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Problem 1.

Answer any four of the following.

i. Define a metric space (including the definition of a metric).

ii. State the definition of a convergent sequence in a metric space.

iii. Define a neighbourhood of a point in a metric space.

iv. Define a linear transformation from one vector space to another.

v. Give a definition of the dimension of a vector space.

vi. Define an orthogonal family in an inner product space.

vii. State the Riesz Representation Theorem.

viii. State the Cauchy–Schwarz inequality.

Problem 2.

1. Let (M, d) be a metric space. Let (xn) be a convergent sequence in (M, d), with
limit x ∈M. Prove that (xn) is a Cauchy sequence.
Solution:
Let ε > 0. As (xn) converges to x, there is some n ∈ N such that for k ≥ n,
d(xk, x) < ε/2. Then for k, l ≥ n, the triangle inequality shows that d(xk, xl) ≤
d(xk, x) + d(x, xl) and hence d(xk, xl) < ε. Thus (xn) is Cauchy.

2. Recall that for θ, φ ∈ R:

(a) cos(θ − φ) − cos(θ + φ) = 2 sin(θ) sin(φ)
(b) |sin(θ)| ≤ |θ|



Page 2 of 6

Show that cos : [0, 1]→ [0, 1] is a contraction.
(Note: cos and sin are defined using radians.)
Solution:
First, we observe that if x ∈ [0, 1] then cos(x) ∈ [0, 1] since cos(0) = 1,
cos(π/2) = 0, and cos is decreasing on the interval [0, π].
Then for x, y ∈ [0, 1], let us put θ = (x + y)/2 and φ = (x − y)/2 in the first
given formula. Then θ + φ = x and θ − φ = y so

cos(x) − cos(y) = 2 sin
(
(x + y)/2

)
sin

(
(x − y)/2

)
.

Taking absolute values, we have:∣∣∣cos(x) − cos(y)
∣∣∣ = 2

∣∣∣∣sin
(
(x + y)/2

)
sin

(
(x − y)/2

)∣∣∣∣.
Now using the second fact, we write this as an inequality:∣∣∣cos(x) − cos(y)

∣∣∣ ≤ 2
∣∣∣∣sin

(
(x + y)/2

)∣∣∣∣∣∣∣x − y
∣∣∣/2 =

∣∣∣∣sin
(
(x + y)/2

)∣∣∣∣∣∣∣x − y
∣∣∣.

Since sin is increasing on [0, 1], the largest possible value for sin
(
(x + y)/2

)
is

sin(1) ' 0.842 ≤ 0.85. Hence∣∣∣cos(x) − cos(y)
∣∣∣ ≤ 0.85

∣∣∣x − y
∣∣∣.

3. Explain why there is some x0 ∈ [0, 1] with x0 = cos(x0) and describe a proce-
dure to approximate it.
Solution:
The set [0, 1] is a closed subset of R. As R is complete, [0, 1] is therefore also
complete. It is clearly not empty. Thus cos : [0, 1]→ [0, 1] is a contraction on
a complete, non-empty metric space. Banach’s fixed point theorem therefore
applies and so we can conclude that there is a (unique) fixed point. That is,
there is some x0 ∈ [0, 1] such that x0 = cos(x0).
Banach’s fixed point theorem not only tells us that this point exists, it also
tells us one way to approximate it. We start with any point in [0, 1], say 0,
and repeatedly apply cos. That is to say, the sequence defined by x1 = 0 and
xn = cos(xn−1) will converge to x0.

Problem 3.

For k ∈ N, let Polyk be the vector space of polynomials of degree at most k with
real coefficients. Let V B {p(t) ∈ Poly2 : p′(0) = 0} (note the 2).

1. Explain why V is a vector space and find an isomorphism Rn � V for some
n ∈N (which you should determine).
Solution:
It is stated in the question that Poly2 is a vector space and therefore we can
use the subspace criterion to determine whether or not V is a subspace. Thus
we simply need to check that V is closed under the vector space operations.

(a) The zero vector in Poly2 is the zero polynomial, 0(t), and for all t ∈ R,
0′(t) = 0 so 0(t) ∈ V.
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(b) For p(t) ∈ V and λ ∈ R then (λp)′(t) = λp′(t) so (λp)′(0) = λp′(0) = 0.
Hence λp(t) ∈ V.

