TMA4145 Linear Methods

Norwegian University of Science and Technology Department of Mathematical Sciences

Suggested solutions Exam December 16, 2005

Problem 1

For a given $\epsilon>0$ there is an $N \in \mathbb{N}$ such that $d\left(x_{n}, a\right)<\epsilon$ and $d\left(y_{n}, a\right)<\epsilon$ for all $n>N$. For the sequence $\left(z_{n}\right)_{n}$ we will then have for $k, l>2 N$ that

$$
d\left(z_{k}, z_{l}\right) \leq d\left(z_{k}, a\right)+d\left(a, z_{l}\right)<\epsilon+\epsilon=2 \epsilon
$$

This shows that $\left(z_{n}\right)_{n}$ is a Cauchy sequence.

Problem 2

a) We see that $\operatorname{rank} A=2$, and we find the bases

$$
\mathcal{R}(A):\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right], \quad \mathcal{N}(A):\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
1 \\
-\frac{1}{2} \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right], \quad \mathcal{R}\left(A^{T}\right):\left[\begin{array}{l}
0 \\
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
2
\end{array}\right] .
$$

The basis for $\mathcal{N}\left(A^{T}\right)$ is spanned by the last row of L^{-1} (since $3-2=1$). We invert L,

$$
[L \mid I]=\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 & -1 & 1
\end{array}\right]=\left[I \mid L^{-1}\right]
$$

and find that

$$
\mathcal{N}\left(A^{T}\right):\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] .
$$

b) We are given $B=\left[b_{1}\left|b_{2}\right| b_{3}\right]$. First we find the orthonormal vectors q_{1}, q_{2} and q_{3} using Gram-Schmidt.

$$
\begin{array}{ll}
\tilde{q}_{1}=b_{1}=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right], & q_{1}=\frac{\tilde{q}_{1}}{\left\|\tilde{q}_{1}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right] \\
\tilde{q}_{2}=b_{2}-\frac{\left\langle b_{2}, \tilde{q}_{1}\right\rangle}{\left\langle\tilde{q}_{1}, \tilde{q}_{1}\right\rangle} \tilde{q}_{1}=b_{2}+\frac{1}{2} \tilde{q}_{1}=\left[\begin{array}{r}
1 / 2 \\
1 / 2 \\
-1 \\
0
\end{array}\right], & q_{2}=\frac{\tilde{q}_{2}}{\left\|\tilde{q}_{2}\right\|}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
1 \\
1 \\
-2 \\
0
\end{array}\right]
\end{array}
$$

$$
\begin{array}{r}
\tilde{q}_{3}=b_{3}-\frac{\left\langle b_{3}, \tilde{q}_{1}\right\rangle}{\left\langle\tilde{q}_{1}, \tilde{q}_{1}\right\rangle} \tilde{q}_{1}-\frac{\left\langle b_{3}, \tilde{q}_{2}\right\rangle}{\left\langle\tilde{q}_{2}, \tilde{q}_{2}\right\rangle} \tilde{q}_{2}=b_{3}-0 \cdot \tilde{q}_{1}+\frac{1}{3} \tilde{q}_{2}=\frac{1}{3}\left[\begin{array}{r}
1 \\
1 \\
1 \\
-3
\end{array}\right], \\
q_{3}=\frac{\tilde{q}_{3}}{\left\|\tilde{q}_{3}\right\|}=\frac{1}{\sqrt{12}}\left[\begin{array}{r}
1 \\
1 \\
1 \\
-3
\end{array}\right] .
\end{array}
$$

We have

$$
\begin{array}{ll}
b_{1}=\tilde{q}_{1} & =\sqrt{2} q_{1} \\
b_{2}=-\frac{1}{2} \tilde{q}_{1}+\tilde{q}_{2} & =-\frac{1}{2} \sqrt{2} q_{1}+\frac{1}{2} \sqrt{6} q_{2} \\
b_{3}=0 \cdot \tilde{q}_{1}-\frac{2}{3} \frac{1}{6} \tilde{q}_{2}+\tilde{q}_{3} & =0 \cdot q_{1}-\frac{1}{3} \sqrt{6} q_{2}+\frac{1}{3} \sqrt{12} q_{3},
\end{array}
$$

and hence the $Q R$-factorization of B is

$$
B=\left[\begin{array}{rrr}
1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{12} \\
-1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{12} \\
0 & -2 / \sqrt{6} & 1 / \sqrt{12} \\
0 & 0 & -3 / \sqrt{12}
\end{array}\right]\left[\begin{array}{rrr}
\sqrt{2} & -\sqrt{2} / 2 & 0 \\
0 & \sqrt{6} / 2 & -\sqrt{6} / 3 \\
0 & 0 & \sqrt{12} / 3
\end{array}\right] .
$$

c) First we calculate

$$
C^{T} C=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right] .
$$

The characteristic polynomial of $C^{T} C$ is $(2-\lambda)(2-\lambda)-1=3-4 \lambda+\lambda^{2}=$ $(3-\lambda)(1-\lambda)$, so 3 and 1 are eigenvalues, and $\sigma_{1}=\sqrt{3}, \sigma_{2}=1$ are the singular values. Next, we find orthonormal eigenvectors for $C^{T} C$.

