1 Let X be a vector space of dimension n and let $\mathcal{L}(x)$ denote the vector space of all linear mappings on X. Show that $\mathcal{L}(x)$ is isomorphic to \mathcal{M}_{n}, the space of all $n \times n$ matrices.

2 Let \mathcal{P}_{n} be the space of polynomials of degree at most n. We pick as basis $\mathcal{B}=$ $\left\{p_{0}(x), \ldots, p_{n}(x)\right\}$ where $p_{0}(x)=1, p_{1}(x)=x, p_{2}(x)=x(x-1), \ldots, p_{j}(x)=x(x-$ 1) $\cdots(x-j+1), \ldots p_{n}(x)=x(x-1) \cdots(x-n+1)$. We consider the difference operator D on \mathcal{P}_{n} defined by $D p(x)=p(x+1)-p(x)$.
a) Find the matrix representations of D with respect to the mononmial basis $\mathcal{M}=$ $\left\{1, x, . ., x^{n}\right\}$ and the basis $\mathcal{B}=\left\{p_{0}(x), \ldots, p_{n}(x)\right\}$, respectively. (You might for the sake of simplicity restrict your discussion to $n=3$.)
b) Show that $D p_{j}=j p_{j-1}$ for $j=1, \ldots, n$.
c) Use a) to conclude that for $p \in \mathcal{P}_{n}$ we have $D^{n} p \neq 0$ and $D^{n+1} p=0$.

3 Let A be the matrix $A=\left(\begin{array}{ccc}15 & -6 & 2 \\ 35 & -14 & 5 \\ 7 & -3 & 2\end{array}\right)$. Find the eigenvalues and generalized eigenspaces of A.

4 Let X be a finite-dimensional vector space and $T: X \rightarrow X$ a linear mapping. Show that

$$
X \supseteq \operatorname{im}(T) \supseteq \operatorname{im}\left(T^{2}\right) \supseteq \cdots
$$

and that there exists an integer k such that $\operatorname{im}\left(T^{k}\right)=\operatorname{im}\left(T^{k+1}\right)$.

