

TMA4145 Linear Methods Fall 2022

Exercise set 12

- 1 Let $\{e_n\}_{n\in\mathbb{N}}$ be the standard basis in the sequence space l^{∞} . Show that the series $\sum_{n=1}^{\infty} a_n e_n$ converges in l^{∞} if and only if $\{a_n\}_{n\in\mathbb{N}}$ converges to zero.
- 2 Show that if a normed space $(X, || \cdot ||)$ has a Schauder basis, then it is separable.
- **3** Let $L^2[-1,1]$ be equipped with the inner product

$$\langle f,g \rangle = \int_{-1}^{1} f(t) \overline{g(t)} \, dt.$$

Apply Gram-Schmidt's orthogonalization algorithm to the monomial basis $\{1, x, x^2, \dots\}$ up to degree 2.

4 Let $||\cdot||_a$ and $||\cdot||_b$ be equivalent norms on a vector space X. Show that a sequence $\{x_n\}$ in X is Cauchy with respect to the norm $||\cdot||_a$ if and only if it is Cauchy with respect to the norm $||\cdot||_b$.