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English version

Problem 1.

Give the definitions of any four of the following terms.

i. A metric space

ii. A Cauchy sequence in a metric space

iii. A continuous map from one metric space to another

iv. The kernel (null space) of a linear transformation

v. An inner product on a complex vector space

vi. A Hilbert space

vii. A normed vector space

Solution:

i. A metric space is a pair (M, d) where M is a set and d : M×M→ [0,∞) is a function. The
function d, called the metric, must satisfy the following three conditions for all x, y, z ∈M:

(a) d(x, y) = 0 if and only if x = y,
(b) d(x, y) = d(y, x),
(c) d(x, z) ≤ d(x, y) + d(y, z).

ii. A Cauchy sequence in a metric space, say (M, d), is a sequence in M, say (sn), such that
for every ε > 0 there is some N ∈N such that for n,m > N, d(sn, sm) < ε.

iii. Let (M1, d1) and (M2, d2) be metric spaces. A continuous map from (M1, d1) to (M2, d2) is
a function f : M1 → M2 on the underlying sets which satisfies one of the following two
equivalent conditions:

(a) For every x ∈ M1 and ε > 0, there is a δ > 0 such that whenever y ∈ M1 is such that
d1(x, y) < δ then d2( f (x), f (y)) < ε.

(b) The preimage under f of an open set in (M2, d2) is open in (M1, d1).

iv. The kernel (null space) of a linear transformation is the set of vectors in the domain
which are mapped by the linear transformation to the zero vector in the codomain.

v. An inner product on a complex vector space, say V, is a map V × V → C, written (u, v),
satisfying the following conditions:

(a) (v, v) ≥ 0 for all v ∈ V with equality if and only if v = 0;
(b) (·, ·) is linear in the first argument; that is, (u + λv,w) = (u,w) + λ (v,w) for all

u, v,w ∈ V and λ ∈ C;
(c) (u, v) = (v,u).

vi. A Hilbert space is an inner product space that is complete for the metric induced by the
inner product.

vii. A normed vector space is a pair (X, ‖·‖) where X is a vector space and ‖·‖ is a norm on X.
That is, ‖·‖ is a function X→ [0,∞) satisfying the following conditions:

(a) ‖x‖ = 0 if and only if x = 0,
(b) ‖λx‖ = |λ| ‖x‖ for all x ∈ X and scalars λ,
(c)
∥∥∥x + y

∥∥∥ ≤ ‖x‖ + ∥∥∥y∥∥∥ for all x, y ∈ X.
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Problem 2.

In this problem we equip R3 and R4 with their standard Euclidean norms:

‖x‖ =
√

x2
1 + · · · + x2

n (n = 3 or 4)

Let

A =


1 3 4
2 2 4
3 −1 2
4 −1 3

 , b =


2
0
−4
−5

 , c =


0
3
0
−9


a. Find an x ∈ R3 such that Ax = b.

Solution:
Either by using Gaussian elimination, or simply by inspection, we see that−1

1
0


will do. There are more solutions, anything of the form−1 + t

1 + t
−t


for t ∈ R will also do.

b. Find the set of y ∈ R3 such that Ay is the nearest point to c.
Solution:
We do this using least squares: solving ATAy = ATc. Computing this yields30 0 30

0 15 15
30 15 45

 y =

−30
15
−15


Gaussian elimination (or inspection) reveals that the solution space of this is the same
as the above: 

−1 + t
1 + t
−t

 : t ∈ R

 .
c. Find the point z ∈ R3 with the smallest norm such that Az is the nearest point to c.

Solution:
We compute the norm of the vectors in the solution space. For simplicity, we actually
compute the square of the norm, since if the norm is minimal so is its square. We obtain:∥∥∥∥∥∥∥∥

−1 + t
1 + t
−t


∥∥∥∥∥∥∥∥ = (−1 + t)2 + (1 + t)2 + t2 = 2 + 3t2.

This is clearly minimal when t = 0 which corresponds to the vector−1
1
0

 .
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Problem 3.

Let `∞ be the space of all bounded sequences in R with norm

‖(xn)‖∞ = sup{|xn|}.

Let `0 ⊆ `∞ be the space of all sequences that are eventually zero; that is, x = (xn) ∈ `0 if
there is some N (depending on x) such that xn = 0 for n ≥ N. Let c0 ⊆ `∞ be the space of all
sequences x = (xn) for which limn→∞ xn exists and is equal to zero.

Prove that c0 is the closure of `0 in `∞.

Solution:

To prove that c0 is the closure of `0 in `∞ we need to prove several things. First, that c0 contains
`0. Second, that c0 is closed. Thirdly, that c0 is the minimal space with those properties.

