Norwegian University of Science and Technology Department of Mathematical Sciences

TMA4145 Linear Methods Fall 2022

Exercise set 2

- 1 Let X be a vector space of dimension n and let $\mathcal{L}(x)$ denote the vector space of all linear mappings on X. Show that $\mathcal{L}(x)$ is isomorphic to \mathcal{M}_n , the space of all $n \times n$ matrices.
- 2 Let \mathcal{P}_n be the space of polynomials of degree at most n. We pick as basis \mathcal{B} = $\{p_0(x),...,p_n(x)\}$ where $p_0(x) = 1, p_1(x) = x, p_2(x) = x(x-1),...,p_j(x) = x(x$ $1)\cdots(x-j+1),\dots p_n(x) = x(x-1)\cdots(x-n+1)$. We consider the difference operator D on \mathcal{P}_n defined by Dp(x) = p(x+1) - p(x).
 - **a**) Find the matrix representations of D with respect to the monomial basis $\mathcal{M} =$ $\{1, x, ..., x^n\}$ and the basis $\mathcal{B} = \{p_0(x), ..., p_n(x)\}$, respectively. (You might for the sake of simplicity restrict your discussion to n = 3.)
 - **b)** Show that $Dp_j = jp_{j-1}$ for j = 1, ..., n.
 - c) Use a) to conclude that for $p \in \mathcal{P}_n$ we have $D^n p \neq 0$ and $D^{n+1}p = 0$.

3 Let A be the matrix $A = \begin{pmatrix} 15 & -6 & 2\\ 35 & -14 & 5\\ 7 & -3 & 2 \end{pmatrix}$. Find the eigenvalues and generalized

- eigenspaces of A.
- 4 Let X be a finite-dimensional vector space and $T: X \to X$ a linear mapping. Show that

$$X \supseteq \operatorname{im}(T) \supseteq \operatorname{im}(T^2) \supseteq \cdots$$

and that there exists an integer k such that $im(T^k) = im(T^{k+1})$.