FRANZ LUEF

1. Primer on Linear Algebra

We review some facts about spanning sets and basis in finite-dimensional vector spaces.
Definition 1.1. A vector space over the real numbers \mathbb{R} is a set X together with the operations of addition $X \times X \rightarrow X$ and scalar multiplication $\mathbb{R} \times X \rightarrow X$ satisfying the following properties:
(1) Commutativity: $x+y=y+x$ for all $x, y \in X$ and $(\alpha \beta x)=\alpha(\beta x)$ for all $\alpha, \beta \in \mathbb{R}$;
(2) Associativity: $(x+y)+z=x+(y+z)$ for all $x, y, z \in X$;
(3) Additive identity: There exists an element $0 \in X$ such that $0+x=x$ for all $x \in X$;
(4) Additive inverse: For every $x \in X$, there exists an element $y \in X$ such that $x+y=0$, we denote y by $-x$;
(5) Multiplicative identity: $1 x=x$ for all $x \in X$;
(6) Distributivity: $\alpha(x+y)=\alpha x+\alpha y$ and $(\alpha+\beta) x=\alpha x+\beta x$ for all $x, y \in X$ and $\alpha, \beta \in \mathbb{R}$.

The elements of a vector space are called vectors. Given x_{1}, \ldots, x_{n} in X and scalars $\alpha_{1}, \ldots, \alpha_{n} \in$ \mathbb{R} we call the vector

$$
x=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}
$$

a linear combination. The set of all possible linear combinations of the vectors x_{1}, \ldots, x_{n} in X is called the span of $\left\{\mathrm{x}_{1}, \ldots, x_{n}\right\}$, denotedbyspan $\left\{\mathrm{x}_{1}, \ldots, x_{n}\right\}$. Recall that a set of vectors $\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ is linearly independent if for all scalars $\alpha_{1}, \ldots, \alpha_{n}$ the equation $\alpha_{1} x_{1}++\alpha_{n} x_{n}=0$ has only $\alpha_{1}=\cdots \alpha_{n}=0$ as solution.
If there exists a non-trivial linear combination of the x_{i} 's that give a representation of 0 , then we call the $\left\{x_{1}, \ldots, x_{n}\right\}$ linearly dependent.
Lemma 1.1. $\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ is linearly dependent if and only if there exists a vector, e.g. x_{j}, that is a linear combination of the others, i.e.

$$
\operatorname{span}\left\{x_{1}, \ldots, x_{j}, \ldots, x_{n}\right\}=\operatorname{span}\left\{x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right\}
$$

Lemma 1.2. $\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ is linearly independent if and only if every $x \in \operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ can be written uniquely as a linear combination of elements of $\left\{x_{1}, \ldots, x_{n}\right\}$.
Proof. (\Rightarrow) Assume $\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly independent. Suppose there are two ways to express x :

$$
\begin{aligned}
& x=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n} \\
& x=\alpha_{1}^{\prime} x_{1}+\cdots+\alpha_{n}^{\prime} x_{n} .
\end{aligned}
$$

Then we have

$$
0=\left(\alpha_{1}-\alpha_{1}^{\prime}\right) x_{1}+\cdots+\left(\alpha_{n}-\alpha_{n}^{\prime}\right) x_{n}
$$

By linear independence all these scalars have to be zero, hence the representation is unique. Contradicting our assumption.

Date: Fall 2022.
(\Leftarrow) Suppose every $x \in \operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ can be written uniquely as a linear combination of elements of $\left\{x_{1}, \ldots, x_{n}\right\}$. Hence there exist unique scalars $\alpha_{1}, \ldots, \alpha_{n}$ for every $x \in \operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ such that

$$
x=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n} .
$$

In particular $x=0$ is uniquely represented, hence the trivial decomposition $\alpha_{1}=\cdots=\alpha_{n}=0$ is the only way to represent the zero vector. Hence the set $\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly independent.

There are two central notions in the theory of vector spaces:
Definition 1.2. Let X be a vector space.
(1) If there exists a set $S \subseteq X$ with $\operatorname{span}(S)=X$, then we call S a spanning set. In case that S consists of finitely many elements $\left\{x_{1}, \ldots, x_{n}\right\}$, then we say that X is finitedimensional. Finally, if there exists no finite spanning set for X, then we call the vector space infinite-dimensional.
(2) If there exists a linearly independent spanning set B for X, then we call B a basis for X.

