roots.

Deterministic Encryption One fundamental problem with the public key encryption scheme
is that it is not randomized. The ciphertext depends only on the message.

Exercise 13. Show that D(dk, c) = m if and only if E (ek, m) = c .

Exercise 14. Let S be a fixed and known set of messages, and let c be an encryption of some
message from S. Show that we can decide what the decryption of c is using at most |S | en-
cryptions.

Information Leakage Part of the message encrypted will leak, which may or may not be a
problem.
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Exercise 15. Show that both e and d will be odd. Show that
�m

n

�

=
� c

n

�

.

Malleability Just like ElGamal, RSA is malleable and this can be used in a chosen ciphertext
attack.

Exercise 16. Suppose c is an encryption of an unknown message m. Show how to create an
encryption c ′ of mm′ for any m′ in the message space.

Exercise 17. Suppose Alice sends Bob the ciphertext c and Eve learns this ciphertext. Suppose
further that Eve is capable of tricking Bob into decrypting one ciphertext that is different
from c . Show how Eve can learn the decryption of c .

Short Messages Just like we developed a public key encryption scheme based on Diffie-
Hellman and a symmetric encryption scheme, we can combine RSA and a symmetric cryp-
tosystem (Ks ,P ,C ,Es ,Ds ) to form a new public key encryption scheme.

The obvious idea is to consider the keys of the symmetric cryptosystem as integers and do
as follows:

• The key generation algorithm is exactly the same as the RSA key generation algorithm.

• The encryption algorithm takes an encryption key ek= (n, e) and a message m ∈ P as
input. It chooses a random key k fromKs , computes x← k e mod n and w←Es (k, m).
Finally, it outputs c = (x, w).

• The decryption algorithm takes a decryption key dk= (n, d ) and a ciphertext c = (x, w)
as input. It computes k← xd mod n and m←Ds (k, w). If k 6∈ Ks or decryption of w
fails, it outputs ⊥. Otherwise it outputs m.

One problem is that symmetric keys are typically small compared to the RSA modulus.

Exercise 18. Suppose n ≈ 22000, e = 3 andKs = {0,1,2, . . . , 2256− 1}. Given an encryption c
of an unknown key k, show how you can easily recover k.

Small Integer Roots of Polynomial Equations A first solution to this problem is to add a
large, fixed integer such as 21999 to the key before raising it to the eth power, and subtracting it
after raising the RSA ciphertext to the d th power. That is, x ≡ (21999+ k)e (mod n). Unfor-
tunately, for small e it is easy to find small integer roots of modular univariate equations such
as (21999+X )e − x ≡ 0 (mod n), and k < 2256 is a small integer root of this equation.

A better solution is to add a random multiple of a large, fixed integer. That is, x ≡ (r 2256+
k)e (mod n). We recover k by computing the remainder when divided by 2256 after raising x
to the d th power.

While this seems to work, there are some worries. First, even if it is hard to compute eth
roots in Zn , it may not be hard to compute parts of the root, e.g. the key k. Second, it may
be possible to modify x in such a way that k does not change, only r . Since the decryption
algorithm discards r , it will accept the modified ciphertext as valid, which may be a problem
for certain applications.
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4.4 Secure Variants
There is a simple, robust solution that uses a random-looking function to derive the key from a
random number, which is raised to the eth power. Suppose h is a function from {0,1, . . . , n−1}
toKs . We get the following cryptosystem.

• The key generation algorithm is exactly the same as the RSA key generation algorithm.

• The encryption algorithm takes an encryption key ek= (n, e) and a message m ∈ P as
input. It chooses r uniformly at random from {0,1, . . . , n − 1}, computes k ← h(r ),
x← r e mod n and w←Es (k, m). Finally, it outputs c = (x, w).

• The decryption algorithm takes a decryption key dk= (n, d ) and a ciphertext c = (x, w)
as input. It computes r ← xd mod n, k← h(r ) and m←Ds (k, w). If decryption of w
fails, it outputs ⊥. Otherwise, it outputs m.

Unless you know all of r , you know very little about the key k, since h is random-looking.
Furthermore, any change in x will lead to a change in r , which will lead to an unpredictable
change in k because h is random-looking. If k has changed unpredictably, it will be hard to
modify w so that it is a valid ciphertext under the modified k, so it will be hard to get the
decryption algorithm to say anything but ⊥.

Exercise 19. The above is an informal description of a public key encryption scheme. Write
down carefully what the three algorithmsK , E and D are. Show that the triple (K ,E ,D) is
a public key encryption scheme.