The first is straightforward. Let (xn) ∈ `0. Then there is some N ∈ N such that xn = 0 for
n > N. Thus for any ε > 0, |xn − 0| = 0 < ε for n > N. Hence limn→∞(xn) exists and is zero.
Thus (xn) ∈ c0 and so, as (xn) was an arbitrary vector in `0, `0 ⊆ c0.

The second is perhaps the trickiest. There are two possible approaches: one is to show that c0
contains all of its accumulation points; this other is to show that its complement is open.

Let us try the first method. We need to show that if (xn) is a sequence of points in c0 which
converges in `∞, say to x, then x ∈ c0. That is, we need to show that if we write x = (xn) then
(xn) has a limit and that limit is 0. Let ε > 0. As (xn) → x, there is some N ∈ N such that for
n > N, ‖xn

− x‖∞ < ε/2. Fix n > N. As xn
∈ c0, (xn

m) has a limit and that limit is 0 (here n is
fixed and the sequence is taken over m). Thus there is some N′ ∈ N such that for m > N′,
|xn

m| < ε/2. Then for m > N′,

|xm| ≤
∣∣∣xm − xn

m + xn
m

∣∣∣ ≤ ∣∣∣xm − xn
m

∣∣∣ + ∣∣∣xn
m

∣∣∣ ≤ ‖x − xn
‖∞ +

∣∣∣xn
m

∣∣∣ < ε/2 + ε/2 = ε.
Hence x ∈ c0.

Let us also show that c0 is closed by the second method. For x ∈ `∞ that is not in c0 we need to
find an ε > 0 such that if

∥∥∥x − y
∥∥∥
∞
< ε then y < c0. So let x ∈ `∞ be such that x < c0. As x is not

in c0, it does not converge to 0. So there is some ε > 0 such that for all N ∈ N there is some
n > N with |xn| ≥ 2ε. Let y ∈ `∞ be such that

∥∥∥x − y
∥∥∥
∞
< ε. Then let N ∈ N, and let n > N be

such that |xn| ≥ 2ε. Then ∣∣∣yn

∣∣∣ = ∣∣∣yn − xn + xn

∣∣∣ ≥ ∣∣∣∣∣∣yn − xn

∣∣∣ − |xn|
∣∣∣.

But |xn| ≥ 2ε and |yn − xn| ≤
∥∥∥x − y

∥∥∥
∞
< ε so ||yn − xn| − |xn|| ≥ ε. Hence y, as a sequence, does

not converge to 0 and so y < c0.

Finally, we need to show that if W is a closed set containing `0 then W contains c0. To do this
it is sufficient to show that each element of c0 is the limit of some sequence in `0. If we can
show this, then for any x ∈ c0 there is some sequence (xn) ⊆ `0 converging to x. Then (xn) ⊆W
also so, since W is closed, x ∈W. As x was an arbitrary element of c0 this shows that c0 ⊆W.

So let us prove this final step. Let x ∈ c0. For n ∈ N, let xn
∈ `0 be the element obtained by

truncating x at the nth step. That is, xn agrees with x up to the nth component and is thereafter
0. We need to show that (xn) converges to x. Let us write xn

m for the mth component of xn and
xm for the mth component of x. Let ε > 0. As x ∈ c0, there is some N such that for n > N,
|xn| < ε/2. Now for n > N, x − xn is zero up to the nth component and is xm for m > n. Thus

‖x − xn
‖∞ = sup{|xm| : m > n}.

Since n > N, |xm| < ε/2 for all m > n. Hence sup{|xm| : m > n} ≤ ε/2 < ε. Thus whenever
n > N, ‖x − xn

‖∞ < ε and so (xn) converges to x, as required.
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Problem 4.

a. Let (X, d) be a complete metric space, T : X → X a contraction. Let α < 1 be such that
d(Tx,Ty) ≤ αd(x, y) for all x, y ∈ X.
Let x∗ be the fixed point of T. Let x0 ∈ X and recursively define xn = T(xn−1) for n ≥ 1.
Prove that

d(xn, x∗) ≤
αn

1 − α
d(x0, x1) for all n ≥ 1.

Solution:
There are a couple of different ways to prove this, but all use induction at one step.
Let us prove by induction that

d(xn, x∗) ≤ αnd(x0, x∗).

For n = 0 we get a tautology: d(x0, x∗) ≤ d(x0, x∗). So assume that this holds for all n ∈N
and we shall prove that it holds for n + 1. As x∗ is the fixed point of T, T(x∗) = x∗. Also,
by definition, xn+1 = T(xn). Hence

d(xn+1, x∗) = d(T(xn),T(x∗)) ≤ αd(xn, x∗) ≤ α · αnd(x0, x∗) = αn+1d(x0, x∗).