Proposition 1.3 (Basis Reduction Theorem). If $\left\{x_{1}, \ldots, x_{n}\right\}$ is a spanning set for X, then either $\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for X or some x_{j} 's can be removed from $\left\{\left\{x_{1}, \ldots, x_{n}\right\}\right\}$ to obtain a basis.

As a consequence we get that every finite-dimensional vector space has a basis.
Proposition 1.4. Every finite-dimensional vector space has a basis.
An often used result is the following one:
Proposition 1.5 (Basis Extension Theorem). Let X be a finite-dimensional vector space. Then any linearly independent subset of X can be extended to a basis.
Any two bases of a finite-dimensional vector space have the same number of elements.
Lemma 1.6. Let X be a finite-dimensional vector space of dimension n. Then any set $\left\{x_{1}, \ldots, x_{n}\right\}$ of n linearly independent vectors is a basis of X. In other words, any set of vectors $\left\{x_{1}, \ldots, x_{m}\right\}$ with $m>n$ is linearly dependent.

These observations motivate
Definition 1.3. Suppose X has a basis $\left\{x_{1}, \ldots, x_{n}\right\}$. Then we call the number of elements of this basis the dimension of X, denoted by $\operatorname{dim}(X)$. If X is infinite-dimensional, then we write $\operatorname{dim}(X)=\infty$.

Example 1.1. We have that $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$, the dimension of the space of all polynomials of degree at most n is $\operatorname{dim}\left(\mathcal{P}_{n}\right)=n+1$ and the vector space of all polynomials is infinite dimensional, $\operatorname{dim}(\mathcal{P})=\infty$.

Transformations that preserve linear combinations are called linear transformations, but also might referred to as linear mappings and linear operators.

Definition 1.4. Suppose X and Y are vector spaces. A mapping $T: X \rightarrow Y$ that satisfies $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$ is called a linear mapping.
A bijective linear mapping $T: X \rightarrow Y$ is called an isomorphism between X and Y. We then refer to X and Y as isomorphic vector spaces.

Maybe one of the most important example of isomorphic vector spaces is that \mathbb{R}^{n} is isomorphic to any n-dimensional real vector space.
Theorem 1.7. Any n-dimensional vector space X is isomorphic to \mathbb{R}^{n}.

We introduce some notation before we prove this statement.
Definition 1.5. Suppose X is a n-dimensional vector space. If $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis of X, then for any $x \in X$ we denote the scalars in the unique expansion of x with respect to the basis \mathcal{B} by $\alpha_{1},,, ., \alpha_{n}$:

$$
x=\alpha_{1} b_{1}+\cdots+\alpha_{n} b_{n}
$$

The linear mapping from X to \mathbb{R}^{n} defined by $x \mapsto[x]_{\mathcal{B}}:=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}$ is called the coefficient mapping and denoted by $C_{\mathcal{B}}$.
Proof. Let \mathcal{B} be a basis for X. Then the mapping $C_{\mathcal{B}}: X \rightarrow \mathbb{R}^{n}$ is linear and bijective.

- Claim: $C_{\mathcal{B}}$ is linear. Let $[x]_{\mathcal{B}}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}$ and $[y]_{\mathcal{B}}=\left(\beta_{1}, \ldots, \beta_{n}\right)^{T}$ be the coefficients of $x, y \in X$. Then we have $[x+\lambda y]_{\mathcal{B}}=[x]_{\mathcal{B}}+\lambda[y]_{\mathcal{B}}$ since

$$
x+\lambda y=\sum_{j=1}^{n} \alpha_{j} b_{j}+\lambda \sum_{j=1}^{n} \beta_{j} b_{j}=\sum_{j=1}^{n}\left(\alpha_{j}+\lambda \beta_{j}\right) b_{j} .
$$

- Claim: $C_{\mathcal{B}}$ is bijective.

