

TMA4145 Linear Methods Fall 2022

Exercise set 11

- 1 Let M be a subspace of an inner product space X. Show that the orthogonal complement M^{\perp} is closed.
- 2 Let M be the plane of \mathbb{R}^3 given by $x_1 + x_2 + x_3 = 0$. Find the linear mapping that is the orthogonal projection of \mathbb{R}^3 onto this plane.

3 Let $T: X \to X$ be a bounded linear operator on a Hilbert space X. Show that

$$||TT^*|| = ||T^*T|| = ||T||^2.$$

- 4 Let M be a closed subspace of a Hilbert space X, which by the projection theorem is given by the direct sum $X = M \oplus M^{\perp}$. Show that the projection onto M is self-adjoint.
- 5 Show that $\{e^{2\pi int}\}_{n\in\mathbb{Z}}$ is orthonormal with respect to the inner product

$$\langle f,g\rangle = \int_0^1 f(t)\overline{g(t)}\,dt.$$