Exercise 20. Suppose you want to send the same message m to k recipients with public keys
(n1, e1), (n2, e2), . . . , (n l , e l ). One simple approach is to use the same r and compute x i ←
r e i mod n i , i = 1,2, . . . , k, k← h(r ) and w←Es (k, m). You send (x i , w) to the i th recipient.

Suppose e1 = e2 = · · ·= e l ≤ l . Show how you can easily recover r .

We note that Exercise 20 does not show an attack on the public key encryption scheme
from Exercise 19. Instead, it illustrates one way to misuse a cryptosystem and thereby in-
troduce weaknesses. In this case, reusing the randomness r for more than one encryption
introduced the weakness. In general, it is implicitly assumed that randomness used by key
generation and encryption algorithms is never reused and does not leak out of the algorithm.
If those assumptions are violated, weaknesses may result as shown by the exercise.

In situations with multiple recipients of the same message, other schemes may be more
convenient. One solution is based on a Feistel-like permutation. Suppose we have three groups
G1, G2 and G3 such that G1×G2×G3 can be considered a subset of {0,1, . . . , n−1}. Suppose
also that we have three random-looking functions h1 : G2 ×G3 → G1, h2 : G1 → G2 and
h3 : G1→G3. Then we can construct two permutations on G1×G2×G3 as

π1(y1, y2, y3) = (y1, y2+ h2(y1), y3+ h3(y1)) and

π2(y
′
1, y ′2, y ′3) = (y

′
1+ h1(y

′
2, y ′3), y ′2, y ′3).

The inverses of these two permutations are obvious. Our cryptosystem will use the composi-
tion π=π2 ◦π1 shown in Figure 2.

SupposeKs ⊆G2. Our cryptosystem works as follows.

12



y1 y2 y3

h2

h3

+

+

+

h1

y ′1 y ′2 y ′3

Figure 2: The permutation π can be used for RSA encryption.

• The key generation algorithm is exactly the same as the RSA key generation algorithm.

• The encryption algorithm takes an encryption key ek = (n, e) and a message m ∈ P as
input. It chooses r uniformly at random from G1 and k uniformly at random fromKs ,
computes x←π(r, k, 0)e mod n and w←Es (k, m). Finally, it outputs c = (x, w).

• The decryption algorithm takes a decryption key dk= (n, d ) and a ciphertext d as input.
It computes (r, k, y3)← π−1(xd mod n) and m←Ds (k, w). If k 6∈ Ks or y3 6= 0 or the
decryption of w failed, it outputs ⊥. Otherwise it outputs m.

Exercise 21. The above is an informal description of a public key encryption scheme. Write
down carefully what the three algorithmsK , E and D are. Show that the triple (K ,E ,D) is
a public key encryption scheme.

Suppose we know x, that xd mod n = (y ′1, y ′2, y ′3) and that π−1(y ′1, y ′2, y ′3) = (r , k, 0).
Since h2(r ) is added to the key to get y ′2, it is impossible to recover k without knowing r .

But h1 is used to hide r , so it is impossible to recover all of r without knowing both y ′1, y ′2
and y ′3.

Furthermore, any change in y ′1 will lead to a change in r , which will lead to an unpre-
dictable change in h3(r ). Any change in y ′2 or y ′3 will lead to an unpredictable change in r . If
r has changed, it is unlikely thatπ−1 will result in 0 in the third coordinate, which means that
the decryption algorithm will reject the ciphertext.

5 Factoring Integers
The cryptosystems described in Section 4.4 seem to be secure if it is hard to compute eth
roots modulo the RSA modulus. It seems like the best method to compute eth roots modulo
the RSA modulus n is to factor n. To decide how hard it is to attack the cryptosystems in
Section 4.4, we must therefore study how hard it is to factor RSA moduluses.

Throughout this section, unless otherwise stated we shall consider an integer n that is the
product of two large primes p and q , with q < p. We do this to simplify the exposition,
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but we note that most of the factoring algorithms we consider will work for other composite
numbers, and often work much better.

We shall usually estimate the work required by our algorithms in terms of arithmetic op-
erations. By arithmetic operations, we mean additions, subtractions, multiplications or divi-
sions of integers of about the same size as n. We ignore additions and subtractions of small
constants, as well as multiplication and division by 2.

We begin with the simplest possible factoring algorithm, so-called trial division. While it
works, it is extremely slow.

Proposition 4. A factor of a composite integer n can be found using at most
p

n arithmetic
operations.

