Norwegian University of Science and Technology
Department of Mathematical
Sciences

Solutions to exercise set 4

Below follows one possible solution to the exercise set.

1 We want to show that $U \in \mathcal{M}_{n \times n}(\mathbb{C})$ is unitary if and only if the column vectors define an orthonormal basis of \mathbb{C}^{n}.

Recall that for two $n \times n$ matrices $A=\left(A_{i j}\right)$ and $B=\left(B_{i j}\right)$ the matrix product is defined as the matrix $A B$ with the elements

$$
(A B)_{i k}=\sum_{j=1}^{n} A_{i j} B_{j k}
$$

Assume that $U=\left(u_{i j}\right)$ is a unitary matrix, and let $u_{j}=\left(u_{1, j}, u_{2, j}, \ldots, u_{n, j}\right)^{T}$ denote the j column of the matrix $U=\left(u_{i j}\right)$. Since U is unitary we know that $U^{*} U=I_{n}$, where $U^{*}=\left(\bar{u}_{j i}\right)$ and I_{n} is the identity on \mathbb{C}^{n}. Thus we have

$$
\left(U^{*} U\right)_{i k}=\sum_{j=1}^{n} \bar{u}_{j i} u_{j k}=\delta_{i k}:= \begin{cases}1, & \text { if } i=k \\ 0, & \text { if } i \neq k\end{cases}
$$

However, the sum is nothing else than the inner product of the columns of U. Namely,

$$
\left\langle u_{k}, u_{i}\right\rangle=\sum_{j=1}^{n} \bar{u}_{j i} u_{k i}=\delta_{i k}
$$

This shows that the columns of a unitary matrix are orthonormal.
On the other hand, given a set of orthonormal vectors $\left\{u_{j}=\left(u_{1, j}, u_{2, j}, \ldots, u_{n, j}\right)^{T}\right\}_{j=1}^{n}$, then the matrix U is unitary, as

$$
\left(U^{*} U\right)_{i k}=\sum_{j=1}^{n} \bar{u}_{j i} u_{j k}=\left\langle u_{k}, u_{i}\right\rangle=\delta_{i k}
$$

and

$$
\left(U U^{*}\right)_{i k}=\sum_{j=1}^{n} u_{j i} \bar{u}_{j k}=\left\langle u_{i}, u_{k}\right\rangle=\delta_{k i} .
$$

This shows that $U^{*} U=I_{n}=U U^{*}$, and so U is unitary.

2 Assume that A and B are unitary equivalent matrices. That is, there exists some unitary matrix U such that $B=U^{*} A U$. Show that A is positive definite if and only if B is positive definite.

A matrix A is called positive definite if $\langle A x, x\rangle>0$ for all $x \in \mathbb{C}^{n} \backslash\{0\}$. So assume that A is positive definite, then for any $x \in \mathbb{C}^{n} \backslash\{0\}$ we have that

$$
\langle B x, x\rangle=\left\langle U^{*} A U x, x\right\rangle=\langle A U x, U x\rangle=\langle A(U x), U x\rangle>0,
$$

as A is positive definite.
On the other hand, assume that B is positive definite. Then, for any $x \in \mathbb{C}^{n} \backslash\{0\}$ we have

$$
0<\left\langle B\left(U^{*} x\right), U^{*} x\right\rangle=\left\langle U B U^{*} x, x\right\rangle=\langle A x, x\rangle,
$$

as $A=U B U^{*}$. This shows that A is positive definite. The argument for semipositiveness is the same

3 Let us compute the singular values of A. Recall that these are the square roots of the non-zero eigenvalues of the self-adjoint matrix

$$
A A^{*}=\left(\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right) \quad \text { or } \quad A^{*} A=\left(\begin{array}{ccc}
2 & 2 & -2 \\
2 & 2 & -2 \\
-2 & -2 & 2
\end{array}\right)
$$

In the first case we get a 2×2-matrix and in the second case we get a 3×3-matrix, so for simplicity we use $A A^{*}$ for the computation. The eigenvalues of $A A^{*}$ are 6 and 0 (for those, who have decided to use $A^{*} A$, the eigenvalues are $6,0,0$). Hence $\sigma_{1}=\sqrt{6}$ is the only singular value of A, which fits well with the fact that A has rank one. Consequently, Σ is given by

$$
\Sigma=\left(\begin{array}{ccc}
\sqrt{6} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Let us look at the eigenvectors of $A^{*} A$. A bit of computation yields

$$
v_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right), v_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), v_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) .
$$

The vectors v_{1}, v_{2}, v_{3} form an orthonormal basis for \mathbb{R}^{3}, and serve as the columns of V :

$$
V=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{-1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}
\end{array}\right) .
$$

Finally we find the columns of U. The first column is given by

$$
u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{\sqrt{2}}\binom{1}{1} .
$$

Since we only had one singular value σ_{1}, the second column of U is obtained by completing $\left\{u_{1}\right\}$ to an orthonormal basis for \mathbb{R}^{2}. This is achieved by choosing u_{2} orthogonal to u_{1}, and by inspection we see that we can choose $u_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}$. Thus

$$
U=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) .
$$

Hence

$$
A=U \Sigma V^{*}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{6} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}
\end{array}\right) .
$$

4 For $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ we want to show that $A A^{*}$ and $A^{*} A$ have the same positive eigenvalues. Moreover, the λ-eigenspaces of $A A^{*}$ and $A^{*} A$ have the same dimension over \mathbb{C}.