(c) For p(t), q(t) ∈ V then (p+q)′(t) = p′(t)+q′(t) so (p+q)′(0) = p′(0)+q′(0) = 0.
Hence p(t) + q(t) ∈ V.

To find an isomorphismRn
→ V we examine the elements of V a little closer.

A polynomial in Poly2 has the form x1 + x2t + x3t2. Its derivative is x2 + 2x3t
which evaluates at 0 to x2. Therefore x1 +x2t+x3t2 is in V if and only if x2 = 0;
that is, if and only if it is of the form x1 + x3t2. We can read off from this an
isomorphism R2

→ V given by
[

x
y
]
→ x + yt2.

2. For a, b ∈ R, define Ta,b : V → R2 by Ta,b(p(t)) =
[ p(a)

p(b)

]
. For which pairs of

values (a, b) is ker Ta,b = {0}?
Solution:
There are a couple of ways to do this.
One is to use the fact that a polynomial of degree at most 2 is completely
specified by its values at three distinct points, together with an obvious fact
about the shape of the polynomials which lie in V. This fact is that these
polynomials are symmetric about the y–axis. Thus if p(t) ∈ V then for all
t ∈ R, p(−t) = p(t).
So if a , b then {a, b} provides two points. Using the fact that our polynomials
are even, we potentially gain two more points: {−a,−b}. Thus we have four
points unless there is some overlap between {a, b} and {−a,−b}. To see what
may occur if there is some overlap, suppose that a = −a. Then a = 0 and since
we assumed that b , a, we must have that b , −b and so {a, b,−b} are three
distinct points. Now suppose that a = −b. Then b = −a and there are only
two points. Thus if b , a and b , −a we have at least three distinct points.
If b = a, we get at most two points, being {a,−a}, and possibly only one (if
a = 0).
Hence ker T(a,b) = {0} if and only if b < {a,−a}.
The other way to do this is to use the isomorphismR2

→ V constructed in the
previous part. By composition, we obtain a linear transformation R2

→ R2.
As this is the composition of T(a,b) with an isomorphism, this new linear
transformation will have trivial kernel (i.e., {0}) if and only if T(a,b) does. The
matrix of this new linear transformation is:[

1 a2

1 b2

]
(different isomorphisms in part one will result in different matrices here,
however the analysis will be the same). There are lots of ways to determine
whether or not this is injective. Perhaps the simplest is simply by observation:
it will be injective if and only if the two columns are linearly independent.
The second is a multiple of the first if and only if a2 = b2. Equivalently, if and
only if b ∈ {a,−a}.

3. For a, b ∈ R, define Ra,b : V → Poly1 by sending p(t) ∈ V to the polynomial
q(t) ∈ Poly1 with q(0) = p(a) and q(1) = p(b). For which pairs of values (a, b) is
Ra,b an isomorphism?
Solution:
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We can write this linear transformation as the composition of T(a,b) from the
previous part with the isomorphism R2

→ Poly1 which sends
[

x
y
]

to the

polynomial q(t) with q(0) = x and q(1) = y (explicitly,
[

x
y
]
7→ x + (y − x)t. As

the second factor in this composition is an isomorphism, the whole will be an
isomorphism if and only if T(a,b) is an isomorphism. Since V and R2 are both
2–dimensional, T(a,b) is an isomorphism if and only if ker T(a,b) = {0}. Thus
R(a,b) is an isomorphism if and only if b < {a,−a}.

Problem 4.

Define W ⊆ R4 as the subspace:

W B



w
x
y
z

 with

−4w + 4x + 3y + 5z = 0,
−6w + 6x + 3y + 9z = 0,
−2w + 2x + 4z = 0,
2w − 2x − 3y − z = 0


Find the closest point in W to the vector

7
−5
−1
−3

 .
Solution:

There are two basic methods to solve this: either find an orthonormal basis for W
and use the projection formula or use the method of least–squares. Both begin in
the same way.