The first inequality comes from the fact that T is a contraction, the second from the
inductive hypothesis.
Hence, by induction, d(xn, x∗) ≤ αnd(x0, x∗) for all n.
Now let us consider d(x0, x∗). By the triangle inequality we have

d(x0, x∗) ≤ d(x0, x1) + d(x1, x∗).

Then d(x1, x∗) = d(T(x0),T(x∗)) ≤ αd(x0, x∗) as above. Rearranging gives d(x0, x∗) ≤ (1 −
α)−1d(x0, x1) as required (note that α , 1 so we can divide by (1−α). Putting this together
with the previous part yields the required result.

b. Let C([0, 1],R) denote the vector space of all continuous functions from [0, 1] toR. Define
a map T : C([0, 1],R)→ C([0, 1],R) by

(Tx)(t) = 1 +
∫ t

0
sx(s)ds.

Show that T is a contraction and that one choice for α is 1
2 . Here, C([0, 1],R) is equipped

with its standard metric: d∞( f , g) = max{| f (t) − g(t)| : 0 ≤ t ≤ 1}.
Solution:
Let x, y ∈ C([0, 1],R) and consider d∞(T(x),T(y)). We want to show that this is less than
1
2 d∞(x, y).
By definition,

d∞(T(x),T(y)) = sup{
∣∣∣(Tx)(t) − (Ty)(t)

∣∣∣ : t ∈ [0, 1]}.

Thus we consider

(Tx)(t) − (Ty)(t) = 1 +
∫ t

0
sx(s)ds − 1 −

∫ t

0
sy(s)ds =

∫ t

0
s(x(s) − y(s))ds.

Now∣∣∣(Tx)(t) − (Ty)(t)
∣∣∣ ≤ ∫ t

0
s
∣∣∣x(s) − y(s)

∣∣∣ds ≤
∫ t

0
sd∞(x, y)ds =

∫ t

0
sdsd∞(x, y) =

1
2

t2d∞(x, y).

Thus taking the supremum over 0 ≤ t ≤ 1 we find that

d∞(T(x),T(y)) ≤
1
2

d∞(x, y).

Thus T is a contration and one can take 1
2 as the constant of contraction.
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c. The sequence produced starting with x0(t) = 0 begins

x1(t) = 1

x2(t) = 1 + t2/2

x3(t) = 1 + t2/2 + t4/8

x4(t) = 1 + t2/2 + t4/8 + t6/48

with general term

xn(t) =
n−1∑
k=0

t2k

2kk!

Let us write x∗ for the fixed point of T. Using part a, estimate how many terms are
needed to ensure that

∑n−1
k=0 1/2kk! is within 0.001 of x∗(1)?

Solution:
From part a, we have the estimate for the error as

d∞(xn, x∗) ≤
αn

1 − α
d∞(x0, x1).

As d∞ is a supremum, we thus see that

|xn(1) − x∗(1)| ≤
αn

1 − α
d∞(x0, x1).

Now we know that we can take α = 1
2 , and that x0 is the constant function at 0 and x1 at

1. Thus d∞(x0, x1) = 1 and we find that

|xn(1) − x∗(1)| ≤
1

2n−1

Since we want to guarantee that |xn(1) − x∗(1)| < 0.001 then we can do this if we choose
n such that 1

2n−1 < 0.001; equivalently, that 2n−1 > 1000.
As anyone even vaguely famililar with computers ought to know, 210 = 1024.
Therefore n − 1 = 10; that is to say, n = 11.

d. To five significant figures, x∗(1) = 1.6487 whilst x5(1) = 1.6484. What does this tell you
about your previous answer?

Solution:

This does not actually tell us anything directly about our previous answer. Knowing that one
particular term of a sequence is close to the limit does not give any information about when
we can guarantee being close to the limit.

There is one circumstance in which knowing one value does give information about the rest.
That is when the sequence is monotonic; either increasing or decreasing. In that case, each
term of the sequence must be closer to the limit than the last. This is the case here (as the
sequence formed by taking sums of positive numbers) so knowing that x5(1) is within the
error is sufficient to say that we could have taken only 5 terms.

However, even if our previous answer was an overestimate, we were not asked to find the
least such n and so our answer was still correct.

Note that this most certainly does not imply that there was anything wrong with taking α to
be 1

2 , nor that we could have done better (we couldn’t).
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Problem 5.
Let C([0, 1],C) denote the space of continuous functions from [0, 1] to C. Let

(
f , g
)
=

∫ 1

0
f (t)g(t)dt

be the standard inner product on C([0, 1],C).

a. Let T : C([0, 1],C)→ C([0, 1],C) be the linear transformation which sends f ∈ C([0, 1],C)
to the function T f given by (T f )(t) = t f (t). Show that T is self-adjoint; that is, that(

T f , g
)
=
(

f ,Tg
)

for all f , g ∈ C([0, 1],C).
Solution:
As [0, 1] ⊆ R, t f (t) = t f (t) for any f ∈ C([0, 1],C). Hence

(
T f , g

)
=

∫ 1

0
(T f )(t)g(t)dt =

∫ 1

0
t f (t)g(t)dt

=

∫ 1

0
f (t)t g(t)dt =

∫ 1

0
f (t) tg(t)dt =

∫ 1

0
f (t)(Tg)(t)dt =

(
f ,Tg
)

as required.
b. For f , g ∈ C([0, 1],C) define

(
f , g
)

T by(
f , g
)

T =
(
T f , g

)
.

