Outline of the Proof

- 1. Let p(x) be an irreducible factor of f(x) in F[x].
- **2.** Let E be the field $F[x]/\langle p(x)\rangle$. (See Theorems 27.25 and 27.9.)
- 3. Show that no two different elements of F are in the same coset of $F[x]/\langle p(x)\rangle$, and deduce that we may consider F to be (isomorphic to) a subfield of E.
- **4.** Let α be the coset $x + \langle p(x) \rangle$ in E. Show that for the evaluation homomorphism $\phi_{\alpha} : F[x] \to E$, we have $\phi_{\alpha}(f(x)) = 0$. That is, α is a zero of f(x) in E.

An example of a field constructed according to this outline is given in Section 29. There, we give addition and multiplication tables for the field $\mathbb{Z}_2[x]/\langle x^2+x+1\rangle$. We show there that this field has just four elements, the cosets

$$0 + \langle x^2 + x + 1 \rangle$$
, $1 + \langle x^2 + x + 1 \rangle$, $x + \langle x^2 + x + 1 \rangle$,

and

$$(x+1) + \langle x^2 + x + 1 \rangle.$$

We rename these four cosets 0, 1, α , and $\alpha+1$ respectively, and obtain Tables 29.20 and 29.21 for addition and multiplication in this 4-element field. To see how these tables are constructed, remember that we are in a field of characteristic 2, so that $\alpha+\alpha=\alpha(1+1)=\alpha 0=0$. Remember also that α is a zero of x^2+x+1 , so that $\alpha^2+\alpha+1=0$ and consequently $\alpha^2=-\alpha-1=\alpha+1$.

EXERCISES 27

Computations

- 1. Find all prime ideals and all maximal ideals of \mathbb{Z}_6 .
- **2.** Find all prime ideals and all maximal ideals of \mathbb{Z}_{12} .
- **3.** Find all prime ideals and all maximal ideals of $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- **4.** Find all prime ideals and all maximal ideals of $\mathbb{Z}_2 \times \mathbb{Z}_4$.
- **5.** Find all $c \in \mathbb{Z}_3$ such that $\mathbb{Z}_3[x]/\langle x^2 + c \rangle$ is a field.
- **6.** Find all $c \in \mathbb{Z}_3$ such that $\mathbb{Z}_3[x]/\langle x^3 + x^2 + c \rangle$ is a field.
- 7. Find all $c \in \mathbb{Z}_3$ such that $\mathbb{Z}_3[x]/(x^3+cx^2+1)$ is a field.
- **8.** Find all $c \in \mathbb{Z}_5$ such that $\mathbb{Z}_5[x]/\langle x^2+x+c \rangle$ is a field.
- **9.** Find all $c \in \mathbb{Z}_5$ such that $\mathbb{Z}_5[x]/\langle x^2 + cx + 1 \rangle$ is a field.

Concepts

In Exercises 10 through 13, correct the definition of the italicized term without reference to the text, if correction is needed, so that it is in a form acceptable for publication.

- **10.** A maximal ideal of a ring R is an ideal that is not contained in any other ideal of R.
- 11. A prime ideal of a commutative ring R is an ideal of the form $pR = \{pr \mid r \in R\}$ for some prime p.

- 12. A prime field is a field that has no proper subfields.
- 13. A principal ideal of a commutative ring with unity is an ideal N with the property that there exists $a \in N$ such that N is the smallest ideal that contains a.
- 14. Mark each of the following true or false.
 - **a.** Every prime ideal of every commutative ring with unity is a maximal ideal.
 - **b.** Every maximal ideal of every commutative ring with unity is a prime ideal.
 - **____** \mathbf{c} . \mathbb{O} is its own prime subfield.
 - **____ d.** The prime subfield of \mathbb{C} is \mathbb{R} .
 - _____ e. Every field contains a subfield isomorphic to a prime field.
 - _____ f. A ring with zero divisors may contain one of the prime fields as a subring.
 - **g.** Every field of characteristic zero contains a subfield isomorphic to Q.
 - **_____ h.** Let F be a field. Since F[x] has no divisors of 0, every ideal of F[x] is a prime ideal.
 - _____ i. Let F be a field. Every ideal of F[x] is a principal ideal.
 - ____ j. Let F be a field. Every principal ideal of F[x] is a maximal ideal.
- 15. Find a maximal ideal of $\mathbb{Z} \times \mathbb{Z}$.
- **16.** Find a prime ideal of $\mathbb{Z} \times \mathbb{Z}$ that is not maximal.
- 17. Find a nontrivial proper ideal of $\mathbb{Z} \times \mathbb{Z}$ that is not prime.
- **18.** Is $\mathbb{Q}[x]/(x^2-5x+6)$ a field? Why?
- **19.** Is $\mathbb{Q}[x]/(x^2-6x+6)$ a field? Why?

