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1. Primer on Linear Algebra

We review some facts about spanning sets and basis in finite-dimensional vector spaces.

Definition 1.1. A vector space over the real numbers R is a set X together with the operations
of addition X×X → X and scalar multiplication R×X → X satisfying the following properties:

(1) Commutativity: x+ y = y + x for all x, y ∈ X and (αβx) = α(βx) for all α, β ∈ R;
(2) Associativity: (x+ y) + z = x+ (y + z) for all x, y, z ∈ X;
(3) Additive identity: There exists an element 0 ∈ X such that 0 + x = x for all x ∈ X ;
(4) Additive inverse: For every x ∈ X , there exists an element y ∈ X such that x+ y = 0,

we denote y by −x;
(5) Multiplicative identity: 1x = x for all x ∈ X ;
(6) Distributivity: α(x+y) = αx+αy and (α+β)x = αx+βx for all x, y ∈ X and α, β ∈ R.

The elements of a vector space are called vectors. Given x1, ..., xn in X and scalars α1, ..., αn ∈
R we call the vector

x = α1x1 + · · ·+ αnxn

a linear combination. The set of all possible linear combinations of the vectors x1, ..., xn in
X is called the span of {x1, ..., xn}, denotedbyspan{x1, ..., xn}. Recall that a set of vectors
{x1, ..., xn} ⊂ X is linearly independent if for all scalars α1, ..., αn the equation α1x1++αnxn = 0
has only α1 = · · ·αn = 0 as solution.
If there exists a non-trivial linear combination of the xi’s that give a representation of 0, then
we call the {x1, ..., xn} linearly dependent.

Lemma 1.1. {x1, ..., xn} ⊂ X is linearly dependent if and only if there exists a vector, e.g. xj,
that is a linear combination of the others, i.e.

span{x1, ..., xj , ..., xn} = span{x1, ..., xj−1, xj+1, ..., xn}

Lemma 1.2. {x1, ..., xn} ⊂ X is linearly independent if and only if every x ∈ span{x1, ..., xn}
can be written uniquely as a linear combination of elements of {x1, ..., xn}.

Proof. (⇒) Assume {x1, ..., xn} is linearly independent. Suppose there are two ways to express
x:

x = α1x1 + · · ·+ αnxn

x = α′
1x1 + · · ·+ α′

nxn.

Then we have
0 = (α1 − α′

1)x1 + · · ·+ (αn − α′
n)xn.

By linear independence all these scalars have to be zero, hence the representation is unique.
Contradicting our assumption.
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(⇐) Suppose every x ∈ span{x1, ..., xn} can be written uniquely as a linear combination of
elements of {x1, ..., xn}. Hence there exist unique scalars α1, ..., αn for every x ∈ span{x1, ..., xn}
such that

x = α1x1 + · · ·+ αnxn.

In particular x = 0 is uniquely represented, hence the trivial decomposition α1 = · · · = αn = 0 is
the only way to represent the zero vector. Hence the set {x1, ..., xn} is linearly independent. □

There are two central notions in the theory of vector spaces:

Definition 1.2. Let X be a vector space.

(1) If there exists a set S ⊆ X with span(S) = X, then we call S a spanning set. In
case that S consists of finitely many elements {x1, ..., xn}, then we say that X is finite-
dimensional. Finally, if there exists no finite spanning set for X, then we call the vector
space infinite-dimensional.

(2) If there exists a linearly independent spanning set B for X, then we call B a basis for
X.

Proposition 1.3 (Basis Reduction Theorem). If {x1, ..., xn} is a spanning set for X, then either
{x1, ..., xn} is a basis for X or some xj’s can be removed from {{x1, ..., xn}} to obtain a basis.

As a consequence we get that every finite-dimensional vector space has a basis.

Proposition 1.4. Every finite-dimensional vector space has a basis.

An often used result is the following one:

Proposition 1.5 (Basis Extension Theorem). Let X be a finite-dimensional vector space. Then
any linearly independent subset of X can be extended to a basis.
Any two bases of a finite-dimensional vector space have the same number of elements.

Lemma 1.6. Let X be a finite-dimensional vector space of dimension n. Then any set {x1, ..., xn}
of n linearly independent vectors is a basis of X. In other words, any set of vectors {x1, ..., xm}
with m > n is linearly dependent.