The subspace W is described in the question as the null space of a matrix. We
need to describe it as the image of a matrix, or find a basis for it. To do this, we run
Gaussian Elimination on the matrix in the question. The resulting row reduced
form is: 

1 −1 0 −2
0 0 1 −1
0 0 0 0
0 0 0 0


A basis for the null space is thus: 


2
0
1
1

 ,

1
1
0
0




and so W is the image of the matrix 
2 1
0 1
1 0
1 0
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At this point, we could orthonormalise the basis or use the method of leastsquares
using the matrix. Swapping and then orthonormalising leads to the vectors

1
√

2


1
1
0
0

 , 1
2


1
−1
1
1




(the swap is to get a “nice” orthonormal basis). Then our closest point is:

〈
1
√

2


1
1
0
0

 ,


7
−5
−1
−3


〉

1
√

2


1
1
0
0

 +

〈
1
2


1
−1
1
1

 ,


7
−5
−1
−3


〉

1
2


1
−1
1
1

 =
1
2

2


1
1
0
0

 +
1
4

8


1
−1
1
1

 =


3
−1
2
2


Proceeding via least–squares, we solve ATAx = ATb where A is the matrix whose
image is W and b is the vector in the question. This leads us to:[

6 2
2 2

] [
x
y

]
=

[
10
2

]
The appropriate Gaussian Elimination leads to the solution

[
2
−1

]
. Applying A

yields the closest point as: 
3
−1
2
2


as before.

Problem 5.
This question concerns C([0, 1],C) with its standard inner product:

〈 f , g〉 B
∫ 1

0
f (t)g(t)dt.

For this question, we choose a, b ∈ (0, 1) such that a < b.

1. Show that the linear function α : C([0, 1],C)→ C defined by

α( f ) B
∫ 1

0
f (t)dt

is continuous.
Solution:
This linear function can be written using the inner product. Let 1 be the
constant function at 1, then

α( f ) = 〈 f ,1〉.

Hence, by the Cauchy–Schwarz inequality,∣∣∣α( f )
∣∣∣ ≤ ∥∥∥ f

∥∥∥
2
‖1‖2

where ‖·‖2 is the norm defined by the inner product. Since ‖1‖2 = (
∫ 1

0 12dt)1/2 =

1, this simplifies to |α( f )| ≤
∥∥∥ f

∥∥∥
2
. Hence α is Lipschitz and thus continuous.
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2. Define the linear function β : C([0, 1],C)→ C by

β( f ) B
∫ b

a
f (t)dt.

Show that β is continuous.
Solution:
We can’t use quite the same trick as in the first part, but we can use the fact
that α is continuous to deduce that β is also continuous by bounding β by α.
We have the following chain of inequalities:

∣∣∣β( f )
∣∣∣ =

∣∣∣∣∣∣
∫ b

a
f (t)dt

∣∣∣∣∣∣ ≤
∫ b

a

∣∣∣ f (t)
∣∣∣dt ≤

∫ 1

0

∣∣∣ f (t)
∣∣∣dt = α(

∣∣∣ f ∣∣∣) ≤ ∥∥∥∣∣∣ f ∣∣∣∥∥∥
2

Since
∥∥∥| f |∥∥∥

2
=

∥∥∥ f
∥∥∥

2
, we therefore have that |β( f )| ≤

∥∥∥ f
∥∥∥

2
, whence β is continu-

ous.

3. Explain why there is some g ∈ L2(0, 1) such that for all f ∈ C([0, 1],C),

〈 f , g〉 =

∫ b

a
f (t)dt.

Is g an element of C([0, 1],C)?
Solution:
As β is Lipschitz continuous, it extends to a linear functional on L2(0, 1),
the Hilbert completion of C([0, 1],C). By the Riesz Representation Theorem,
there is therefore an element g ∈ L2(0, 1) such that for all f ∈ L2(0, 1)

β( f ) = 〈 f , g〉.

In particular, this holds for f ∈ C([0, 1],C).
The element g is not an element of C([0, 1],C). To prove this carefully is quite
complicated, but intuitively this is obvious as g “ought to be” the “function”:

g(t) =

1 a ≤ t ≤ b
0 elsewhere

which is not continuous at a or b.