First, note that any eigenvalues of $A^{*} A$ and $A A^{*}$ are necessarily positive. Let λ be an eigenvalue of $A^{*} A$ with the corresponding eigenvector v. Then

$$
\lambda\langle v, v\rangle=\left\langle A^{*} A v, v\right\rangle=\langle A v, A v\rangle \geq 0
$$

and similarly for $A A^{*}$.
Now, let $\lambda>0$ be a positive eigenvalue of $A^{*} A$, with the corresponding eigenvector v. Then, we claim that $A v$ is an eigenvector of $A A^{*}$ with eigenvalue λ.

$$
A A^{*}(A v)=A\left(A^{*} A\right) v=A(\lambda v)=\lambda A v .
$$

Note that $A v$ is necessarily not 0 , as v is an eigenvalue of $A^{*} A$. If $A v$ was zero, then $A^{*} A v=A^{*} 0=0$, which contradicts the fact that $A^{*} A v=\lambda v$ for $\lambda>0$. This shows that any eigenvalue of $A^{*} A$ is also an eigenvalue of $A A^{*}$.
Similarly, if λ is an eigenvalue of $A A^{*}$ with eigenvector u, then $A^{*} u$ is an eigenvalue of $A^{*} A$ with eigenvalue λ. Namely,

$$
A^{*} A\left(A^{*} v\right)=A^{*}\left(A A^{*}\right) v=A^{*}(\lambda v)=\lambda A^{*} v .
$$

This shows that $A^{*} A$ and $A A^{*}$ has the same eigenvalues.
Now, assume that for an eigenvalue $\lambda>0$ the λ-eigenspace of $A^{*} A$ is k-dimensional. Then there exists k linearly independent vectors $v_{1}, \ldots v_{k}$ such that

$$
c_{1} v_{1}+\ldots+c_{k} v_{k}=0, \quad \text { if and only if } \quad c_{j}=0, \text { for } 1 \leq j \leq k .
$$

From here, consider the vectors $A v_{1}, \ldots, A v_{k}$ which lies in the λ-eigenspace of $A A^{*}$, and assume that

$$
0=\sum_{j=1}^{k} c_{j} A v_{j}
$$

for some choice of c_{j}. Then, as A and A^{*} are linear transformation, it follows that

$$
0=A^{*}(0)=A^{*}\left(\sum_{j=1}^{k} c_{j} A v_{j}\right)=\sum_{j=1}^{k} c_{j} A^{*} A v_{j}=\lambda \sum_{j=1}^{k} c_{j} v_{j} .
$$

From the linearly independence of v_{j} we can conclude that the eigenvectors $A v_{1}, \ldots A v_{k}$ must be linearly independent. Thus, the dimension of the λ-eigenspace of $A A^{*}$ must be at least the same as that of $A^{*} A$. Namely,

$$
\operatorname{dim}\left(\lambda \text {-eigenspace of } A A^{*}\right) \geq \operatorname{dim}\left(\lambda \text {-eigenspace of } A^{*} A\right) .
$$

However, by running the same argument again, but starting with the λ-eigenspace of $A A^{*}$ we get that

$$
\operatorname{dim}\left(\lambda \text {-eigenspace of } A A^{*}\right) \leq \operatorname{dim}\left(\lambda \text {-eigenspace of } A^{*} A\right)
$$

as $A^{*} v_{j}$ is a λ eigenvector of $A^{*} A$ for each λ-eigenvector v_{j} of $A A^{*}$. This implies that the dimension is the same.

Note that this also implies that the dimension of the 0-eigenspace is the same for both matrices. Since the λ-eigenspaces only intersect trivially for different eigenvalues $\lambda>0$, it follows that the sum of all dimension of the eigenspaces gives the full dimension n. Thus

$$
\begin{aligned}
\operatorname{dim}\left(0 \text {-eigenspace of } A A^{*}\right) & =n-\sum_{\lambda>0} \operatorname{dim}\left(\lambda \text {-eigenspace of } A A^{*}\right) \\
& =n-\sum_{\lambda>0} \operatorname{dim}\left(\lambda \text {-eigenspace of } A^{*} A\right) \\
& =\operatorname{dim}\left(0 \text {-eigenspace of } A^{*} A\right)
\end{aligned}
$$