These observations motivate

Definition 1.3. Suppose X has a basis {x1, ..., xn}. Then we call the number of elements of
this basis the dimension of X, denoted by dim(X). If X is infinite-dimensional, then we write
dim(X) = ∞.

Example 1.1. We have that dim(Rn) = n, the dimension of the space of all polynomials
of degree at most n is dim(Pn) = n + 1 and the vector space of all polynomials is infinite
dimensional, dim(P) = ∞.

Transformations that preserve linear combinations are called linear transformations, but also
might referred to as linear mappings and linear operators.

Definition 1.4. Suppose X and Y are vector spaces. A mapping T : X → Y that satisfies
T (αx+ βy) = αT (x) + βT (y) is called a linear mapping.
A bijective linear mapping T : X → Y is called an isomorphism between X and Y . We then
refer to X and Y as isomorphic vector spaces.

Maybe one of the most important example of isomorphic vector spaces is that Rn is isomorphic
to any n-dimensional real vector space.

Theorem 1.7. Any n-dimensional vector space X is isomorphic to Rn.
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We introduce some notation before we prove this statement.

Definition 1.5. Suppose X is a n-dimensional vector space. If B = {b1, ..., bn} is a basis of X,
then for any x ∈ X we denote the scalars in the unique expansion of x with respect to the basis
B by α1, , , ., αn:

x = α1b1 + · · ·+ αnbn.

The linear mapping from X to Rn defined by x 7→ [x]B := (α1, ..., αn)
T is called the coefficient

mapping and denoted by CB.

Proof. Let B be a basis for X. Then the mapping CB : X → Rn is linear and bijective.

• Claim: CB is linear. Let [x]B = (α1, ..., αn)
T and [y]B = (β1, ..., βn)

T be the coefficients
of x, y ∈ X. Then we have [x+ λy]B = [x]B + λ[y]B since

x+ λy =

n∑
j=1

αjbj + λ

n∑
j=1

βjbj =

n∑
j=1

(αj + λβj)bj .

• Claim: CB is bijective.
There are several ways to see this: (i) One is the show that CB is injective and surjective.
(ii) Or instead, find the inverse to CB and show that it is linear. (iii) Using the fact that
a linear mapping is bijective if and only if it sends a basis to a basis.

(i) CB is injective: Suppose CB(x) ̸= CB(y) for x, y ∈ X. Then by the uniqueness
of the coefficients in the expansion wrt to the basis B, we have x ̸= y.
CB is surjective: Suppose (α1, ..., αn)

T in Rn. Then the vector x = α1x1 + · · · + αnxn

satisfies [x]B equal to the vector we started with.
(ii) The inverse of C−1

B is a mapping from Rn to X and given by ((α1, ..., αn)
T ) 7→ x =

α1x1 + · · ·+ αnxn. Show that it is linear and that CB ◦ C−1
B = id = C−1

B ◦ CB.
(iii) Show that CB(bj) = ej , where ej denotes the j − th standard vector in Rn.

□

Next we discuss the link between matrices and linear transformations. On the one hand an
m× n matrix A with real entries defines a linear transformation from Rn to Rm by Tx = Ax.

On the other hand any linear transformation T between finite-dimensional vector spaces X
and Y can by represented as a matrix-vector transformation after picking a basis for X and Y ,
respectively.

Let B = {b1, ..., bn} be a basis of X and C = {c1, ..., cm} be a basis of Y . Suppose T is a
linear transformation T : X → Y Then

x =

n∑
j=1

αjbj 7→ T (x) =

n∑
j=1

αjT (bj).

Thus we have

[T (x)]C =

n∑
j=1

αi[T (bj)]C .

We define a m× n matrix A which has as its j-th column [T (bj)]C . Then we have

[Tx]C = A[x]B.

The matrix A represents T with respect to the bases B and C. Sometimes, we denote this A
sometimes by [T ]CB.
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We address now the relation between the matrix representation of T depending on the change
of bases of X and Y , respectively.
Suppose we have two bases B = {x1, ..., xn} and R = {y1, ..., yn} for X. Let x =

∑n
j=1 αixi.

Then

[x]R =

n∑
j=1

αix⃗iR.

Define the n× n matrix P with j-th column x⃗jR, and we call P the change of bases matrix:

[x]R = P [x]B

and by the invertibility of P we also have

[x]B = P−1[x]R.

