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Solutions to exercise set 8

Below follows one possible solution to the exercise set.

1 We consider the Newton iteration

T (x) := x− f(x)

f ′(x)
=

1

2

(
x+

3

x

)
,

and want to show that T maps [
√
3,∞) to itself. Moreover, we want to use the

Banach fixed point theorem to show that

lim
n→∞

Tn(x) =
√
3

for every x ≥
√
3.

To show that T maps [
√
3,∞) to itself, we note that for x ≥

√
3,

T ′(x) =
1

2

(
1− 3

x2

)
≥ 0,

as x2 ≥ 3 for all x ∈ R. This shows that T (x) is a monotonically increasing function
of x for x ∈ [

√
3,∞). Thus the lowest value of the image of T is given by

T (
√
3) =

1

2

(√
3 +

3√
3

)
=

√
3. (1)

In particular, T ([
√
3,∞)) = [

√
3,∞), so T maps [

√
3,∞) to itself.

We have already seen in (1) that
√
3 is a fix point of T . We would like to use Banach

fixed point theorem to show that
√
3 is the unique fixed point, and that no matter

which starting point it will converge to
√
3.

To use Banach fixed point theorem, we need to show that [
√
3,∞) is complete, and

that T is a contraction. For completeness, it is enough to prove that [
√
3,∞) is closed,

as any closed subset of a complete space is complete. However, this follows from the
definition as the complement (−∞,

√
3) is open, so [

√
3,∞) is closed. Hence, we can

conclude that ([
√
3,∞), | · |) is a complete metric space.

To show that T is a contraction, we estimate

|T (x)− T (y)| = 1

2

∣∣∣∣x− y +
3

x
− 3

y

∣∣∣∣ =1

2

∣∣∣∣x(1− 3

xy

)
− y

(
1− 3

xy

)∣∣∣∣
=
1

2
|x− y|

∣∣∣∣1− 3

xy

∣∣∣∣
≤1

2
|x− y|.
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For the last inequality, we used that,

0 ≤ 1− 3

xy
≤ 1, x, y ∈ [

√
3,∞).

We can therefore conclude that T is a contraction with contraction constant

L = 1/2 < 1.

By Banach fixed point theorem there exists a unique fixed point x∗ such that

lim
n→∞

Tn(x) = x∗,

for all x ∈ [
√
3,∞). By (1) we can conclude that x∗ =

√
3. The fixed point can also

be found by solving,

x = T (x) =
1

2

(
x+

3

x

)
=⇒ x =

3

x
,

which has the solution x =
√
3 in the interval [

√
3,∞).

2 Let G : (C[0, 1], || · ||∞) → (C[0, 1], || · ||∞) be defined by

(Gx)(t) =

∫ t

0
sx(s) ds, 0 ≤ t ≤ 1.

We want to show that G is a contraction with zero function as the unique fixed point.

Given any x, y ∈ C[0, 1] and 0 ≤ t ≤ 1, then

|Gx(t)−Gy(t)| =
∣∣∣∣∫ t

0
s(x(s)− y(s))ds

∣∣∣∣ ≤∫ t

0
s|x(s)− y(s)|ds

≤∥x− y∥∞
∫ t

0
sds

=
1

2
∥x− y∥∞t2 ≤ 1

2
∥x− y∥∞.

Taking the supremum over all 0 ≤ t ≤ 1 gives

∥Gx−Gy∥∞ ≤ 1

2
∥x− y∥∞,

which shows that G is a contraction, on the complete space (C[0, 1], ∥ · ∥∞). By
Banach fixed point theorem, there exists a unique fixed point x∗ such that Gx∗ = x∗.
Moreover, the fixed point is given by,

x∗(t) = lim
n→∞

Gnx(t),

for any x ∈ C[0, 1]. From the definition of G, we see that

∥Gx∥∞ ≤ 1

2
∥x∥∞.
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Iterating this inequality yields,

∥Gnx∥∞ ≤
(
1

2

)n

∥x∥∞
n→∞−−−→ 0.

Thus, Gnx → 0 as n goes to ∞ for any x ∈ C[0, 1]. Indeed, by direct computation,
we see that

G0(t) =

∫ t

0
0ds = 0,

which verifies that 0 is the unique fixed point.

3 Apply Picard iteration to

x′(t) = 1 + x2, x(0) = 0.

Find x3 and the exact solution (notice that the equation is separable), and show that
the terms involving t, t2, · · · , t5 in x3(t) are the same as those of the Taylor series of
the exact solution.

Let us first solve the initial-value problem analytically (exact). Using that the dif-
ferential equation we want to solve is separable we find

dx

1 + x2
= dt

which gives after integrating,

arctan(x) = t+ C,

and thus

x = x(t) = tan(t+ C).

Since x(0) = 0 we find that 0 = tan(C), so we may take C = 0. Thus the solution is

x(t) = tan(t).

Next, we find an approximation for the solution of the initial-value problem using
Picard iteration. We want x3 where

x0(t) = x0, xn+1(t) = x0 +

∫ t

t0

f(s, xn(s)) ds, n = 0, 1, 2, . . .

We find with x0 = t0 = 0,

x1(t) =

∫ t

0
f(s, 0) ds =

∫ t

0
1 ds = t

x2(t) =

∫ t

0
f(s, s) ds =

∫ t

0
1 + s2 ds = t+

1

3
t3

x3(t) =

∫ t

0
f(s, (s+ s3/3)) ds =

∫ t

0
1 +

(
s+

s3

3

)2

ds

= t+
t3

3
+

2t5

15
+

t7

63
.
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On the other hand, the Taylor series of t 7→ tan(t) at t = 0 is given by

tan(t) = t+
t3

3
+

2t5

15
+O(t7).

Comparing we see that the terms up to order 5 of x3(t) and the Taylor series of
analytic solution tan(t) agree.
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