$$
\begin{array}{lll}
\lambda=3: & {\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right] \sim\left[\begin{array}{rr}
-1 & -1 \\
0 & 0
\end{array}\right]} & \Rightarrow
\end{array} q_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right], ~ 子 \quad \Rightarrow \quad q_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

We also want to find the columns of P. We have

$$
\begin{aligned}
& p_{1}=\frac{1}{\sigma_{1}} C q_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{rr}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right], \\
& p_{2}=\frac{1}{\sigma_{2}} C q_{2}=\frac{1}{1}\left[\begin{array}{rr}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

We see that

$$
p_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

is orthogonal to both p_{1} and p_{2} (we can also use Gram-Schmidt to find such a p_{3}), so a singular value decomposition of C is

$$
C=P \Sigma Q^{T}=\left[\begin{array}{rrr}
-\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{rr}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] .
$$

Problem 3

a) Let $x, y \in E$. Then
i) $\|x\|_{\infty}>0$ for $x \neq 0$ because of the absolute value,
ii) For $\lambda \in \mathbb{C}$, it is clear that $\|\lambda x\|_{\infty}=|\lambda|\|x\|_{\infty}$,
iii) For all $t \in[0,1]$ is

$$
|x(t)+y(t)| \leq|x(t)|+|y(t)| \leq\|x\|_{\infty}+\|y\|_{\infty} .
$$

Taking max on the left gives $\|x+y\|_{\infty} \leq\|x\|_{\infty}+\|y\|_{\infty}$.
Hence $\|\cdot\|_{\infty}$ is a norm on E.
Let $x, y, z \in E$ and $\lambda \in \mathbb{C}$. Then
i) - iii) By the properties of the integral, it is clear that $\langle x, y\rangle=\overline{\langle y, x\rangle},\langle\lambda x, y\rangle=$ $\lambda\langle x, y\rangle$ and $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$.
iv) $\langle x, x\rangle=\int_{0}^{1}|x(t)|^{2} d t>0$ and as x is continuous it follows that $\langle x, x\rangle>0$ when $x \neq 0$.
So $\langle\cdot, \cdot\rangle$ is an inner product on E.
b) Let $\left(x_{n}\right)_{n} \subset M$ be a sequence that converges to $x \in E$ with respect to the metric d. In particular this implies that $x_{n}(0) \rightarrow x(0)$, and since $x_{n}(0)=0$ for all n, we get that $x(0)=0$ and $x \in M$. So M is closed with respect to d.
Let $x_{n} \in M$ be the function whose graph is given in the figure,

$$
x_{n}(t)=\left\{\begin{array}{ll}
n t & \text { if } 0 \leq t \leq \frac{1}{n} \\
1 & \text { if } \frac{1}{n} \leq t \leq 1
\end{array} .\right.
$$

Let $\mathbf{1}$ be the function that is 1 for all t. Then

$$
\tilde{d}\left(x_{n}, \mathbf{1}\right)=\left(\int_{0}^{1}\left(x_{n}(t)-1\right)^{2} d t\right)^{1 / 2} \leq\left(\int_{0}^{1 / n} d t\right)^{1 / 2}=\frac{1}{\sqrt{n}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

So $x_{n} \rightarrow \mathbf{1}$ with respect to \tilde{d}, but $\mathbf{1} \notin M$, so M is not closed with respect to \tilde{d}.
c) It is sufficient (by Theorem 6.3 in Young) to consider the continuity properties of ϕ at 0 . So let $\left(x_{n}\right)$ be a sequence such that $x_{n} \rightarrow 0$ with respect to d. Then $x_{n}(0) \rightarrow 0$ and $\phi\left(x_{n}\right)=x_{n}(0) \rightarrow 0$. Hence ϕ is continuous at 0 , and so ϕ is continuous with respect to d.
The functions x_{n}, whose graph is given in the figure, is defined to be

$$
x_{n}(t)=\left\{\begin{array}{ll}
-n t+1 & \text { if } 0 \leq t \leq \frac{1}{n} \\
0 & \text { if } \frac{1}{n} \leq t \leq 1
\end{array} .\right.
$$

