

TMA4145 Linear Methods

Norwegian University of Science and Technology Department of Mathematical Sciences

Suggested solutions Exam December 16, 2005

Problem 1

For a given $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that $d(x_n, a) < \epsilon$ and $d(y_n, a) < \epsilon$ for all n > N. For the sequence $(z_n)_n$ we will then have for k, l > 2N that

$$d(z_k, z_l) \le d(z_k, a) + d(a, z_l) < \epsilon + \epsilon = 2\epsilon.$$

This shows that $(z_n)_n$ is a Cauchy sequence.

Problem 2

a) We see that rank A = 2, and we find the bases

The basis for $\mathcal{N}(A^T)$ is spanned by the last row of L^{-1} (since 3-2=1). We invert L,

$$[L \mid I] = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 1 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & 1 & -1 & 1 \end{bmatrix} = [I \mid L^{-1}]$$

and find that

$$\mathcal{N}(A^T): \begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix}.$$

b) We are given $B = [b_1|b_2|b_3]$. First we find the orthonormal vectors q_1 , q_2 and q_3 using Gram-Schmidt.

$$\tilde{q}_{1} = b_{1} = \begin{bmatrix} 1\\ -1\\ 0\\ 0 \end{bmatrix}, \qquad q_{1} = \frac{\tilde{q}_{1}}{\|\tilde{q}_{1}\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1\\ 0\\ 0 \end{bmatrix}$$
$$\tilde{q}_{2} = b_{2} - \frac{\langle b_{2}, \tilde{q}_{1} \rangle}{\langle \tilde{q}_{1}, \tilde{q}_{1} \rangle} \tilde{q}_{1} = b_{2} + \frac{1}{2} \tilde{q}_{1} = \begin{bmatrix} 1/2\\ 1/2\\ -1\\ 0 \end{bmatrix}, \qquad q_{2} = \frac{\tilde{q}_{2}}{\|\tilde{q}_{2}\|} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\ 1\\ -2\\ 0 \end{bmatrix}$$

$$\begin{split} \tilde{q}_3 &= b_3 - \frac{\langle b_3, \tilde{q}_1 \rangle}{\langle \tilde{q}_1, \tilde{q}_1 \rangle} \tilde{q}_1 - \frac{\langle b_3, \tilde{q}_2 \rangle}{\langle \tilde{q}_2, \tilde{q}_2 \rangle} \tilde{q}_2 = b_3 - 0 \cdot \tilde{q}_1 + \frac{1}{3} \tilde{q}_2 = \frac{1}{3} \begin{bmatrix} 1\\1\\1\\-3 \end{bmatrix}, \\ q_3 &= \frac{\tilde{q}_3}{\|\tilde{q}_3\|} = \frac{1}{\sqrt{12}} \begin{bmatrix} 1\\1\\1\\-3 \end{bmatrix}. \end{split}$$

We have

$$b_1 = \tilde{q}_1 = \sqrt{2}q_1$$

$$b_2 = -\frac{1}{2}\tilde{q}_1 + \tilde{q}_2 = -\frac{1}{2}\sqrt{2}q_1 + \frac{1}{2}\sqrt{6}q_2$$

$$b_3 = 0 \cdot \tilde{q}_1 - \frac{2}{3}\frac{1}{6}\tilde{q}_2 + \tilde{q}_3 = 0 \cdot q_1 - \frac{1}{3}\sqrt{6}q_2 + \frac{1}{3}\sqrt{12}q_3,$$

and hence the $QR\mbox{-}{\it factorization}$ of B is

$$B = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{12} \\ -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{12} \\ 0 & -2/\sqrt{6} & 1/\sqrt{12} \\ 0 & 0 & -3/\sqrt{12} \end{bmatrix} \begin{bmatrix} \sqrt{2} & -\sqrt{2}/2 & 0 \\ 0 & \sqrt{6}/2 & -\sqrt{6}/3 \\ 0 & 0 & \sqrt{12}/3 \end{bmatrix}.$$

c) First we calculate

$$C^{T}C = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

The characteristic polynomial of $C^T C$ is $(2 - \lambda)(2 - \lambda) - 1 = 3 - 4\lambda + \lambda^2 = (3 - \lambda)(1 - \lambda)$, so 3 and 1 are eigenvalues, and $\sigma_1 = \sqrt{3}, \sigma_2 = 1$ are the singular values. Next, we find orthonormal eigenvectors for $C^T C$.