There are several ways to see this: (i) One is the show that $C_{\mathcal{B}}$ is injective and surjective.
(ii) Or instead, find the inverse to $C_{\mathcal{B}}$ and show that it is linear. (iii) Using the fact that a linear mapping is bijective if and only if it sends a basis to a basis.
(i) $C_{\mathcal{B}}$ is injective: Suppose $C_{\mathcal{B}}(x) \neq C_{\mathcal{B}}(y)$ for $x, y \in X$. Then by the uniqueness of the coefficients in the expansion wrt to the basis \mathcal{B}, we have $x \neq y$.
$C_{\mathcal{B}}$ is surjective: Suppose $\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}$ in \mathbb{R}^{n}. Then the vector $x=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$ satisfies $[x]_{\mathcal{B}}$ equal to the vector we started with.
(ii) The inverse of C_{B}^{-1} is a mapping from \mathbb{R}^{n} to X and given by $\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}\right) \mapsto x=$ $\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$. Show that it is linear and that $C_{\mathcal{B}} \circ C_{\mathcal{B}}^{-1}=\mathrm{id}=C_{\mathcal{B}}^{-1} \circ C_{\mathcal{B}}$.
(iii) Show that $C_{\mathcal{B}}\left(b_{j}\right)=e_{j}$, where e_{j} denotes the $j-t h$ standard vector in \mathbb{R}^{n}.

Next we discuss the link between matrices and linear transformations. On the one hand an $m \times n$ matrix A with real entries defines a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} by $T x=A x$.

On the other hand any linear transformation T between finite-dimensional vector spaces X and Y can by represented as a matrix-vector transformation after picking a basis for X and Y, respectively.

Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis of X and $\mathcal{C}=\left\{c_{1}, \ldots, c_{m}\right\}$ be a basis of Y. Suppose T is a linear transformation $T: X \rightarrow Y$ Then

$$
x=\sum_{j=1}^{n} \alpha_{j} b_{j} \quad \mapsto \quad T(x)=\sum_{j=1}^{n} \alpha_{j} T\left(b_{j}\right)
$$

Thus we have

$$
[T(x)]_{\mathcal{C}}=\sum_{j=1}^{n} \alpha_{i}\left[T\left(b_{j}\right)\right]_{\mathcal{C}}
$$

We define a $m \times n$ matrix A which has as its j -th column $\left[T\left(b_{j}\right)\right]_{\mathcal{C}}$. Then we have

$$
[T x]_{\mathcal{C}}=A[x]_{\mathcal{B}}
$$

The matrix A represents T with respect to the bases \mathcal{B} and \mathcal{C}. Sometimes, we denote this A sometimes by $[T]_{\mathcal{B}}^{\mathcal{C}}$.

We address now the relation between the matrix representation of T depending on the change of bases of X and Y, respectively.
Suppose we have two bases $\mathcal{B}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\mathcal{R}=\left\{y_{1}, \ldots, y_{n}\right\}$ for X. Let $x=\sum_{j=1}^{n} \alpha_{i} x_{i}$. Then

$$
[x]_{\mathcal{R}}=\sum_{j=1}^{n} \alpha_{i} \overrightarrow{x_{i \mathcal{R}}}
$$

Define the $n \times n$ matrix P with j-th column $\overrightarrow{x_{\mathcal{R}}}$, and we call P the change of bases matrix:

$$
[x]_{\mathcal{R}}=P[x]_{\mathcal{B}}
$$

and by the invertibility of P we also have

$$
[x]_{\mathcal{B}}=P^{-1}[x]_{\mathcal{R}}
$$

Let now \mathcal{C} and \mathcal{S} be two bases for Y. Then a linear transformation $T: X \rightarrow Y$ has two matrix representations:

$$
A=[T]_{\mathcal{B}}^{\mathcal{C}} \text { and } B=[T]_{\mathcal{R}}^{\mathcal{S}}
$$

In other words we have

$$
[T x]_{\mathcal{C}}=A[x]_{\mathcal{B}} \quad,[T x]_{\mathcal{S}}=B[x]_{\mathcal{R}}
$$

for any $x \in X$. Let P be the change of bases matrix of size $n \times n$ such that $[x]_{\mathcal{R}}=P[x]_{\mathcal{B}}$ for any $x \in X$ and let Q be the invertible $m \times m$ matrix such that $[y]_{\mathcal{S}}=Q[y]_{\mathcal{C}}$.
Hence we get that

$$
[T x]_{\mathcal{S}}=B P[x]_{\mathcal{B}}
$$

and

$$
[y]_{\mathcal{S}}=[T x]_{\mathcal{S}}=Q[T x]_{\mathcal{C}}=Q A[x]_{\mathcal{B}}
$$

for any $x \in X$. Hence we get that

$$
B=Q A P^{-1} \text { and } A=Q^{-1} B P
$$

In the case $X=Y$ we have $P=Q$ and we set $S=Q^{-1}$ to get $B=S^{-1} A S$. Then the matrices A and B represent the same linear transformation T on X with respect to different bases.
These observations motivate the definition of matrices representing the same linear transformation.

