Below follows one possible solution to the exercise set.

1 We consider the Newton iteration

$$
T(x):=x-\frac{f(x)}{f^{\prime}(x)}=\frac{1}{2}\left(x+\frac{3}{x}\right)
$$

and want to show that T maps $[\sqrt{3}, \infty)$ to itself. Moreover, we want to use the Banach fixed point theorem to show that

$$
\lim _{n \rightarrow \infty} T^{n}(x)=\sqrt{3}
$$

for every $x \geq \sqrt{3}$.
To show that T maps $[\sqrt{3}, \infty)$ to itself, we note that for $x \geq \sqrt{3}$,

$$
T^{\prime}(x)=\frac{1}{2}\left(1-\frac{3}{x^{2}}\right) \geq 0
$$

as $x^{2} \geq 3$ for all $x \in \mathbb{R}$. This shows that $T(x)$ is a monotonically increasing function of x for $x \in[\sqrt{3}, \infty)$. Thus the lowest value of the image of T is given by

$$
\begin{equation*}
T(\sqrt{3})=\frac{1}{2}\left(\sqrt{3}+\frac{3}{\sqrt{3}}\right)=\sqrt{3} \tag{1}
\end{equation*}
$$

In particular, $T([\sqrt{3}, \infty))=[\sqrt{3}, \infty)$, so T maps $[\sqrt{3}, \infty)$ to itself.
We have already seen in (1) that $\sqrt{3}$ is a fix point of T. We would like to use Banach fixed point theorem to show that $\sqrt{3}$ is the unique fixed point, and that no matter which starting point it will converge to $\sqrt{3}$.
To use Banach fixed point theorem, we need to show that $[\sqrt{3}, \infty)$ is complete, and that T is a contraction. For completeness, it is enough to prove that $[\sqrt{3}, \infty)$ is closed, as any closed subset of a complete space is complete. However, this follows from the definition as the complement $(-\infty, \sqrt{3})$ is open, so $[\sqrt{3}, \infty)$ is closed. Hence, we can conclude that $([\sqrt{3}, \infty),|\cdot|)$ is a complete metric space.
To show that T is a contraction, we estimate

$$
\begin{aligned}
|T(x)-T(y)|=\frac{1}{2}\left|x-y+\frac{3}{x}-\frac{3}{y}\right| & =\frac{1}{2}\left|x\left(1-\frac{3}{x y}\right)-y\left(1-\frac{3}{x y}\right)\right| \\
& =\frac{1}{2}|x-y|\left|1-\frac{3}{x y}\right| \\
& \leq \frac{1}{2}|x-y|
\end{aligned}
$$

For the last inequality, we used that,

$$
0 \leq 1-\frac{3}{x y} \leq 1, \quad x, y \in[\sqrt{3}, \infty)
$$

We can therefore conclude that T is a contraction with contraction constant

$$
L=1 / 2<1
$$

By Banach fixed point theorem there exists a unique fixed point x^{*} such that

$$
\lim _{n \rightarrow \infty} T^{n}(x)=x^{*},
$$

for all $x \in[\sqrt{3}, \infty)$. By (1) we can conclude that $x^{*}=\sqrt{3}$. The fixed point can also be found by solving,

$$
x=T(x)=\frac{1}{2}\left(x+\frac{3}{x}\right) \quad \Longrightarrow \quad x=\frac{3}{x},
$$

which has the solution $x=\sqrt{3}$ in the interval $[\sqrt{3}, \infty)$.

2 Let $G:\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$ be defined by

$$
(G x)(t)=\int_{0}^{t} s x(s) d s, 0 \leq t \leq 1 .
$$

We want to show that G is a contraction with zero function as the unique fixed point. Given any $x, y \in C[0,1]$ and $0 \leq t \leq 1$, then

$$
\begin{aligned}
|G x(t)-G y(t)|=\left|\int_{0}^{t} s(x(s)-y(s)) d s\right| & \leq \int_{0}^{t} s|x(s)-y(s)| d s \\
& \leq\|x-y\|_{\infty} \int_{0}^{t} s d s \\
& =\frac{1}{2}\|x-y\|_{\infty} t^{2} \leq \frac{1}{2}\|x-y\|_{\infty}
\end{aligned}
$$

Taking the supremum over all $0 \leq t \leq 1$ gives

$$
\|G x-G y\|_{\infty} \leq \frac{1}{2}\|x-y\|_{\infty},
$$

which shows that G is a contraction, on the complete space $\left(C[0,1],\|\cdot\|_{\infty}\right)$. By Banach fixed point theorem, there exists a unique fixed point x^{*} such that $G x^{*}=x^{*}$. Moreover, the fixed point is given by,

$$
x^{*}(t)=\lim _{n \rightarrow \infty} G^{n} x(t)
$$

for any $x \in C[0,1]$. From the definition of G, we see that

$$
\|G x\|_{\infty} \leq \frac{1}{2}\|x\|_{\infty}
$$

Iterating this inequality yields,

$$
\left\|G^{n} x\right\|_{\infty} \leq\left(\frac{1}{2}\right)^{n}\|x\|_{\infty} \xrightarrow{n \rightarrow \infty} 0
$$

Thus, $G^{n} x \rightarrow 0$ as n goes to ∞ for any $x \in C[0,1]$. Indeed, by direct computation, we see that

$$
G 0(t)=\int_{0}^{t} 0 d s=0
$$

which verifies that 0 is the unique fixed point.

3 Apply Picard iteration to

$$
x^{\prime}(t)=1+x^{2}, x(0)=0
$$

Find x_{3} and the exact solution (notice that the equation is separable), and show that the terms involving t, t^{2}, \cdots, t^{5} in $x_{3}(t)$ are the same as those of the Taylor series of the exact solution.
Let us first solve the initial-value problem analytically (exact). Using that the differential equation we want to solve is separable we find

$$
\frac{d x}{1+x^{2}}=d t
$$

which gives after integrating,

$$
\arctan (x)=t+C
$$

and thus

$$
x=x(t)=\tan (t+C)
$$

Since $x(0)=0$ we find that $0=\tan (C)$, so we may take $C=0$. Thus the solution is

$$
x(t)=\tan (t)
$$

Next, we find an approximation for the solution of the initial-value problem using Picard iteration. We want x_{3} where

$$
x_{0}(t)=x_{0}, \quad x_{n+1}(t)=x_{0}+\int_{t_{0}}^{t} f\left(s, x_{n}(s)\right) d s, \quad n=0,1,2, \ldots
$$

We find with $x_{0}=t_{0}=0$,

$$
\begin{aligned}
x_{1}(t) & =\int_{0}^{t} f(s, 0) d s=\int_{0}^{t} 1 d s=t \\
x_{2}(t) & =\int_{0}^{t} f(s, s) d s=\int_{0}^{t} 1+s^{2} d s=t+\frac{1}{3} t^{3} \\
x_{3}(t) & =\int_{0}^{t} f\left(s,\left(s+s^{3} / 3\right)\right) d s=\int_{0}^{t} 1+\left(s+\frac{s^{3}}{3}\right)^{2} d s \\
& =t+\frac{t^{3}}{3}+\frac{2 t^{5}}{15}+\frac{t^{7}}{63}
\end{aligned}
$$

On the other hand, the Taylor series of $t \mapsto \tan (t)$ at $t=0$ is given by

$$
\tan (t)=t+\frac{t^{3}}{3}+\frac{2 t^{5}}{15}+O\left(t^{7}\right)
$$

Comparing we see that the terms up to order 5 of $x_{3}(t)$ and the Taylor series of analytic solution $\tan (t)$ agree.