$$\lambda = 3: \qquad \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \sim \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} \qquad \Rightarrow \qquad q_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix},$$
$$\lambda = 1: \qquad \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \qquad \Rightarrow \qquad q_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

We also want to find the columns of P. We have

$$p_{1} = \frac{1}{\sigma_{1}}Cq_{1} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 & 0\\ 1 & -1\\ 0 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\ 2\\ -1 \end{bmatrix},$$
$$p_{2} = \frac{1}{\sigma_{2}}Cq_{2} = \frac{1}{1} \begin{bmatrix} -1 & 0\\ 1 & -1\\ 0 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}.$$

We see that

$$p_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

tma4145eksH05lf

is orthogonal to both p_1 and p_2 (we can also use Gram-Schmidt to find such a p_3), so a singular value decomposition of C is

$$C = P\Sigma Q^{T} = \begin{bmatrix} -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Problem 3

- a) Let $x, y \in E$. Then
 - i) $||x||_{\infty} > 0$ for $x \neq 0$ because of the absolute value,
 - ii) For $\lambda \in \mathbb{C}$, it is clear that $\|\lambda x\|_{\infty} = |\lambda| \|x\|_{\infty}$,
 - iii) For all $t \in [0, 1]$ is

$$|x(t) + y(t)| \le |x(t)| + |y(t)| \le ||x||_{\infty} + ||y||_{\infty}.$$

Taking max on the left gives $||x + y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$.

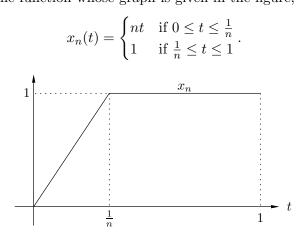
Hence $\|\cdot\|_{\infty}$ is a norm on *E*.

Let $x, y, z \in E$ and $\lambda \in \mathbb{C}$. Then

- i) iii) By the properties of the integral, it is clear that $\langle x, y \rangle = \overline{\langle y, x \rangle}$, $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ and $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.
 - iv) $\langle x, x \rangle = \int_0^1 |x(t)|^2 dt > 0$ and as x is continuous it follows that $\langle x, x \rangle > 0$ when $x \neq 0$.

So $\langle \cdot, \cdot \rangle$ is an inner product on *E*.

b) Let $(x_n)_n \subset M$ be a sequence that converges to $x \in E$ with respect to the metric d. In particular this implies that $x_n(0) \to x(0)$, and since $x_n(0) = 0$ for all n, we get that x(0) = 0 and $x \in M$. So M is closed with respect to d. Let $x_n \in M$ be the function whose graph is given in the figure,



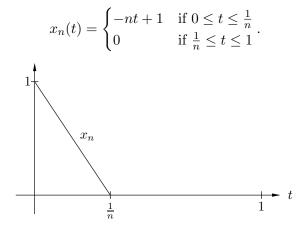
Let $\mathbf{1}$ be the function that is 1 for all t. Then

$$\tilde{d}(x_n, \mathbf{1}) = \left(\int_0^1 (x_n(t) - 1)^2 \, dt\right)^{1/2} \le \left(\int_0^{1/n} \, dt\right)^{1/2} = \frac{1}{\sqrt{n}} \to 0 \text{ as } n \to \infty.$$

So $x_n \to \mathbf{1}$ with respect to \tilde{d} , but $\mathbf{1} \notin M$, so M is not closed with respect to \tilde{d} .

c) It is sufficient (by Theorem 6.3 in Young) to consider the continuity properties of ϕ at 0. So let (x_n) be a sequence such that $x_n \to 0$ with respect to d. Then $x_n(0) \to 0$ and $\phi(x_n) = x_n(0) \to 0$. Hence ϕ is continuous at 0, and so ϕ is continuous with respect to d.