Proof. The composite n must have a factor smaller than
p

n. We can divide n by the inte-
gers 2,3,4, . . . , b

p
nc in order. When the remainder is zero, we have found the smallest prime

divisor of n.

Exercise 22. The proof of Proposition 4 essentially describes an algorithm for finding a factor
of a composite integer. Write out this algorithm carefully and restate Proposition 4 as a state-
ment about the algorithm’s time complexity (in terms of arithmetic operations, ignoring any
other form of computation involved).

Requirement 1. Let q be the smallest divisor of n. Then q arithmetic operations should be
an infeasible computation.

Having sufficiently large prime divisors is obviously easy to arrange.

Exercise 23. Suppose n is a product of one or more prime powers, and that the biggest prime
divisor is p. Show that the prime factorization of n can be computed using at most p+ log2 n
arithmetic operations.

5.1 Fermat Factoring
If p and q are numbers of roughly the same size, then p and q should be close to

p
n, but their

average should be closer. Searching for the average close to
p

n may make sense.
Let t = (p + q)/2 and let s = (p − q)/2. Then

t 2− s2 = (t + s)(t − s) = pq = n.

This means that we can decide if some integer τ equals t by computing τ2− n and checking
if it is an integer square.

Lemma 5. Given an integer k > 1, we can compute the integer square root of k if it exists using
at most 3 log2 k + 3 arithmetic operations.

Proof. We use binary search and construct a sequence of intervals (l1, r1), (l2, r2), . . . as follows.
Let l1 = 1 and r1 = k. Let ui = b(li + ri )/2c. If u2

i > k, set (li+1, ri+1) = (li , ui ). If u2
i < k,

set (li+1, ri+1) = (ui , ri ). If u2
i = k, set (li+1, ri+1) = (ui , ui ).

14



If u2
i = k for some i , then l j =

p
k = r j for all j > i . Otherwise, note that 1 <

p
k < k.

And if li <
p

k < ri and u2
i 6= k, then li+1 <

p
k < ri+1. It follows that the intervals satisfy

li ≤
p

k ≤ ri for all i . Furthermore, if li 6= ri , then li <
p

k < ri .
If ri− li > 1, then ri+1− li+1 ≤ d(ri− li )/2e, or alternatively ri+1− li+1 ≤ (ri− li )/2+1/2.

It follows that

ri+1− li+1 ≤
1
2
(ri − li )+

1
2
≤ 1

2

�

1
2
(ri−1− li−1)+

1
2

�

+
1
2

≤ 2−i (r1− l1)+
i
∑

j=1

2− j < 2−i k + 1.

It follows ri+1− li+1 ≤ 1 for i > log2 k.
We now have a simple algorithm for computing the integer square root, or concluding that

it does not exist. It computes pairs (li , ri ) until either ri = li , in which case ri is the integer
square root of k, or ri = li + 1, in which case k is not the square of any integer.

This algorithm will terminate after computing at most dlog2 ke pairs (after the first). Fi-
nally, given a pair (li , ri ), computing (li+1, ri+1) requires 3 arithmetic operations. The claim
follows.

Exercise 24. The proof of Lemma 5 essentially describes an algorithm for computing an integer
square root, or proving that no such square root exists. Write out this algorithm carefully and
restate Lemma 5 as a statement about the algorithm’s time complexity (in terms of arithmetic
operations, ignoring any other form of computation involved).

Exercise 25. Compute the square root of 16129 (by hand) using the algorithm from Exercise 24.

Lemma 6. Let n = pq where p, q are large primes. Then (p + q)/2−
p

n ≤ |p − q |/2.

Proof. The claim holds if p = q . We may therefore assume that p > q . With t = (p + q)/2
and s = (p − q)/2 as above, we have that

t − s =
p

(t − s)2 <
p

(t − s)(t + s) =
p

n,

from which the claim follows.

Theorem 7 (Fermat factoring). Let n be a product of two large primes p, q. Then a factor of n
can be found using at most 3|p − q |(1+ log2 n)+ 1 arithmetic operations.

Proof. By Lemma 6, there is an i < |p − q |/2 and integer σ such that

(d
p

ne+ i)2− n = σ2.

We can find the first integer square among the |p−q |/2 integers (d
p

ne+ i)2−n using at most
3 log2 n+ 3 arithmetic operations per integer.