Proof Synopsis

- **20.** Give a one- or two-sentence synopsis of "only if" part of Theorem 27.9.
- 21. Give a one- or two-sentence synopsis of "if" part of Theorem 27.9.
- 22. Give a one- or two-sentence synopsis of Theorem 27.24.
- 23. Give a one- or two-sentence synopsis of the "only if" part of Theorem 27.25.

Theory

- 24. Let R be a finite commutative ring with unity. Show that every prime ideal in R is a maximal ideal.
- 25. Corollary 27.18 tells us that every ring with unity contains a subring isomorphic to either \mathbb{Z} or some \mathbb{Z}_n . Is it possible that a ring with unity may simultaneously contain two subrings isomorphic to \mathbb{Z}_n and \mathbb{Z}_m for $n \neq m$? If it is possible, give an example. If it is impossible, prove it.
- **26.** Continuing Exercise 25, is it possible that a ring with unity may simultaneously contain two subrings isomorphic to the fields \mathbb{Z}_p and \mathbb{Z}_q for two different primes p and q? Give an example or prove it is impossible.
- 27. Following the idea of Exercise 26, is it possible for an integral domain to contain two subrings isomorphic to \mathbb{Z}_p and \mathbb{Z}_q for $p \neq q$ and p and p both prime? Give reasons or an illustration.
- **28.** Prove directly from the definitions of maximal and prime ideals that every maximal ideal of a commutative ring R with unity is a prime ideal. [Hint: Suppose M is maximal in R, $ab \in M$, and $a \notin M$. Argue that the smallest ideal $\{ra + m \mid r \in R, m \in M\}$ containing a and M must contain 1. Express 1 as ra + m and multiply by b.]
- **29.** Show that N is a maximal ideal in a ring R if and only if R/N is a **simple ring**, that is, it is nontrivial and has no proper nontrivial ideals. (Compare with Theorem 15.18.)

- **30.** Prove that if F is a field, every proper nontrivial prime ideal of F[x] is maximal.
- **31.** Let F be a field and f(x), $g(x) \in F[x]$. Show that f(x) divides g(x) if and only if $g(x) \in (f(x))$.
- 32. Let F be a field and let f(x), $g(x) \in F[x]$. Show that

$$N = \{ r(x) f(x) + s(x)g(x) \mid r(x), s(x) \in F[x] \}$$

is an ideal of F[x]. Show that if f(x) and g(x) have different degrees and $N \neq F[x]$, then f(x) and g(x) cannot both be irreducible over F.

33. Use Theorem 27.24 to prove the *equivalence* of these two theorems:

Fundamental Theorem of Algebra: Every nonconstant polynomial in $\mathbb{C}[x]$ has a zero in \mathbb{C} .

Nullstellensatz for $\mathbb{C}[x]$: Let $f_1(x), \dots, f_r(x) \in \mathbb{C}[x]$ and suppose that every $\alpha \in \mathbb{C}$ that is a zero of all r of these polynomials is also a zero of a polynomial g(x) in $\mathbb{C}[x]$. Then some power of g(x) is in the smallest ideal of $\mathbb{C}[x]$ that contains the r polynomials $f_1(x), \dots, f_r(x)$.

There is a sort of arithmetic of ideals in a ring. The next three exercises define sum, product, and quotient of ideals.

34. If A and B are ideals of a ring R, the sum A + B of A and B is defined by

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

a. Show that A + B is an ideal.

- **b.** Show that $A \subseteq A + B$ and $B \subseteq A + B$.
- 35. Let A and B be ideals of a ring R. The product AB of A and B is defined by

$$AB = \left\{ \sum_{i=1}^{n} a_i b_i \mid a_i \in A, b_i \in B, n \in \mathbb{Z}^+ \right\}.$$

a. Show that AB is an ideal in R.

- **b.** Show that $AB \subseteq (A \cap B)$.
- **36.** Let A and B be ideals of a *commutative* ring R. The quotient A: B of A by B is defined by

$$A: B = \{r \in R \mid rb \in A \text{ for all } b \in B\}.$$

Show that A: B is an ideal of R.

37. Show that for a field F, the set S of all matrices of the form

$$\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$

for $a, b \in F$ is a **right ideal** but not a **left ideal** of $M_2(F)$. That is, show that S is a subring closed under multiplication on the *right* by any element of $M_2(F)$, but is not closed under *left* multiplication.

38. Show that the matrix ring $M_2(\mathbb{Z}_2)$ is a simple ring; that is, $M_2(\mathbb{Z}_2)$ has no proper nontrivial ideals.

SECTION 28 GRÖBNER I

†Gröbner Bases for Ideals

This section gives a brief introduction to algebraic geometry. In particular, we are concerned with the problem of finding as simple a description as we can of the set of common zeros of a finite number of polynomials. In order to accomplish our goal in a single section of this text, we will be stating a few theorems without proof. We recommend the book by Adams and Loustaunau [23] for the proofs and further study.

[†] This section is not used in the remainder of the text,