The functions x_n , whose graph is given in the figure, is defined to be



Then $x_n \to 0$ with respect to d, since

$$\langle x_n, x_n \rangle = \int_0^1 |x_n(t)|^2 dt \le \int_0^{1/n} dt = \frac{1}{n}$$

However, $\phi(x_n) = x_n(0) = 1$, and so $\phi(x_n) \neq 0$. So ϕ is discontinuous at 0, and so ϕ is discontinuous with respect to \tilde{d} .

(We could also have used that $\phi^{-1}(0) = M$ is not closed with respect to d.)

d) We use Gram-Schmidt to orthonormalize $\{1, t\}$ with respect to the given inner product $\langle \cdot, \cdot \rangle$. We then find that

$$e_1(t) = 1,$$
 $e_2(t) = 2\sqrt{3}(t - \frac{1}{2})$

are orthonormal and such that span $\{1, t\} = \text{span}\{e_1, e_2\} = U$. We get the integral to be minimal if a + bt is chosen to be the orthogonal projection P of t^4 onto U.

$$P(t^4) = \langle t^4, e_1 \rangle e_1 + \langle t^4, e_2 \rangle e_2$$

= $\left(\int_0^1 t^4 dt \right) \cdot 1 + \left(2\sqrt{3} \int_0^1 t^4 (t - \frac{1}{2}) dt \right) 2\sqrt{3}(t - \frac{1}{2})$
= $-\frac{1}{5} + \frac{4}{5}t.$

Hence $a = -\frac{1}{5}$ and $b = \frac{4}{5}$.

Problem 4

a) Let $x \in X$ and $t \in \left[-\frac{1}{2}, \frac{1}{2}\right]$. Then $|(Tx)(t)| = \left| \int_0^t \left(x(\tau)^3 - 2\tau^2 \right) d\tau \right| \le \int_0^{|t|} \left(|x(\tau)|^3 + 2\tau^2 \right) d\tau$ $\le \int_0^{|t|} \left(\frac{1}{8} + 2\tau^2 \right) d\tau = \frac{1}{8} |t| + \frac{2}{3} |t|^3 \le \frac{1}{16} + \frac{2}{3} \cdot \frac{1}{8} < \frac{1}{2}.$

Hence, $d(Tx, 0) \leq \frac{1}{2}$, and $Tx \in X$.

b) Assume that $x, y \in X$. For $t \in [-\frac{1}{2}, \frac{1}{2}]$ we have

$$\begin{split} \left| (Tx)(t) - (Ty)(t) \right| &= \left| \int_0^t \left[f(\tau, x(\tau)) - f(\tau, y(\tau)) \right] d\tau \right| \\ &\leq \int_0^{|t|} \left| f(\tau, x(\tau)) - f(\tau, y(\tau)) \right| d\tau \leq \frac{3}{4} \int_0^{|t|} |x(\tau) - y(\tau)| \, d\tau \\ &\leq \frac{3}{4} d(x, y) \int_0^{|t|} d\tau \leq \frac{3}{8} d(x, y). \end{split}$$

Taking max on the left, we see that T is a contraction, with contraction constant $\alpha = \frac{3}{8}$.

c) The set X is a closed subset of the complete metric space $C[-\frac{1}{2}, \frac{1}{2}]$, and is thus complete. According to Banach's Fixed Point Theorem, will the sequence (x_n) converge to a (unique) fixed point $\tilde{x} \in C[-\frac{1}{2}, \frac{1}{2}]$. That is

$$\tilde{x}(t)=(T\tilde{x})(t),\quad t\in[-\tfrac{1}{2},\tfrac{1}{2}]$$

or

$$\tilde{x}(t) = \int_0^t f(\tau, \tilde{x}(\tau)) \, d\tau$$

Differentiate on both sides with respect to t to obtain

$$\tilde{x}'(t) = f(t, \tilde{x}(t)) = \tilde{x}(t)^3 - 2t^2, \quad t \in [-\frac{1}{2}, \frac{1}{2}].$$

In addition $\tilde{x}(0) = 0$.