Definition 1.6. Two $m \times n$ matrices A and B are called equivalent if there exists an invertible matrix S such that $B=Q A P^{-1}$. Furthermore, Two $n \times n$ matrices A and B are called similar if there exists an invertible matrix S such that $B=S^{-1} A S$.

Note that two similar matrices describe the same linear transformation on X with respect to different bases of X.

2. Invariant subspaces and matrix decomposition

Invariance of a class of objects under some structures is an integral part of mathematics. In the case of linear transformations between vector spaces the invariance of a subspace under a linear transformation is one of the crucial notions. Since it allows one to address the main problem of linear algebra: Show that given a linear transformation on a vector space X. There exists a basis of X with respect to which T has a reasonable simple matrix representation.

In order to achieve this goal we have to break up our linear transformation on X into "smaller" ones, by decomposing X into subspaces that allow us to restrict the linear transformation onto these subspaces.

Suppose $T: X \rightarrow Y$ is a linear transformation. Then the kernel of $T, \operatorname{ker}(T)$, is a subspace of X consisting of all $x \in X$ for which $T x=0$, and the image or range of T, denoted by $\operatorname{im}(T)$ or $\operatorname{ran}(T)$, is the subspace of all $y \in Y$ that are of the form $y=T x$ for some $x \in X$.
If one represents $T: X \rightarrow Y$ as a matrix-vector transformation $y=A x$, then instead of the kernel we refer to it as the nullity of A and the range of T becomes the column space of A. Recall that the dimension of the column space is called the rank of A.

In order to make sense of the restriction of a linear mapping $T: X \rightarrow X$ to a subspace M, it needs to satisfy that $T(M) \subseteq M$.

Definition 2.1. Suppose T is a linear transformation on a vector space. A subspace M of X is called invariant under T if $x \in M$ implies $T x \in M$. We will also refer to M as T-invariant subspace.

Here are some examples of invariant subspaces. Let T be a linear transformation on a vector space X.
(1) $\{0\}$ and X;
(2) The kernel and the range of T.
(3) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear mapping defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, 0\right)$. Then the subspace M spanned by $(1,0,0)$ and $(0,1,0)$ is T-invariant. Note that T is the orthogonal projection of \mathbb{R}^{3} onto M.
A question of interest is if a linear operator on a vector space has an invariant subspace. We will later demonstrate that any linear transformation on a complex vector space has an invariant subspace. This is not the case for linear mappings on real vector spaces, e.g. take the rotation R_{α} by the angle α in \mathbb{R}^{2}.

Lemma 2.1. Suppose $T: X \rightarrow X$ is a linear mapping and M a subspace of X. Then M is T-invariant if and only if $T\left(b_{j}\right) \in M, j=1, \ldots, k$ for any basis $\left\{b_{1}, \ldots, b_{k}\right\}$ of M.
Proof. This follows from the observation that a linear mapping is uniquely determined by its values on a basis.

Suppose M is a subspace of X. Then we know from other courses that the orthogonal complement M^{\perp} of M allows us to decompose $x \in X$ in the part x_{M} in M and its part $x_{M^{\perp}}$ in $M^{\perp} x=x_{M}+x_{M^{\perp}}$ where x_{M} and $x_{M^{\perp}}$ are unique. The reason underlying the uniqueness of the decomposition is that $M \cap M^{\perp}=\{0\}$.
Recall that the sum $M+N$ of two subspaces of X is defined to be the set $M+N=\{m+n$: $m \in M, n \in N\}$, which is also a subspace of X. There is a relation between the dimensions of subspaces of a finite-dimensional vector space X and the dimensions of their intersection and sum:

$$
\operatorname{dim}(M+N)+\operatorname{dim}(M \cap N)=\operatorname{dim}(M)+\operatorname{dim}(N)
$$

Let us focus on the case when the subspaces M and N have trivial intersection, i.e. $M \cap N=\{0\}$. Sums of subspaces that satisfy this additional condition are called direct sums.
Lemma 2.2. Let M and N be subspaces of a finite-dimensional vector space X. Then $M \cap N=$ $\{0\}$ if and only if for every $z \in M+N$ there exist unique elements $m \in M$ and $n \in N$ such that $z=m+n$.