Then $x_{n} \rightarrow 0$ with respect to \tilde{d}, since

$$
\left\langle x_{n}, x_{n}\right\rangle=\int_{0}^{1}\left|x_{n}(t)\right|^{2} d t \leq \int_{0}^{1 / n} d t=\frac{1}{n}
$$

However, $\phi\left(x_{n}\right)=x_{n}(0)=1$, and so $\phi\left(x_{n}\right) \nrightarrow 0$. So ϕ is discontinuous at 0 , and so ϕ is discontinuous with respect to \tilde{d}.
(We could also have used that $\phi^{-1}(0)=M$ is not closed with respect to \tilde{d}.)
d) We use Gram-Schmidt to orthonormalize $\{1, t\}$ with respect to the given inner product $\langle\cdot, \cdot\rangle$. We then find that

$$
e_{1}(t)=1, \quad e_{2}(t)=2 \sqrt{3}\left(t-\frac{1}{2}\right)
$$

are orthonormal and such that $\operatorname{span}\{1, t\}=\operatorname{span}\left\{e_{1}, e_{2}\right\}=U$. We get the integral to be minimal if $a+b t$ is chosen to be the orthogonal projection P of t^{4} onto U.

$$
\begin{aligned}
P\left(t^{4}\right) & =\left\langle t^{4}, e_{1}\right\rangle e_{1}+\left\langle t^{4}, e_{2}\right\rangle e_{2} \\
& =\left(\int_{0}^{1} t^{4} d t\right) \cdot 1+\left(2 \sqrt{3} \int_{0}^{1} t^{4}\left(t-\frac{1}{2}\right) d t\right) 2 \sqrt{3}\left(t-\frac{1}{2}\right) \\
& =-\frac{1}{5}+\frac{4}{5} t .
\end{aligned}
$$

Hence $a=-\frac{1}{5}$ and $b=\frac{4}{5}$.

Problem 4

a) Let $x \in X$ and $t \in\left[-\frac{1}{2}, \frac{1}{2}\right]$. Then

$$
\begin{aligned}
|(T x)(t)| & =\left|\int_{0}^{t}\left(x(\tau)^{3}-2 \tau^{2}\right) d \tau\right| \leq \int_{0}^{|t|}\left(|x(\tau)|^{3}+2 \tau^{2}\right) d \tau \\
& \leq \int_{0}^{|t|}\left(\frac{1}{8}+2 \tau^{2}\right) d \tau=\frac{1}{8}|t|+\frac{2}{3}|t|^{3} \leq \frac{1}{16}+\frac{2}{3} \cdot \frac{1}{8}<\frac{1}{2}
\end{aligned}
$$

Hence, $d(T x, 0) \leq \frac{1}{2}$, and $T x \in X$.
b) Assume that $x, y \in X$. For $t \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ we have

$$
\begin{aligned}
|(T x)(t)-(T y)(t)| & =\left|\int_{0}^{t}[f(\tau, x(\tau))-f(\tau, y(\tau))] d \tau\right| \\
& \leq \int_{0}^{|t|}|f(\tau, x(\tau))-f(\tau, y(\tau))| d \tau \leq \frac{3}{4} \int_{0}^{|t|}|x(\tau)-y(\tau)| d \tau \\
& \leq \frac{3}{4} d(x, y) \int_{0}^{|t|} d \tau \leq \frac{3}{8} d(x, y)
\end{aligned}
$$

Taking max on the left, we see that T is a contraction, with contraction constant $\alpha=\frac{3}{8}$.
c) The set X is a closed subset of the complete metric space $C\left[-\frac{1}{2}, \frac{1}{2}\right]$, and is thus complete. According to Banach's Fixed Point Theorem, will the sequence $\left(x_{n}\right)$ converge to a (unique) fixed point $\tilde{x} \in C\left[-\frac{1}{2}, \frac{1}{2}\right]$. That is

$$
\tilde{x}(t)=(T \tilde{x})(t), \quad t \in\left[-\frac{1}{2}, \frac{1}{2}\right]
$$

or

$$
\tilde{x}(t)=\int_{0}^{t} f(\tau, \tilde{x}(\tau)) d \tau
$$

Differentiate on both sides with respect to t to obtain

$$
\tilde{x}^{\prime}(t)=f(t, \tilde{x}(t))=\tilde{x}(t)^{3}-2 t^{2}, \quad t \in\left[-\frac{1}{2}, \frac{1}{2}\right] .
$$

In addition $\tilde{x}(0)=0$.