Once we find d
p

ne+ i and the square root, we find a proper factor of n using a single
arithmetic operation. The claim follows.
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Exercise 26. The proof of Theorem 7 essentially describes an algorithm for finding a factor of
a composite integer. Write out this algorithm carefully and restate Theorem 7 as a statement
about the algorithm’s time complexity (in terms of arithmetic operations, ignoring any other
form of computation involved).

Exercise 27. Factor 1683557 using the algorithm from the above proof.

Exercise 28. We can use a variant of the Sieve of Eratosthenes to find primes quickly. The
idea is that we sieve over a small integer range to quickly exclude numbers divisible by small
primes. The remaining numbers are then much more likely to be prime. This reduces the
number of expensive primality tests we must do before we find a prime.

We can adapt this idea to RSA key generation by sieving over a range likely to contain two
primes, which will be our p and q . Explain why this is a bad idea.

We arrive at the following requirement.

Requirement 2. Let n = pq . Then |p − q | arithmetic operations should be an infeasible
computation.

Exercise 29. Suppose we choose two numbers x and y independently and uniformly at random
from the range {2k−1, 2k−1+ 1, . . . , 2k − 1}. What is the expected value of |x − y|?

5.2 Pollard’s p−1

We saw earlier that if we have a multiple of lcm(p−1, q−1), then we can factor n. However,
it turns out that if we have a multiple of p − 1 or q − 1, we can usually also factor n.

Proposition 8. Let n be the product of two distinct large primes p and q, and let k be a multiple
of p − 1, but not a multiple of q − 1. Then for at least half of all integers z between 0 and n that
are relatively prime to n,

zk ≡ 1 (mod p) and zk 6≡ 1 (mod q). (2)

Proof. The first equation holds for all z that are relatively prime to n.
Let g be a generator for F∗q , and let

x =
q − 1

gcd(q − 1, k)
.

Then g k has order x, which means that

zk ≡ 1 (mod q)

for at most 1/x of all integers z between 0 and n that are relatively prime to n. The claim
follows.

Note that if we have z and k such that (2) holds, then Exercise 11 allows us to factor n.
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The question is, how do we find a multiple of p − 1? One approach may be to hope that
p−1 is only divisible by the l smallest primes `1,`2, . . . ,`l . Since the largest prime power that
could divide the (unknown) value p − 1 is `blog n/ log`i c

i , we could construct a multiple using

k =
l
∏

i=1

`blog n/ log`i c
i .

In practice, k = `l ! will work just as well.

Exercise 30. Using the above approach, factor 1829.

We arrive at the following requirement.

Requirement 3. Suppose n = pq . Let k1 be the largest divisor of p−1, and let k2 be the largest
divisor of q−1. Then min{k1, k2} arithmetic operations should be an infeasible computation.

One simple way to ensure this is to choose p and q as safe primes, that is, such that (p−1)/2
and (q − 1)/2 are also prime.

5.3 Pollard’s ρ
We assume that the reader is familiar with Pollard’s ρ method for computing discrete loga-
rithms. Our goal this time is to construct three random-looking sequences of integers, one of
which will collide and provide us with our factorization.

Let s1 be an integer between 0 and n. We construct a sequence of integers s1, s2, . . . using
the rule

si+1 = s2
i + 1 mod n. (3)

Based on this sequence, we define a second sequence sq ,1, sq ,2, . . . , where sq ,i = si mod q . Note
that

sq ,i+1 = s2
q ,i + 1 mod q . (4)

Lemma 9. Let the sequences s1, s2, . . . and sq ,1, sq ,2, . . . be as above. Suppose indexes i , j exist such
that sq ,i = sq , j . Then gcd(si − s j , n)> 1. If si 6= s j , then

gcd(si − s j , n) = q.

Proof. If si = s j , then gcd(si − s j , n) = n, so suppose si 6= s j .
Since

si ≡ sq ,i ≡ sq , j ≡ s j (mod q),

we see that q divides the difference si − s j . But si 6= s j , so we cannot also have that p divides
si − s j , and the claim follows.

Exercise 31. Let n = 2573 and s1 = 2380.

a. Compute the first 15 terms of the sequences from (3) and (4).

b. Find by inspection the first repetition in the sequence sq ,1, sq ,2, . . . .
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c. Use Lemma 9 and the repetition found to factor n = 2573.

Proposition 10. Let s1, s2, . . . and sq ,1, sq ,2, . . . be defined as above. Suppose k is the smallest
integer such that sq ,k = sq ,k ′ for some k ′ < k. Then distinct indexes i , j can be found such that
gcd(si − s j , n)> 1 using at most 9k arithmetic operations and k gcd computations.

