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Problem 1 (Overview)
For each of the following, state whether it is true or false (no proof required).

(i) There exists a bijective function Q→ N.

(ii) The lp-spaces, 1 ≤ p ≤ ∞, are all Hilbert spaces.

(iii) All linear transformations Rn → Rm, with n,m ∈ N, can be realised by
matrices.

(iv) The function t 7→ sin(1/t) lies in the closed unit ball in BC((0, 1),R) (en-
dowed with the standard supremum norm).

(v) The rank of a matrix is always the same as the dimension of its null space.

(vi) For any orthonormal sequence of vectors {ej}j in a Hilbert space, and any
sequence {cj}j ∈ l2 of scalars, one has 〈∑j cjej,

∑
k ckek〉 = ∑

j |cj|2 .

(vii) The Cauchy–Schwarz inequality is valid in any Banach space.

(viii) The set {(x1, x2) ∈ R2 : x2
1 + 2x2

2 ≤ 1} is convex.

(ix) L2((−π, π),R) is isometrically isomorphic to its dual.

(x) The initial-value problem ẋ =
√
x, x(0) = 0, has a unique solution u ∈

C1([0,∞),R) .

Problem 2 (Linear transformations)
This problem is meant to test knowledge of definitions and basic manipulation and
calculation abilities.

a) Determine the range of the matrix

A = 1√
2

[
1 1
1 −1

]

as a mapping R2 → R2. Is A invertible; self-adjoint; nilpotent; unitary? For
each concept, provide the definition together with your answer.

b) What is the operator norm of A?

c) Given that cosh(t) = et+e−t

2 and sinh(t) = et−e−t

2 , what is exp(tA)?
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Problem 3 (Metric spaces)
Let d be the distance on R given by

d(x, y) = 1
π
|arctan(x)− arctan(y)| .

a) Verify that d is a metric on R.

b) Show that the open unit ball in (R, d) is also closed, and that (R, d) is not a
complete metric space.

Problem 4 (Spectral theory)

a) A 2 × 2 symmetric matrix has an eigenvalue 4 with eigenvector (1, 2). The
matrix also has an eigenvalue 1. Use this to determine the matrix.

b) Express

A =

3 0 0
0 4 −1
0 1 2


in Jordan normal form, determining both the matrix J and the change-of-
basis matrix T in A = TJT−1. Hint: this matrix has an eigenvalue of triple
algebraic multiplicity.

Problem 5 (Inner products, Hilbert spaces)

a) In R4, let

M = span{(1, 2, 3, 2), (1, 0, 1, 1)} and y = (2, 0, 3, 1).

Calculate d = dist(y,M). Is there a point x0 ∈ M with ‖x0 − y‖ = d (if so,
explain why and determine it; if not, justify why there cannot be one)?

b) Prove that there is c ≥ 0 such that∫ π

−π
x(t) sin(2t) dt ≤ c

(∫ π

−π
|x(t)|2 dt

)1/2
,

for any x ∈ C([−π, π],R), and that the choice c =
√
π is the least possible.

c) Let H be a Hilbert space (real or complex) with inner product 〈·, ·〉 and an
orthonormal basis {ej}j∈N. Given an element y ∈ H, show that the mapping
x 7→ ∑

j∈N〈x, ej〉〈ej, y〉 is a bounded linear functional on H.