Proof. (\Rightarrow) Suppose we have $M \cap N=\{0\}$. Let $z \in M+N$ have two decompositions $z=$ $m_{1}+n_{1}=m_{2}+n_{2}$ for $m_{i} \in M$ and $n_{i} \in N, i=1,2$. Then we have $0=m_{1}-m_{2}+\left(n_{1}-n_{2}\right)$. We set $m:=m_{1}-m_{2}$ and $n:=n_{1}-n_{2}$ and note that $m \in M$ and $n \in N$. Hence we have $m=-n$,
which implies that $m \in N$ and $n \in M$. Consequently m and n are in $M \cap N$. By assumption $M \cap N=\{0\}$ implies that $m=n=0$, which yields that $m_{1}=m_{2}$ and $n_{1}=n_{2}$. This shows the desired uniqueness of the decomposition.
(\Leftarrow) Suppose that every element $z \in M+N$ can be uniquely written as $z=m+n$ for $m \in M$ and $n \in N$. Assume that $b \in M \cap N$, i.e. $b \in M$ and $b \in N$. Since N is a subspace, we have also $-b \in N$. Hence we have $0=b+(-b)$ where $b \in M$ and $-b \in N$. On the other hand 0 has also the decomposition $0=0+0$. The uniqueness condition yields that $b=0$. Since b was arbitrary, we have $M \cap N=\{0\}$.

A result of utmost importance is the existence of complements for a subspace of a finitedimensional vector space.

Proposition 2.3. Let X be a finite-dimensional vector space and let M be any subspace of X. Then there exists a subspace N of X such that $M \otimes N=X$.

We call the subspace $N \subseteq X$ a complement of M.

Proof. Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a basis of M. Then there exist vectors $y_{1}, . ., y_{l}$ in X such that $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}\right\}$ is a basis of X. We define N to be the span of $\left\{y_{1}, \ldots, y_{l}\right\}$ and note that this set is also a basis of N. By construction we have $M+N=X$.
Let us show that $M \cap N=\{0\}$. Suppose $z \in M \cap N$. Then $z=\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}$ since it is an element of M and $z=\beta_{1} y_{1}+\cdots+\beta_{l} y_{l}$. Consequently, $0=\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}-\beta_{1} y_{1}-\cdots-\beta_{l} y_{l}$ which yields that $\alpha_{1}=\cdots=\alpha_{k}=\beta_{1}=\cdots=\beta_{l}=0$. Hence $z=0$ and since z was arbitrary, we have $M \cap N=\{0\}$.

We explore the implications of invariant subspaces and direct sums for matrix representations of linear mappings.

Proposition 2.4. Let $T: X \rightarrow X$ be a linear mapping and M a T-invariant subspace of X. Suppose $\mathcal{B}_{M}=\left\{b_{1}, \ldots, b_{k}\right\}$ is a basis of M and $\mathcal{B}=\left\{b_{1}, \ldots, b_{k}, b_{k+1}, \ldots, b_{n}\right\}$ be a basis of X. Then the matrix representation of T wrt \mathcal{B} is of the form

$$
[T]_{\mathcal{B}}=\left[\begin{array}{cc}
{[T]_{\mathcal{B}_{M}}} & A_{12} \\
0 & A_{22}
\end{array}\right]
$$

where $[T]_{\mathcal{B}_{M}}$ is the matrix representation of T wrt to \mathcal{B}_{M}, A_{12} is an $k \times(n-k)$ matrix and A_{22} is an $(n-k) \times(n-k)$ matrix.

Proof. Let \mathcal{B}_{M} be a basis of M. Then the condition $T\left(b_{j}\right) \in M$ for $j=1, \ldots, k$ implies that $[T]_{\mathcal{B}_{M}}$ is an $k \times k$ matrix since the columns of $[T]_{\mathcal{B}_{M}}$ are linear combinations of the elements of \mathcal{B}_{M}. Hence this yields the zeros in the first k columns of $[T]_{\mathcal{B}}$.

