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Problem 1 (Overview)
For each of the following, state whether it is true or false (no proof required).

(i) There exists a bijective function Q→ N.
Yes. See Exercise set 1.

(ii) The lp-spaces, 1 ≤ p ≤ ∞, are all Hilbert spaces.
No. Only l2 can be given an inner product that is compatible with the lp-norm.

(iii) All linear transformations Rn → Rm, with n,m ∈ N, can be realised by
matrices.
Yes. This is done by choosing a basis for each space.

(iv) The function t 7→ sin(1/t) lies in the closed unit ball in BC((0, 1),R) (en-
dowed with the standard supremum norm).
Yes. It is continuous on (0, 1) (although not on [0, 1]), and bounded with
‖t 7→ sin(1/t)‖BC((0,1),R) = supt∈(0,1) | sin(1/t)| = 1.

(v) The rank of matrix is always the same as the dimension of its null space.
No. The sum of the rank and the dimension of the nullspace equals the
dimension of the domain of definition.

(vi) For any orthonormal sequence of vectors {ej}j in a Hilbert space, and any
sequence {cj}j ∈ l2 of scalars, one has 〈∑j cjej,

∑
k ckek〉 = ∑

j |cj|2 .
Yes. 〈∑j cjej,

∑
k ckek〉 = ∑

j,k cjck〈ej, ek〉 = ∑
j |ck|2.

(vii) The Cauchy–Schwarz inequality is valid in any Banach space.
No. The Cauchy–Schwarz inequality |〈x, y〉| ≤ ‖x‖‖y‖ requires an inner-
product space.

(viii) The set {(x1, x2) ∈ R2 : x2
1 + 2x2

2 ≤ 1} is convex.
Yes. It is an ellipse.

(ix) L2((−π, π),R) is isometrically isomorphic to its dual.
Yes. This is the meaning of the Riesz representation theorem.

(x) The initial-value problem ẋ =
√
x, x(0) = 0, has a unique solution u ∈

C1([0,∞),R) .
No. The right-hand side is not Lipschitz, and one easily checks that x(t) = 0
and x(t) = 1

4t
2 both satisfy this initial-value problem (no uniqueness).
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Problem 2 (Linear transformations)
This problem is meant to test knowledge of definitions and basic manipulation and
calculation abilities.

a) Determine the range of the matrix

A = 1√
2

[
1 1
1 −1

]

as a mapping R2 → R2. Is A invertible; self-adjoint; nilpotent; unitary? For
each concept, provide the definition together with your answer.

Invertibility means that there exists a matrix A−1 such that AA−1 = A−1A = I.
Since A2 = I, we have A = A−1, and A is invertible.
Self-adjointness means 〈Ax, y〉 = 〈x,Ay〉 which for a real n×n-matrix means that
A is symmetric (aij = aji). Hence A is self-adjoint.
The matrix A is nilpotent if Ak = 0 for some k ∈ N. Since A2k = I, for all natural
numbers k, this is impossible. A is not nilpotent.
A is unitary if AA∗ = A∗A = I. In view of that A∗ = A = A−1, A is unitary.

b) What is the operator norm of A?

Unitary maps are isometries, meaning ‖Ax‖R2 = ‖x‖R2 for all x ∈ R2. The
operator norm of A is thus 1.

A more direct way to see this is that

‖Ax‖R2 =
∥∥∥∥∥ 1√

2

[
x1 + x2
x1 − x2

]∥∥∥∥∥
R2

=
(1

2
(
x2

1 + 2x1x2 + x2
2 + x2

1 − 2x1x2 + x2
2

))1/2

=
(
x2

1 + x2
2

)1/2

= ‖x‖R2 .

c) Given that cosh(t) = et+e−t

2 and sinh(t) = et−e−t

2 , what is exp(tA)?

Note first that

cosh(t) = et + e−t

2 = 1
2

( ∞∑
k=0

tk

k! +
∞∑
k=0

(−t)k

k!

)
=
∞∑
k=0

t2k

(2k)! ,
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and
sinh(t) = et − e−t

2 = 1
2

( ∞∑
k=0

tk

k! −
∞∑
k=0

(−t)k

k!

)
=
∞∑
k=0

t2k+1

(2k + 1)! .

In view of the identity A2 = I, we then find that

exp(tA) =
∞∑
k=0

(tA)k

k!

=
∞∑
k=0

t2kA2k

(2k)! +
∞∑
k=0

t2k+1A2k+1

(2k + 1)!

=
( ∞∑
k=0

t2k

(2k)!

)
I +

( ∞∑
k=0

t2k+1

(2k + 1)!

)
A

= cosh(t)I + sinh(t)A.



