# EXAM IN SIF5020 LINEAR METHODS 

Monday, December 11, 2000
Time 09.00-14.00

Hjelpemidler: C1 Approved calculator.
All handwritten and printed aids allowed.

Give reasons for all answers

## Problem 1

a) Let $E$ be the subset of $l^{\infty}$ consisting of all sequences of numbers where at most finitely many of the numbers are different from 0 . Explain why $E$ is a normed space (with the induced norm). Is $E$ complete?
b) Show that $E$ is an example of a normed space that is not an inner product space.

## Problem 2

a) Let $T: C[0,1] \rightarrow C[0,1]$ be given by

$$
(T x)(t)=\int_{0}^{1} t s x(s) d s
$$

Show that $\|T\|=\frac{1}{2}$.
b) Let $T: L^{2}(0,1) \rightarrow L^{2}(0,1)$ be given by

$$
(T x)(t)=\int_{0}^{1} t s x(s) d s
$$

Show that $\|T\| \leq \frac{1}{3}$.
c) Find a continuous function $x$ on the interval $[0,1]$ that satisfies the integral equation

$$
x(t)=4+\int_{0}^{1} t s x(s) d s ; 0 \leq t \leq 1 .
$$

## Problem 3

Given real matrices $A$ and $B$ where $A$ is an $m \times r$-matrix with linearly independent columns and $B$ an $r \times n$-matrix with linearly independent rows.

Show that
$\mathcal{N}(A B)=\mathcal{N}(B)$ og $\mathcal{R}(A B)=\mathcal{R}(A)$.

## Problem 4

a) Find the $Q R$-factorization (with $r_{k k}>0$ ) for

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right]
$$

b) Which point in $\operatorname{lin}\{(1,1,1),(1,2,3)\} \subset \mathbb{C}^{3}$ is closest to the point $(i, 0,1)$ ?

## Problem 5

a) Given $A=\frac{1}{3}\left[\begin{array}{ll}1 & 5 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}-2 & 5 \\ 1 & -1\end{array}\right]$.

What is $e^{A}$ ?
b) Given more generally $T \in \mathcal{L}(E)$ where $E$ is a Banachspace.

Explain why the series $\sum_{n=0}^{\infty} \frac{T^{n}}{n!}$ converges in $\mathcal{L}(E)$. The limit is denoted by $e^{T}$. Show that $0 \notin \sigma\left(e^{T}\right)$.

Problem 6 Is the matrix

$$
A_{n}=\left[\begin{array}{ccccc}
1 & 1 & \cdots & \cdots & 1 \\
1 & 2 & \cdots & \cdots & 2 \\
\vdots & \vdots & \ddots & & \\
\vdots & \vdots & & n-1 & n-1 \\
1 & 2 & & n-1 & n
\end{array}\right]
$$

positive definite?