Let now C and S be two bases for Y . Then a linear transformation T : X → Y has two
matrix representations:

A = [T ]CB and B = [T ]SR.

In other words we have
[Tx]C = A[x]B , [Tx]S = B[x]R

for any x ∈ X. Let P be the change of bases matrix of size n×n such that [x]R = P [x]B for any
x ∈ X and let Q be the invertible m×m matrix such that [y]S = Q[y]C .
Hence we get that

[Tx]S = BP [x]B

and
[y]S = [Tx]S = Q[Tx]C = QA[x]B

for any x ∈ X. Hence we get that

B = QAP−1 and A = Q−1BP.

In the case X = Y we have P = Q and we set S = Q−1 to get B = S−1AS. Then the matrices
A and B represent the same linear transformation T on X with respect to different bases.
These observations motivate the definition of matrices representing the same linear transforma-
tion.

Definition 1.6. Two m× n matrices A and B are called equivalent if there exists an invertible
matrix S such that B = QAP−1. Furthermore, Two n× n matrices A and B are called similar
if there exists an invertible matrix S such that B = S−1AS.

Note that two similar matrices describe the same linear transformation on X with respect to
different bases of X.

2. Invariant subspaces and matrix decomposition

Invariance of a class of objects under some structures is an integral part of mathematics. In
the case of linear transformations between vector spaces the invariance of a subspace under a
linear transformation is one of the crucial notions. Since it allows one to address the main prob-
lem of linear algebra: Show that given a linear transformation on a vector space X. There exists
a basis of X with respect to which T has a reasonable simple matrix representation.

In order to achieve this goal we have to break up our linear transformation on X into “smaller”
ones, by decomposing X into subspaces that allow us to restrict the linear transformation onto
these subspaces.
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Suppose T : X → Y is a linear transformation. Then the kernel of T , ker(T ), is a subspace
of X consisting of all x ∈ X for which Tx = 0, and the image or range of T , denoted by im(T )
or ran(T ), is the subspace of all y ∈ Y that are of the form y = Tx for some x ∈ X.
If one represents T : X → Y as a matrix-vector transformation y = Ax, then instead of the
kernel we refer to it as the nullity of A and the range of T becomes the column space of A. Recall
that the dimension of the column space is called the rank of A.

In order to make sense of the restriction of a linear mapping T : X → X to a subspace M ,
it needs to satisfy that T (M) ⊆ M .

Definition 2.1. Suppose T is a linear transformation on a vector space. A subspace M of X
is called invariant under T if x ∈ M implies Tx ∈ M . We will also refer to M as T-invariant
subspace.

Here are some examples of invariant subspaces. Let T be a linear transformation on a vector
space X.

(1) {0} and X;
(2) The kernel and the range of T .
(3) Let T : R3 → R3 be the linear mapping defined by T (x1, x2, x3) = (x1, x2, 0). Then the

subspaceM spanned by (1, 0, 0) and (0, 1, 0) is T -invariant. Note that T is the orthogonal
projection of R3 onto M .

A question of interest is if a linear operator on a vector space has an invariant subspace. We
will later demonstrate that any linear transformation on a complex vector space has an invariant
subspace. This is not the case for linear mappings on real vector spaces, e.g. take the rotation
Rα by the angle α in R2.

Lemma 2.1. Suppose T : X → X is a linear mapping and M a subspace of X. Then M is
T -invariant if and only if T (bj) ∈ M , j = 1, ..., k for any basis {b1, ..., bk} of M .

Proof. This follows from the observation that a linear mapping is uniquely determined by its
values on a basis. □

Suppose M is a subspace of X. Then we know from other courses that the orthogonal
complement M⊥ of M allows us to decompose x ∈ X in the part xM in M and its part xM⊥ in
M⊥ x = xM + xM⊥ where xM and xM⊥ are unique. The reason underlying the uniqueness of
the decomposition is that M ∩M⊥ = {0}.
Recall that the sum M +N of two subspaces of X is defined to be the set M +N = {m + n :
m ∈ M, n ∈ N}, which is also a subspace of X. There is a relation between the dimensions of
subspaces of a finite-dimensional vector space X and the dimensions of their intersection and
sum:

dim(M +N) + dim(M ∩N) = dim(M) + dim(N).

Let us focus on the case when the subspaces M and N have trivial intersection, i.e. M∩N = {0}.
Sums of subspaces that satisfy this additional condition are called direct sums.