Prove that (·, ·)T is an inner product on C([0, 1],C).
Solution:
We need to prove the axioms of an inner product. Linearity in the first argument is
simple:(

f + λg, h
)

T =
(
T( f + λg), h

)
=
(
T f + λTg, h

)
=
(
T f , h

)
+ λ
(
Tg, h

)
=
(

f , h
)

T + λ
(
g, h
)

T

where we have used the linearity of T and the linearity of (·, ·) in the first argument.
The conjugate symmetry follows from the previous result together with the fact that (·, ·)
is known to be an inner product.(

f , g
)

T =
(
T f , g

)
=
(
g,T f

)
=
(
Tg, f

)
=
(
g, f
)

T.

Finally, we need to prove that
(

f , f
)

T ≥ 0 with equality if and only if f is zero. There are
a few ways to do this (though all are variations on the same theme). At one extreme, we
notice that we can define an operator S : C([0, 1],C)→ C([0, 1],C) by (S f )(t) = t

1
2 f (t) and

this has the property that S(S f ) = T f . This operator is also self-adjoint and so(
f , f
)

T =
(
T f , f

)
=
(
S(S f ), f

)
=
(
S f ,S f

)
.

Since (·, ·) is an inner product,
(
S f ,S f

)
≥ 0 with equality if and only if S f = 0. Hence(

f , f
)

T ≥ 0 with equality if and only if S f = 0. But if S f = 0 then t
1
2 f (t) = 0 for all t ∈ [0, 1],

whence f (t) = 0 for all t ∈ (0, 1] and so, as f is continuous, f (t) = 0 for all t ∈ [0, 1].
The more concrete approach is to observe that

(
f , f
)

T =

∫ 1

0
t
∣∣∣ f (t)
∣∣∣2dt

and this is an integral of a positive continuous function, hence is positive and is zero if
and only if the integrand is zero. Thus

(
f , f
)

T ≥ 0 with equality if and only if t| f (t)|2 = 0
for all t ∈ [0, 1]. This implies that f (t) = 0 for all t ∈ (0, 1], whence f (t) = 0 for all t ∈ [0, 1].
Either way,

(
f , f
)

T ≥ 0 with equality if and only if f = 0.
Hence (·, ·)T is an inner product.
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c. Let V ⊆ C([0, 1],C) be the subspace {a + bt + cet : a, b, c ∈ C}. Find a, b such that∫ 1

0
t
∣∣∣et
− a − bt

∣∣∣2dt

is minimal.
Solution:
This is a “least squares” question with space V = {a + bt + cet : a, b, c ∈ C} and inner
product (·, ·)T. We are asked to find the closest point in the subspace {a+ bt} to the vector
et. There are various inner products that will be useful. We compute:

(1, 1)T =

∫ 1

0
tdt =

1
2
,

(t, 1)T =

∫ 1

0
t2dt =

1
3
,

(t, t)T =

∫ 1

0
t3dt =

1
4
,

(
et, 1
)
=

∫ 1

0
tetdt =

[
tet
]1

0
−

∫ 1

0
etdt = e − e + 1 = 1,

(
et, t
)
=

∫ 1

0
t2etdt =

[
t2et
]1

0
− 2
∫ 1

0
tetdt = e − 2.

We see, therefore, that

1, t −
(t, 1)T

(1, 1)T
1

are orthogonal. Expanding, the second vector is t − 2
3 which we multiply up to clear the

denominator to get 3t − 2.
Now we compute

(3t − 2, 3t − 2)T = 9 (t, t)T − 12 (t, 1)T + 4 (1, 1)T =
9
4
−

12
3
+

4
2
=

1
4
,(

et, 3t − 2
)

T
= 3
(
et, t
)

T
− 2
(
et, 1
)

T
= 3(e − 2) − 2 = 3e − 8.

Hence the closest point to et is(
et, 3t − 2

)
T

(3t − 2, 3t − 2)T
(3t − 2) +

(
et, 1
)

T

(1, 1)T
1 =

3e − 8
1
4

(3t − 2) +
1
1
2

1

= 4(3e − 8)(3t − 2) + 2 = (36e − 96)t + (66 − 24e) ' 1.8581t + 0.76124.