Proof. We consider the sequences t1, t2, . . . and tq ,1, tq ,2, . . . given by t j = s2 j and tq , j = sq ,2 j .
It is clear that for some i , tq ,i = sq ,i , and that this i is at most k.

We can compute successively the pairs (s1, t1), (s2, t2), . . . using the rule

(si+1, ti+1) = (s
2
i + 1 mod n, (t 2

i + 1)2+ 1 mod n).

By computing gcd(si − ti , n) we will notice when this is larger than 1, which it by Lemma 9
will be for some i ≤ k. Computing each new pair requires 9 arithmetic operations.

Exercise 32. The proof of Proposition 10 essentially describes an algorithm that eventually
computes a greatest common divisor larger than 1. Write out this algorithm carefully and re-
state Proposition 10 as a statement about the algorithm’s time complexity (in terms of arith-
metic operations and gcd computations).

Also, suppose the elements s1, s2, . . . , sk are all distinct. Show that then the greatest com-
mon divisor eventually computed is a proper divisor of n.

Exercise 33. Use the algorithm from Exercise 32 to factor (by hand) n = 2573.

Let E be the event that the L first elements of sq ,1, sq ,2, . . . are all distinct, and let E ′ be the
event that the L first elements of s1, s2, . . . are all distinct. Then we can define two functions

θ(L, n) = Pr[E] and γ (L, n) = 1−Pr[E ′].

We can now prove the following result.

Theorem 11. Let n be a product of two distinct primes p and q. Then a proper factor of n can be
computed using at most 9L arithmetic operations and L gcd computations, except with probability
θ(L, n)+ γ (L, n).

Proof. Some integer will appear twice among the L first elements of the sequence sq ,1, sq ,2, . . .
except with probability θ(L, n).

There will be no repetitions among the L first elements of the sequence s1, s2, . . . except
with probability γ (L, n).

By Exercise 32 there is then an algorithm that computes a proper factor of n using at most
9L arithmetic operations and L gcd computations. The claim follows.

Now suppose the two sequences are “random-looking” with respect to repetitions. This
means that since the elements of the second sequence come from a much smaller set, we ex-
pect a repetition in that sequence long before we have a repetition in the larger sequence. It
seems plausible that the sequences we have defined above are “random-looking” with respect
to repetitions. Therefore, we make the following conjecture.
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Informal conjecture 12. The function θ(L, n) is roughly similar to

exp
�

−
L(L− 1)

2q

�

and γ (L, n) is roughly similar to

1−
L(L− 1)

2n
.

Based on Conjecture 12 and Theorem 11, we arrive at the following requirement.

Requirement 4. Suppose n = pq , with q < p. Thenpq arithmetic operations should be an
infeasible computation.

5.4 Index Calculus
Index calculus for factoring is very similar to index calculus for discrete logarithms. We begin
with the observation that knowledge of more than two square roots modulo n of the same
number allows us to factor n.

Proposition 13. Let n be the product of two distinct, large primes p and q. Let z be a square
modulo n with gcd(z, n) = 1. Then z has four square roots modulo n.

Suppose further that x and y are square roots of z modulo n satisfying

x 6≡ ±y (mod n).

Then gcd(x − y, n) is a proper divisor of n.

Proof. If z is a square modulo n, then x exists such that x2 ≡ z (mod n), which means that x2

is congruent to z modulo both p and q . It follows that x and−x are square roots of z modulo
both p and q , and they are distinct since z is relatively prime to n. The Chinese remainder
theorem then says that these can be combined into four square roots of z modulo n.

Since x2 ≡ z ≡ y2 (mod n), we know that n divides x2 − y2 = (x − y)(x + y). But since
x 6≡ ±y (mod n), we know that n does not divide x−y and x+y. It follows that gcd(x−y, n)
is a proper divisor of n.

The next idea is that if we have a sufficient number of relations between random integers
and small primes modulo n, then linear algebra will allow us to construct a square root of a
product of these random integers.

Proposition 14. Let t1, t2, . . . , tl+1,`1,`2, . . . ,`l be integers satisfying

ti ≡
l
∏

j=1

`si j . (5)

Then using at most (l + 1)3 arithmetic operations, we can compute α1,α2, . . . ,αl+1 ∈ {0,1} such
that

l+1
∏

i=1

tαi
i ≡

 

l
∏

j=1

`
1
2
∑l+1

i=1 αi si j

j

!2

(mod n).
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Proof. Let S be the (l + 1)× l matrix (si j ), where each of the relations defines one row. If
we consider S as a matrix modulo 2, it has rank at most l , so there exists a vector ~α such that
~αS ≡ ~0 (mod 2).