Lemma 2.2. Let M and N be subspaces of a finite-dimensional vector space X. Then M ∩N =
{0} if and only if for every z ∈ M +N there exist unique elements m ∈ M and n ∈ N such that
z = m+ n.

Proof. (⇒) Suppose we have M ∩ N = {0}. Let z ∈ M + N have two decompositions z =
m1+n1 = m2+n2 for mi ∈ M and ni ∈ N , i = 1, 2. Then we have 0 = m1−m2+(n1−n2). We
set m := m1 −m2 and n := n1 − n2 and note that m ∈ M and n ∈ N . Hence we have m = −n,
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which implies that m ∈ N and n ∈ M . Consequently m and n are in M ∩ N . By assumption
M ∩N = {0} implies that m = n = 0, which yields that m1 = m2 and n1 = n2. This shows the
desired uniqueness of the decomposition.
(⇐) Suppose that every element z ∈ M +N can be uniquely written as z = m + n for m ∈ M
and n ∈ N . Assume that b ∈ M ∩N , i.e. b ∈ M and b ∈ N .Since N is a subspace, we have also
−b ∈ N . Hence we have 0 = b+ (−b) where b ∈ M and −b ∈ N . On the other hand 0 has also
the decomposition 0 = 0 + 0. The uniqueness condition yields that b = 0. Since b was arbitrary,
we have M ∩N = {0}. □

A result of utmost importance is the existence of complements for a subspace of a finite-
dimensional vector space.

Proposition 2.3. Let X be a finite-dimensional vector space and let M be any subspace of X.
Then there exists a subspace N of X such that M ⊗N = X.

We call the subspace N ⊆ X a complement of M .

Proof. Let {x1, ..., xk} be a basis of M . Then there exist vectors y1, .., yl in X such that
{x1, ..., xk, y1, ..., yl} is a basis of X. We define N to be the span of {y1, ..., yl} and note that this
set is also a basis of N . By construction we have M +N = X.
Let us show that M ∩N = {0}. Suppose z ∈ M ∩N . Then z = α1x1 + · · ·+ αkxk since it is an
element of M and z = β1y1 + · · ·+ βlyl. Consequently, 0 = α1x1 + · · ·+αkxk − β1y1 − · · · − βlyl
which yields that α1 = · · · = αk = β1 = · · · = βl = 0. Hence z = 0 and since z was arbitrary, we
have M ∩N = {0}. □

We explore the implications of invariant subspaces and direct sums for matrix representations
of linear mappings.

Proposition 2.4. Let T : X → X be a linear mapping and M a T -invariant subspace of X.
Suppose BM = {b1, ..., bk} is a basis of M and B = {b1, ..., bk, bk+1, ..., bn} be a basis of X. Then
the matrix representation of T wrt B is of the form

[T ]B =

[
[T ]BM

A12

0 A22

]
,

where [T ]BM
is the matrix representation of T wrt to BM , A12 is an k× (n− k) matrix and A22

is an (n− k)× (n− k) matrix.

Proof. Let BM be a basis of M . Then the condition T (bj) ∈ M for j = 1, ..., k implies that
[T ]BM

is an k × k matrix since the columns of [T ]BM
are linear combinations of the elements of

BM . Hence this yields the zeros in the first k columns of [T ]B. □

Proposition 2.5. Suppose T : X → X is a linear mapping and let M,N be T -invariant sub-
spaces sucht that X = M ⊕N . If B = BM ∪ BN is a basis of X where BM and BN are bases of
M and N , then the matrix representation of T wrt B is of the form

[T ]B =

[
[T ]BM

0
0 [T ]BN

]
.
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Proof. Let BM = {b1, ..., bm} be a basis of M and let BN = {b̃1, ..., b̃n} be a basis of N . Since

T (bi) is in M for i = 1, ...,m and T (b̃j) is in N for j = 1, ..., n, we have

T (b1) = a11b1 + · · · a1mbm + 0 · · · b̃1 + · · ·+ 0 · · · b̃n
T (b2) = a21b1 + · · · a2mbm + 0 · · · b̃1 + · · ·+ 0 · · · b̃n

...

