1 Let M be a subspace of an inner product space X. Show that the orthogonal complement M^{\perp} is closed.

2 Let M be the plane of \mathbb{R}^{3} given by $x_{1}+x_{2}+x_{3}=0$. Find the linear mapping that is the orthogonal projection of \mathbb{R}^{3} onto this plane.

3 Let $T: X \rightarrow X$ be a bounded linear operator on a Hilbert space X. Show that

$$
\left\|T T^{*}\right\|=\left\|T^{*} T\right\|=\|T\|^{2}
$$

4 Let M be a closed subspace of a Hilbert space X, which by the projection theorem is given by the direct $\operatorname{sum} X=M \oplus M^{\perp}$. Show that the projection onto M is self-adjoint.

5 Show that $\left\{e^{2 \pi i n t}\right\}_{n \in \mathbb{Z}}$ is orthonormal with respect to the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)} d t
$$