Proposition 2.5. Suppose $T: X \rightarrow X$ is a linear mapping and let M, N be T-invariant subspaces sucht that $X=M \oplus N$. If $\mathcal{B}=\mathcal{B}_{M} \cup \mathcal{B}_{N}$ is a basis of X where \mathcal{B}_{M} and \mathcal{B}_{N} are bases of M and N, then the matrix representation of T wrt \mathcal{B} is of the form

$$
[T]_{\mathcal{B}}=\left[\begin{array}{cc}
{[T]_{\mathcal{B}_{M}}} & 0 \\
0 & {[T]_{\mathcal{B}_{N}}}
\end{array}\right] .
$$

Proof. Let $\mathcal{B}_{M}=\left\{b_{1}, \ldots, b_{m}\right\}$ be a basis of M and let $\mathcal{B}_{N}=\left\{\tilde{b}_{1}, \ldots, \tilde{b}_{n}\right\}$ be a basis of N. Since $T\left(b_{i}\right)$ is in M for $i=1, \ldots, m$ and $T\left(\tilde{b_{j}}\right)$ is in N for $j=1, \ldots, n$, we have

$$
\begin{aligned}
T\left(b_{1}\right) & =a_{11} b_{1}+\cdots a_{1 m} b_{m}+0 \cdots \tilde{b}_{1}+\cdots+0 \cdots \tilde{b}_{n} \\
T\left(b_{2}\right) & =a_{21} b_{1}+\cdots a_{2 m} b_{m}+0 \cdots \tilde{b}_{1}+\cdots+0 \cdots \tilde{b}_{n} \\
& \vdots \\
T\left(b_{m}\right) & =a_{m 1} b_{1}+\cdots a_{m m} b_{m}+0 \cdots \tilde{b}_{1}+\cdots+0 \cdots \tilde{b}_{n} \\
T\left(\tilde{b}_{1}\right) & =0 \cdots b_{1}+\cdots+0 \cdots b_{m}+b_{11} \tilde{b}_{1}+\cdots+b_{1 n} \tilde{b}_{n} \\
T\left(\tilde{b}_{2}\right) & =0 \cdots b_{1}+\cdots+0 \cdots b_{m}+b_{21} \tilde{b}_{1}+\cdots+b_{2 n} \tilde{b}_{n} \\
& \vdots \\
T\left(\tilde{b}_{n}\right) & =0 \cdots b_{1}+\cdots+0 \cdots b_{m}+b_{n 1} \tilde{b}_{1}+\cdots+b_{n n} \tilde{b}_{n}
\end{aligned}
$$

i.e. $[T]_{\mathcal{B}}=\left[\begin{array}{cc}{[T]_{\mathcal{B}_{M}}} & 0 \\ 0 & {[T]_{\mathcal{B}_{N}}}\end{array}\right]$ where $[T]_{\mathcal{B}_{M}}=\left(a_{i j}\right)_{i, j=1}^{m}$ and $[T]_{\mathcal{B}_{N}}=\left(b_{i j}\right)_{i, j=1}^{n}$.

3. Eigenspaces and Generalized Eigenspaces

Let us investigate one-dimensional invariant subspaces.
Proposition 3.1. A linear transformation on a finite-dimensional vector space has a onedimensional invariant subspace if and only if T has an eigenvector.

Proof. (•) Suppose M is invariant under T, then $T x \in M$ and hence there is a scalar $\lambda \in \mathbb{F}$ such that $T x=\lambda x$.
(•) If $T x=\lambda x$ for some λ^{\prime} in \mathbb{F} and some non-zero $x \in X$, then the $\operatorname{span}(x)$ is a one-dimensional subspace. This subspace is invariant under T.

We restrict our discussion to complex vector spaces, i.e. the scalars in our linear combinations are complex numbers.

Definition 3.1. A scalar λ is called an eigenvalue of a linear transformation $T: X \rightarrow X$ if there exists a non-zero $x \in X$ such that $T x=\lambda x$. The set $\sigma(T)$ of \mathbb{C}

$$
\sigma(T)=\{z \in \mathbb{C}: T-z I \text { is not invertible }\}
$$

is known as the spectrum of T.
In other words, x is an eigenvector of T if and only if $x \in \operatorname{ker} T-\lambda I$. For finite-dimensional vector spaces $\sigma(T)$ is the set of all eigenvalues counting multiplicities of T.

Definition 3.2. The subspace $E_{\lambda}=\operatorname{ker}(T-\lambda I)$ is called the eigenspace of T for the eigenvalue λ. The dimension of E_{λ} is called the geometric multiplicity of λ.