T (bm) = am1b1 + · · · ammbm + 0 · · · b̃1 + · · ·+ 0 · · · b̃n
T (b̃1) = 0 · · · b1 + · · ·+ 0 · · · bm + b11b̃1 + · · ·+ b1nb̃n

T (b̃2) = 0 · · · b1 + · · ·+ 0 · · · bm + b21b̃1 + · · ·+ b2nb̃n

...

T (b̃n) = 0 · · · b1 + · · ·+ 0 · · · bm + bn1b̃1 + · · ·+ bnnb̃n

i.e. [T ]B =

[
[T ]BM

0
0 [T ]BN

]
where [T ]BM

= (aij)
m
i,j=1 and [T ]BN

= (bij)
n
i,j=1. □

3. Eigenspaces and Generalized Eigenspaces

Let us investigate one-dimensional invariant subspaces.

Proposition 3.1. A linear transformation on a finite-dimensional vector space has a one-
dimensional invariant subspace if and only if T has an eigenvector.

Proof. (•) Suppose M is invariant under T , then Tx ∈ M and hence there is a scalar λ ∈ F such
that Tx = λx.

(•) If Tx = λx for some λ′inF and some non-zero x ∈ X, then the span(x) is a one-dimensional
subspace. This subspace is invariant under T . □

We restrict our discussion to complex vector spaces, i.e. the scalars in our linear combinations
are complex numbers.

Definition 3.1. A scalar λ is called an eigenvalue of a linear transformation T : X → X if there
exists a non-zero x ∈ X such that Tx = λx. The set σ(T ) of C

σ(T ) = {z ∈ C : T − zI is not invertible}

is known as the spectrum of T .

In other words, x is an eigenvector of T if and only if x ∈ kerT − λI. For finite-dimensional
vector spaces σ(T ) is the set of all eigenvalues counting multiplicities of T .

Definition 3.2. The subspace Eλ = ker (T − λI) is called the eigenspace of T for the eigenvalue
λ. The dimension of Eλ is called the geometric multiplicity of λ.

Note that Eλ consists of the eigenvectors of T and the zero vector 0.

Theorem 3.2. Suppose T is a linear transformation on a finite-dimensional complex vector
space. Then there exists an eigenvalue λ ∈ C for an eigenvector x of T .
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Proof. We assume that dim(X) = n and choose any non-zero vector x in X. Consider the
following set of n+ 1 vectors in X:

{x, Tx, T 2x, ..., Tnx}.
Since n + 1 vectors in an n-dimensional vector space X are linearly independent, there exists a
non-trivial linear combination:

a0x+ a1Tx+ · · ·+ anT
nx = (a0I + a1T + · · ·+ anT

n)x = 0.

Note that not all a1, ..., an are zero. If they were all zero, then a0x = 0 which would imply that
a0 = 0. Hence that the linear combination is trivial.

Let us denote by p(z) = a0 + a1z + · · ·+ anz
n the polynomial associated to the linear transfor-

mation T . Powers of numbers correspond to powers of T by the corresponding iterates of T and
T 0 = I.

Then the non-trivial linear combination among the vectors turns into a polynomial equation
in T :

p(T ) = 0.

By the Fundamental Theorem of Algebra any polynomial can be written as a product of linear
factors:

p(t) = c(t− λ1)(t− λ2) · · · (t− λn), λi ∈ C, c ̸= 0.

Hence p(T ) has a factorization of the form:

p(T ) = c(T − λ1I)(T − λ2I) · · · (T − λmI).

Hence p(T ) is a product of linear mappings T − λjI for j = 1, ...,m. We know that p(T )x = 0
for a non-zero x ̸= 0, which implies that at least one of these linear mappings is not invertible.
Thus it has to have a non-trivial kernel, let’s say y ∈ ker(T − λiI), which yields that y is an
eigenvector for the eigenvalue λi. Consequently, we have shown the desired assertion. □

The assumptions of the above statement are crucial: (i) Since there are linear transformations
on a real vector space, do not need to have eigenvalues. For example, the rotation by 90 degrees
in the plane R2.

Definition 3.3. A n × n matrix A is called diagonalizable if it has n linearly independent
eigenvectors.

Note that the set of eigenvectors of a diagonalizable matrix is consequently a basis for Cn.
By definition a diagonalizable n×nmatrixA has eigenvalues λ1, ..., λn and associated eigenvectors
u1, ..., un satisfying:

Au1 = λu1

...

Aun = λun.

