1 Consider the equation $f(x)=x^{2}-3$. Check that the Newton iteration

$$
T(x):=x-\frac{f(x)}{f^{\prime}(x)}=\frac{1}{2}\left(x+\frac{3}{x}\right)
$$

maps $[\sqrt{3}, \infty)$ to itself. Then use the Banach fixed point theorem to show that

$$
\lim _{n \rightarrow \infty} T^{n}(x)=\sqrt{3}
$$

for every $x \geq \sqrt{3}$.

2 Let $G:(C[0,1],\|\cdot\| \infty) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$ be defined by

$$
(G x)(t)=\int_{0}^{t} s x(s) d s, 0 \leq t \leq 1 .
$$

Show that G is a contraction with zero function as the unique fixed point.

3 Apply Picard iteration to

$$
x^{\prime}(t)=1+x^{2}, x(0)=0 .
$$

Find x_{3} and the exact solution (notice that the equation is separable), and show that the terms involving t, t^{2}, \cdots, t^{5} in $x_{3}(t)$ are the same as those of the Taylor series of the exact solution.