Note that E_{λ} consists of the eigenvectors of T and the zero vector 0 .
Theorem 3.2. Suppose T is a linear transformation on a finite-dimensional complex vector space. Then there exists an eigenvalue $\lambda \in \mathbb{C}$ for an eigenvector x of T.

Proof. We assume that $\operatorname{dim}(X)=n$ and choose any non-zero vector x in X. Consider the following set of $n+1$ vectors in X :

$$
\left\{x, T x, T^{2} x, \ldots, T^{n} x\right\}
$$

Since $n+1$ vectors in an n-dimensional vector space X are linearly independent, there exists a non-trivial linear combination:

$$
a_{0} x+a_{1} T x+\cdots+a_{n} T^{n} x=\left(a_{0} I+a_{1} T+\cdots+a_{n} T^{n}\right) x=0 .
$$

Note that not all a_{1}, \ldots, a_{n} are zero. If they were all zero, then $a_{0} x=0$ which would imply that $a_{0}=0$. Hence that the linear combination is trivial.

Let us denote by $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ the polynomial associated to the linear transformation T. Powers of numbers correspond to powers of T by the corresponding iterates of T and $T^{0}=I$.

Then the non-trivial linear combination among the vectors turns into a polynomial equation in T :

$$
p(T)=0 .
$$

By the Fundamental Theorem of Algebra any polynomial can be written as a product of linear factors:

$$
p(t)=c\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \cdots\left(t-\lambda_{n}\right), \quad \lambda_{i} \in \mathbb{C}, c \neq 0
$$

Hence $p(T)$ has a factorization of the form:

$$
p(T)=c\left(T-\lambda_{1} I\right)\left(T-\lambda_{2} I\right) \cdots\left(T-\lambda_{m} I\right)
$$

Hence $p(T)$ is a product of linear mappings $T-\lambda_{j} I$ for $j=1, \ldots, m$. We know that $p(T) x=0$ for a non-zero $x \neq 0$, which implies that at least one of these linear mappings is not invertible. Thus it has to have a non-trivial kernel, let's say $y \in \operatorname{ker}\left(T-\lambda_{i} I\right)$, which yields that y is an eigenvector for the eigenvalue λ_{i}. Consequently, we have shown the desired assertion.

The assumptions of the above statement are crucial: (i) Since there are linear transformations on a real vector space, do not need to have eigenvalues. For example, the rotation by 90 degrees in the plane \mathbb{R}^{2}.

Definition 3.3. A $n \times n$ matrix A is called diagonalizable if it has n linearly independent eigenvectors.

Note that the set of eigenvectors of a diagonalizable matrix is consequently a basis for \mathbb{C}^{n}. By definition a diagonalizable $n \times n$ matrix A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and associated eigenvectors u_{1}, \ldots, u_{n} satisfying:

$$
\begin{gathered}
A u_{1}=\lambda u_{1} \\
\vdots \\
A u_{n}=\lambda u_{n}
\end{gathered}
$$

Collect the eigenvectors of A into one matrix: $U=\left(u_{1}\left|u_{2}\right| \cdots \mid u_{n}\right)$; and the eigenvalues of A into the diagonal matrix

$$
D=\left(\begin{array}{ccccc}
\lambda_{1} & 0 \cdots & \cdots & 0 & \\
\vdots & \lambda_{2} & 0 & \cdots & 0 \\
\vdots & 0 & \ddots & \ddots & \lambda_{n}
\end{array}\right)
$$

Then the eigenvalue equations turn into a matrix equation:

$$
A U=U D
$$

Since A is diagonalizable, the eigenvectors are a basis for \mathbb{C}^{n}. Hence U is invertible and we have

$$
A=U D U^{-1}
$$

Sometimes U is an unitary matrix, i.e. the eigenvectors yield an orthonormal basis for \mathbb{C}^{n}. Then we have $A=U D U^{*}$.

A well-known criterion for the non-invertiblity of a matrix is the vanishing of its determinant. Hence eigenvalues are the zeros of the polynomial $p_{A}(z)=\operatorname{det}(z I-A)$, known as the characteristic polynomial.