Collect the eigenvectors of A into one matrix: U = (u1|u2| · · · |un); and the eigenvalues of A into
the diagonal matrix

D =


λ1 0 · · · · · · 0
... λ2 0 · · · 0
... 0

. . .
. . . λn

 .
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Then the eigenvalue equations turn into a matrix equation:

AU = UD.

Since A is diagonalizable, the eigenvectors are a basis for Cn. Hence U is invertible and we have

A = UDU−1.

Sometimes U is an unitary matrix, i.e. the eigenvectors yield an orthonormal basis for Cn. Then
we have A = UDU∗.

A well-known criterion for the non-invertiblity of a matrix is the vanishing of its determinant.
Hence eigenvalues are the zeros of the polynomial pA(z) = det(zI −A), known as the character-
istic polynomial.

Lemma 3.3. Similar matrices have the same characteristic equation.

Proof. Let A and B be similar matrices. Thus there exists an invertible matrix S such that
B = S−1AS.

pB(z) = det(zI − S−1AS) = det(zS−1S − S−1AS) = det(S−1(zI −A)S) = pA(z).

□

As an important consequence of the existence of an eigenvector for linear mappings between
complex finite-dimensional vector spaces we prove Schur’s triangularization theorem, our first
classification theorem. Before we introduce a refined version of similarity. Namely, if the matrix
S in the definition of similar matrices may be chosen as a chosen as a unitary matrix, then we
call the matrices A and B unitarily equivalent.

Theorem 3.4 (Triangularization Theorem). Given a n × n matrix with eigenvalues λ1, ..., λn,
counting multiplicities. There exists a unitary n× n matrix U such that

A = UTU∗

for an upper triangular matrix T with the eigenvalues on the diagonal. Hence any matrix is
similar to an upper triangular matrix.

We refer to the decomposition of the theorem as Schur form.

Proof. We proceed by induction on n. For n = 1, there is nothing to show. Suppose that the
result is true up to matrices of size n− 1.
Let A be a n×n matrix with eigenvalues λ1, ..., λn counting multiplicities. Choose a normalized
eigenvector u1 for the eigenvalue λ1. Then we extend u1 to a basis {u1, ..., un} of Cn and we
choose this basis to be orthonormal. Relative to this basis the matrix is of the form

A = U


λ1 x · · · x
0
... An−1

0

U−1,

where U is the matrix of the system {u1, ..., un} relative to the canonical basis. Since this is
a unitary matrix, the similarity, is actually a unitary equivalence. By the induction hypothesis
there exists a (n− 1)× (n− 1)-matrix V such that V AV ∗ is upper triangular. Set Ṽ to be the

n× n matrix where v11 = 1 and the other entries of the first column and row are zero. Then Ṽ
is a unitary matrix and UṼ is the desired unitary matrix. □
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Example 3.1. Find the Schur form of A =

(
5 7
−2 −4

)
.

First step: Find an eigenvalue of A and associated eigenvector. The characteristic polynomial is

λ2 − λ− 6 = 0 and so λ1 = −2 and λ2 = 3. An eigenvector for λ1 = −2 is x1 =

(
1
−1

)
.

The second step is to complete it to a basis of C2. In our case we take the eigenvector to
the second eigenvalue and note that the corresponding set of vectors is linearly independent:

x2 =

(
7
−2

)
.

Third step: Use a orthonormalization procedure, e.g. Gram-Schmidt, to turn the system {x1, x2}

into a basis {u1 = 1√
2

(
1
−1

)
, u2 = 1√

2

(
1
1

)
}.

Final step: Form the matrix U = 1√
2

(
1 1
−1 1

)
. Computation of U∗AU =

(
2 9
0 3

)
, which has

the eigenvalues of A on its diagonal and is upper triangular.

Schur’s triangularization theorem has a number of important consequences.

Theorem 3.5 (Cayley-Hamilton). Given a n× n matrix. Then

pA(A) = 0,

where pA(A) is the characteristic polynomial of A.

We state a refined version of Schur’s triangularization theorem

Theorem 3.6 (Schur normal form). Given a n×n matrix A with distinct eigenvalues λ1, ..., λk

with k ≤ n. Then A is unitarily equivalent to
T1 0 · · · 0

0 T2
. . . 0

...
. . .

...
0 . . . 0 Tk


where Ti has the form 

λi x · · · x

0 λi
. . . x

...
. . .

. . . x
0 . . . 0 λi
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