TMA4145 Linear Methods, December 11, 2013 Page 4 of 9

Problem 3 (Metric spaces)
Let d be the distance on R given by

d(x, y) = 1
π
|arctan(x)− arctan(y)| .

a) Verify that d is a metric on R.

Finiteness and positivity: The function arctan is well-defined R → (−π/2, π/2),
so the triangle inequality for real numbers guarantees that d is well-defined with
values in [0, 1) ⊂ [0,∞):

0 ≤ 1
π
|arctan(x)− arctan(y)|

≤ 1
π

(| arctan(x)|+ | arctan(y)|)

<
1
π

(
π

2 + π

2

)
= 1.

Symmetry: This follows from the symmetry of |a− b| for real numbers a and b:

d(x, y) = 1
π
|arctan(x)− arctan(y)| = 1

π
|arctan(y)− arctan(x)| = d(y, x).

Triangle inequality: This similarly follows from the triangle inequality for real
numbers:

d(x, y) = 1
π
|arctan(x)− arctan(y)|

≤ 1
π

(
|arctan(y)− arctan(z)|+ |arctan(z)− arctan(x)|

)
= d(y, z) + d(z, x).

Non-degeneracy:

d(x, y) = 0 ⇐⇒ arctan(x) = arctan(y) ⇐⇒ x = y,

since arctan is injective.

b) Show that the open unit ball in (R, d) is also closed, and that (R, d) is not a
complete metric space.
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Closedness: According to the definition of an open unit ball in a metric space with
a zero element, we have

B1(0) = {x ∈ R : d(x, 0) < 1}.

For the metric d,

d(x, 0) < 1 ⇐⇒ 1
π
| arctan(x)− arctan(0)| < 1

⇐⇒ | arctan(x)| < π

⇐⇒ x ∈ R.

Hence, B1(0) = R coincides with the whole space, which by definition is closed.

Incompleteness: Consider xn = n, n ∈ N. Then

lim
m,n→∞

d(xn, xm) = 1
π

lim
m,n→∞

| arctan(n)− arctan(m)|

= 1
π
| lim
n→∞

arctan(n)− lim
m→∞

arctan(m)|

= 1
π

∣∣∣∣π2 − π

2

∣∣∣∣
= 0,

since |·| is continuous (this enables moving the limits inside the absolute value), and
the limit limj→∞ arctan(j) exists (this enables separating the two limits). Hence,
{xn}n∈N is Cauchy in (R, d).

By the same argument, however,

d(xn, 0)→ 1 as n→∞,

so that any limit x must satisfy d(x, 0) = 1. Since there are no such x ∈ R, we have
found a non-convergent Cauchy sequence in (R, d). Thus, (R, d) is incomplete.
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Problem 4 (Spectral theory)

a) A 2 × 2 symmetric matrix has an eigenvalue 4 with eigenvector (1, 2). The
matrix also has an eigenvalue 1. Use this to determine the matrix.

The spectral theorem guarantees that the matrix has an orthonormal basis of eigen-
vectors, such that

A = QDQt,

where D is the diagonal matrix of eigenvalues and Q is the orthogonal matrix of
corresponding eigenvectors (in the same order as the eigenvalues). With

D =
[
4 0
0 1

]
and Q̃ =

[
1 v1
2 v2

]
,

we thus only need to determine the matrix Q̃ such that v = (v1, v2) ⊥ (1, 2), and
then to normalise the length of the vectors. A solution of this is

Q = 1√
5

[
1 2
2 −1

]
.

Calculating QDQt = QDQ (note that Q is also symmetric) gives us

A = 1
5

[
8 6
6 17

]
.

b) Express

A =

3 0 0
0 4 −1
0 1 2


in Jordan normal form, determining both the matrix J and the change-of-
basis matrix T in A = TJT−1. Hint: this matrix has an eigenvalue of triple
algebraic multiplicity.

Characteristic polynomial:

det(A− λI) = det

3− λ 0 0
0 4− λ −1
0 1 2− λ


= −λ3 + 9λ2 − 27λ+ 27
= (3− λ)3.
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Eigenvectors:

ker(A− 3I) = ker

0 0 0
0 1 −1
0 1 −1

 = span


1
0
0

 ,
0
1
1




Generalised Eigenvectors: Since ker(A− 3I) is already two-dimensional, we know
directly that ker(A−3I)2 = R3 (the generalised eigenspaces are strictly increasing),
and we can pick any vector not in ker(A− 3I) to obtain a generalised eigenvector.
For example, pick

v2 =

0
0
1

 ∈ ker(A− 3I)2 \ ker(A− 3I),

and let

v1 = (A− 3I)v2 =

 0
−1
−1

 ∈ ker(A− 3I).