Lemma 3.3. Similar matrices have the same characteristic equation.
Proof. Let A and B be similar matrices. Thus there exists an invertible matrix S such that $B=S^{-1} A S$.

$$
p_{B}(z)=\operatorname{det}\left(z I-S^{-1} A S\right)=\operatorname{det}\left(z S^{-1} S-S^{-1} A S\right)=\operatorname{det}\left(S^{-1}(z I-A) S\right)=p_{A}(z)
$$

As an important consequence of the existence of an eigenvector for linear mappings between complex finite-dimensional vector spaces we prove Schur's triangularization theorem, our first classification theorem. Before we introduce a refined version of similarity. Namely, if the matrix S in the definition of similar matrices may be chosen as a chosen as a unitary matrix, then we call the matrices A and B unitarily equivalent.

Theorem 3.4 (Triangularization Theorem). Given a $n \times n$ matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, counting multiplicities. There exists a unitary $n \times n$ matrix U such that

$$
A=U T U^{*}
$$

for an upper triangular matrix T with the eigenvalues on the diagonal. Hence any matrix is similar to an upper triangular matrix.

We refer to the decomposition of the theorem as Schur form.
Proof. We proceed by induction on n. For $n=1$, there is nothing to show. Suppose that the result is true up to matrices of size $n-1$.
Let A be a $n \times n$ matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ counting multiplicities. Choose a normalized eigenvector u_{1} for the eigenvalue λ_{1}. Then we extend u_{1} to a basis $\left\{u_{1}, \ldots, u_{n}\right\}$ of \mathbb{C}^{n} and we choose this basis to be orthonormal. Relative to this basis the matrix is of the form

$$
A=U\left(\begin{array}{cccc}
\lambda_{1} & x & \cdots & x \\
0 & & & \\
\vdots & A_{n-1} & & \\
0 & & &
\end{array}\right) U^{-1}
$$

where U is the matrix of the system $\left\{u_{1}, \ldots, u_{n}\right\}$ relative to the canonical basis. Since this is a unitary matrix, the similarity, is actually a unitary equivalence. By the induction hypothesis there exists a $(n-1) \times(n-1)$-matrix V such that $V A V^{*}$ is upper triangular. Set \tilde{V} to be the $n \times n$ matrix where $v_{1} 1=1$ and the other entries of the first column and row are zero. Then \tilde{V} is a unitary matrix and $U \tilde{V}$ is the desired unitary matrix.

Example 3.1. Find the Schur form of $A=\left(\begin{array}{cc}5 & 7 \\ -2 & -4\end{array}\right)$.
First step: Find an eigenvalue of A and associated eigenvector. The characteristic polynomial is $\lambda^{2}-\lambda-6=0$ and so $\lambda_{1}=-2$ and $\lambda_{2}=3$. An eigenvector for $\lambda_{1}=-2$ is $x_{1}=\binom{1}{-1}$.
The second step is to complete it to a basis of \mathbb{C}^{2}. In our case we take the eigenvector to the second eigenvalue and note that the corresponding set of vectors is linearly independent: $x_{2}=\binom{7}{-2}$.
Third step: Use a orthonormalization procedure, e.g. Gram-Schmidt, to turn the system $\left\{x_{1}, x_{2}\right\}$ into a basis $\left\{u_{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}, u_{2}=\frac{1}{\sqrt{2}}\binom{1}{1}\right\}$.
Final step: Form the matrix $U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$. Computation of $U^{*} A U=\left(\begin{array}{ll}2 & 9 \\ 0 & 3\end{array}\right)$, which has the eigenvalues of A on its diagonal and is upper triangular.

Schur's triangularization theorem has a number of important consequences.
Theorem 3.5 (Cayley-Hamilton). Given $a n \times n$ matrix. Then

$$
p_{A}(A)=0
$$

where $p_{A}(A)$ is the characteristic polynomial of A.
We state a refined version of Schur's triangularization theorem
Theorem 3.6 (Schur normal form). Given $a n \times n$ matrix A with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ with $k \leq n$. Then A is unitarily equivalent to

$$
\left(\begin{array}{cccc}
T_{1} & 0 & \cdots & 0 \\
0 & T_{2} & \ddots & 0 \\
\vdots & \ddots & \vdots & \\
0 & \cdots & 0 & T_{k}
\end{array}\right)
$$

where T_{i} has the form

$$
\left(\begin{array}{cccc}
\lambda_{i} & x & \cdots & x \\
0 & \lambda_{i} & \ddots & x \\
\vdots & \ddots & \ddots & x \\
0 & \ldots & 0 & \lambda_{i}
\end{array}\right)
$$

