# EXAM IN TMA4145 LINEAR METHODS 

Monday December 18, 2006
Time: kl. 15.00-19.00
Permitted aids (Code D): Approved calculator (HP30S),
No handwritten or printed material allowed.
English
Grades: January 18, 2007

## Problem 1

a) State Banach's Fixed Point Theorem.
b) Show that if $X \neq \emptyset$ is a complete metric space, and $f: X \rightarrow X$ is a function such that $f^{2}=f \circ f$ is a contraction, then $f$ has exactly one fixed point.
c) Consider $C[0,1]$ with the metric $d_{\infty}$, and let $F: C[0,1] \rightarrow C[0,1]$ be given by

$$
(F x)(t)=t+\int_{0}^{t} x(s) d s, 0 \leq t \leq 1
$$

Show that $F$ has a unique fixed point $x^{*}$, and use iteration to find $x^{*}$.

## Problem 2

Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]
$$

Find a singular value decomposition of $A$, and use the pseudo-inverse $A^{+}$of $A$ to solve the least squares problem

$$
A x=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]
$$

## Problem 3

Given

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
0 & 2 & 0 \\
1 & -1 & 1
\end{array}\right]
$$

a) Find a Jordan form $J$ of $A$.

Find a matrix $S$ such that $S^{-1} A S=J$.
b) Solve the differential equation $u^{\prime}=A u$.

## Problem 4

a) Let $\left(e_{n}\right)_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space $H$, and let $\left(\lambda_{n}\right)_{n=1}^{\infty}$ be a sequence of complex numbers.
Show that $\sum_{n=1}^{\infty} \lambda_{n} e_{n}$ is convergent in $H$ if and only if $\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{2}<\infty$.
b) Find $a, b \in \mathbb{C}$ such that

$$
\int_{0}^{1}\left|e^{t}-a-b t\right|^{2} d t
$$

is minimal.

## Problem 5

Consider the subspace

$$
M=\left\{x \mid x(t)=0 \quad \text { for } \quad 0 \leq t \leq \frac{1}{2}\right\}
$$

of $C[0,1]$, and let $C[0,1]$ have the norm derived from the inner product given by

$$
\langle x, y\rangle=\int_{0}^{1} x(t) \overline{y(t)} d t
$$

a) Show that if $x \in C[0,1]$ and $y \in M$, then

$$
\int_{0}^{\frac{1}{2}}|x(t)|^{2} d t \leq\|x-y\|^{2}
$$

Show that $M$ is a closed subset of $C[0,1]$.
b) Show that $\|x-1\| \geq \frac{1}{\sqrt{2}}$ for all $x \in M$. Does there exist an element $x_{0} \in M$ such that $\left\|x_{0}-1\right\|=\frac{1}{\sqrt{2}}$ ? (Here 1 denotes the constant function $1(t)=1$ for $0 \leq t \leq 1$.)