These constitute a Jordan chain.

We still need to add a vector from ker(A− 3I), linearly independent from {v1, v2},
but that we already have. Let

w =

1
0
0

 .
Then the change-of-basis matrix

T =

 0 0 1
−1 0 0
−1 1 0


corresponds to the Jordan norm form

J =

3 1 0
0 3 0
0 0 3


of the matrix A.
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Problem 5 (Inner products, Hilbert spaces)

a) In R4, let

M = span{(1, 2, 3, 2), (1, 0, 1, 1)} and y = (2, 0, 3, 1).

Calculate d = dist(y,M). Is there a point x0 ∈ M with ‖x0 − y‖ = d (if so,
explain why and determine it; if not, justify why there cannot be one)?
Gram–Schmidt: Let

e1 = (1, 0, 1, 1)
‖(1, 0, 1, 1)‖ = 1√

3
(1, 0, 1, 1).

Then let

ṽ2 = (1, 2, 3, 2)−
〈
(1, 2, 3, 2), 1√

3(1, 0, 1, 1)
〉

1√
3(1, 0, 1, 1)

= (1, 2, 3, 2)− (2, 0, 2, 2)
= (−1, 2, 1, 0),

and
e2 = (−1, 2, 1, 0)

‖(−1, 2, 1, 0)‖ = 1√
6

(−1, 2, 1, 0).

Then {e1, e2} form an orthonormal set, spanning the same linear space as
{(1, 2, 3, 2), (1, 0, 1, 1)}. Note that this set is closed, convex and non-empty,
so that the existence of a minimising point x0, as asked for the in the problem,
is guaranteed by the minimal distance theorem.
To find it, project y onto span{e1, e2}:

x0 = 〈y, e1〉e1 − 〈y, e2〉e2

= 〈(2, 0, 3, 1), 1√
3(1, 0, 1, 1)〉 1√

3(1, 0, 1, 1)
+ 〈(2, 0, 3, 1), 1√

6(−1, 2, 1, 0)〉 1√
6(−1, 2, 1, 0)

= (2, 0, 2, 2) + 1
6(−1, 2, 1, 0)

= 1
6(11, 2, 13, 12).

The distance d is then given by

d2 = ‖y‖2 − |〈y, e1〉|2 − |〈y, e2〉|2 = 14− 12− 1
6 = 11

6 ,

meaning d =
√

11
6 .
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b) Prove that there is c ≥ 0 such that∫ π

−π
x(t) sin(2t) dt ≤ c

(∫ π

−π
|x(t)|2 dt

)1/2
,

for any x ∈ C([−π, π],R), and that the choice c =
√
π is the least possible.

The set C([−π, π],R) is a linear subspace of L2((−π, π),R), and for any
x ∈ L2((−π, π),R), we have

|〈x, sin(2·)〉| ≤ ‖ sin(2·)‖‖x‖, (∗∗)
according to the Cauchy–Schwarz inequality. Here 〈x, y〉 =

∫ π
−π x(t)y(t) dt

and ‖x‖ = 〈x, x〉1/2 denote the inner product and corresponding norm on
L2((−π, π),R).
Now, (sin(s))2 = 1

2 −
cos(2s)

2 has mean 1
2 over any period of cos(2·), so

‖ sin(2·)‖ =
(∫ π

−π
(sin(2t))2 dt

)1/2
=
√
π.

But this means (∗∗) is (∗) with c =
√
π. Since we know that we have equality

in Cauchy–Schwarz for linearly dependent vectors, the choice x = sin(2·) ∈
C([−π, π],R) yields that there can be no smaller constant c.

c) Let H be a Hilbert space (real or complex) with inner product 〈·, ·〉 and an
orthonormal basis {ej}j∈N. Given an element y ∈ H, show that the mapping
x 7→ ∑

j∈N〈x, ej〉〈ej, y〉 is a bounded linear functional on H.
We know that, by the Riesz representation theorem, all bounded linear func-
tionals on H are of the form

x 7→ 〈x, z〉,
for some z ∈ H. So a qualified guess is that z = y.
To prove this, note that since {ej}j∈N is an orthonormal basis for H, we have

〈x, y〉 =
〈∑
j∈N
〈x, ej〉ej,

∑
k∈N
〈y, ek〉ek

〉

=
∑
j,k∈N
〈x, ej〉〈y, ek〉〈ej, ek〉

=
∑
j∈N
〈x, ej〉〈y, ej〉

=
∑
j∈N
〈x, ej〉〈ej, y〉.

Hence, the mapping considered in the problem is the mapping x 7→ 〈x, y〉,
which, by the Riesz representation theorem, is a bounded linear functional
on H.