Given such a vector ~α, we know that the sums
∑l+1

i=1 αi si j is divisible by 2, which means
that raising each ` to these sums divided by 2 gives us a square root of

∏l+1
i=1 tαi .

Gaussian elimination will find a vector in the kernel of S using at most (l +1)3 arithmetic
operations.

Finally, if we already know squares of the random integers from our relations, we can
easily find a square of the product. This second square will be independent of the one we
found above. Which means that we will be able to factor n half the time.

Theorem 15. Suppose n is a product of two distinct large primes, and that a fraction σ of the
squares modulo n are divisible only by the small primes `1,`2, . . . ,`l .

Then we can find a proper factor of n with probability 1/2 using an expected

σ−1(l + 1)(l + log2 n+ 2)+ (l + 1)3+ 2l 2+ 2(l + 1) log2 n+ 2l

arithmetic operations and one gcd computation.

Proof. Our goal is to construct two independent square roots modulo n of the same number.
We begin by choosing random numbers r between 0 and n for each number checking if

t = r 2 mod n factors as a product of the small primes. In this way, we eventually find l + 1
relations of the form (5).

By Proposition 14, we can find α1,α2, . . . ,αl+1 ∈ {0,1} such that
�

l+1
∏

i=1

ri

�2

≡

 

l
∏

j=1

`
1
2
∑l+1

i=1 αi si j

j

!2

(mod n).

In other words, we have two square roots modulo n of the same number. Since the coefficients
si j depend only on the square modulo n of the random numbers r1, . . . , rl+1, the two square
roots are also independent.

By Proposition 13 we can then factor n with probability 1/2 using one gcd computation.
For each random number r , squaring modulo n requires 2 arithmetic operations. Check-

ing if the square factors as a product of `1, . . . ,`l requires at most bl + log2 nc arithmetic oper-
ations.

We expect to find l + 1 relations after trying σ−1(l + 1) random numbers, which means
that we need at most

σ−1(l + 1)(l + log2 n+ 2)

arithmetic operations to generate the relations. We then need at most (l + 1)3 arithmetic
operations to find α1, . . . ,αl+1. (Strictly speaking, we work with a binary matrix, so these
arithmetic operations are much faster.)

Finally, we need at most 2l 2 arithmetic operations to compute the sums
∑l+1

i=1 αi si j , then
at most 2(l +1) log2 n arithmetic operations to compute the small primes raise to these sums.
Finally we require at most 2l multiplications to compute the two independent square roots.
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Note that if we do all these calculations and fail to factor n, then we do not have to all
the work over again. In practice, discarding a few of our old relations and replacing them by
a few new ones will give us another go. In this way, we will quickly factor n without doing
significantly more work.

We also expect l to be much larger than log2 n, so we expect to be able to factor n using
approximately

σ−1 l 2+ l 3

arithmetic operations. It is reasonable to assume that random squares modulo n are as likely
to be products of small primes as random integers. As we have seen, after a suitable choice for
l , this means that we can factor using approximately

exp
�p

8
p

log n log log n
�

arithmetic operations.
We have arrived at the following requirement.

Requirement 5. exp(
p

8
p

log n log log n) arithmetic operations should be an infeasible com-
putation.

Today, we have much better algorithms for factoring. While we shall not study these
algorithms, we note that the above requirement is not the final requirement.

6 The Public Key Infrastructure Problem
As we have seen, we can construct plausible cryptosystems where anyone who knows the en-
cryption key can encrypt messages, but only those who know the decryption key can decrypt
messages.

One problem remains. Alice wants to send a message to Bob. How does she get Bob’s
encryption key? Suppose Alice finds a key that she thinks belong’s to Bob, but which in
reality belongs to Eve who has the corresponding decryption key. Eve can then easily decrypt
Alice’s ciphertext.

One possible solution is a public key directory, modeled on a telephone directory, listing
people and their public keys. It seems impractical to have printed copies of this directory, so
it would have to be an online service, which begs the question: How can Alice be sure that
the encryption key she just fetched came from the directory, and not from Eve?

The public key infrastructure problem is Alice’s problem of getting hold of Bob’s public
key.

Another interesting problem is what happens when Bob receives Alice’s ciphertext. How
does he know that it comes from Alice, and not from Eve?

It turns out that both of these problems have reasonable solutions involving digital signa-
tures.
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