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Solutions to exercise set 4

Below follows one possible solution to the exercise set.

1 We want to show that U ∈ Mn×n(C) is unitary if and only if the column vectors
define an orthonormal basis of Cn.

Recall that for two n × n matrices A = (Aij) and B = (Bij) the matrix product is
defined as the matrix AB with the elements

(AB)ik =

n∑
j=1

AijBjk.

Assume that U = (uij) is a unitary matrix, and let uj = (u1,j , u2,j , . . . , un,j)
T denote

the j column of the matrix U = (uij). Since U is unitary we know that U∗U = In,
where U∗ = (ūji) and In is the identity on Cn. Thus we have

(U∗U)ik =

n∑
j=1

ūjiujk = δik :=

{
1, if i = k,

0, if i ̸= k.

However, the sum is nothing else than the inner product of the columns of U . Namely,

⟨uk, ui⟩ =
n∑

j=1

ūjiuki = δik.

This shows that the columns of a unitary matrix are orthonormal.

On the other hand, given a set of orthonormal vectors {uj = (u1,j , u2,j , . . . , un,j)
T }nj=1,

then the matrix U is unitary, as

(U∗U)ik =

n∑
j=1

ūjiujk = ⟨uk, ui⟩ = δik,

and

(UU∗)ik =

n∑
j=1

ujiūjk = ⟨ui, uk⟩ = δki.

This shows that U∗U = In = UU∗, and so U is unitary.

2 Assume that A and B are unitary equivalent matrices. That is, there exists some
unitary matrix U such that B = U∗AU . Show that A is positive definite if and only
if B is positive definite.
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A matrix A is called positive definite if ⟨Ax, x⟩ > 0 for all x ∈ Cn\{0}. So assume
that A is positive definite, then for any x ∈ Cn\{0} we have that

⟨Bx, x⟩ = ⟨U∗AUx, x⟩ = ⟨AUx,Ux⟩ = ⟨A(Ux), Ux⟩ > 0,

as A is positive definite.

On the other hand, assume that B is positive definite. Then, for any x ∈ Cn\{0} we
have

0 < ⟨B(U∗x), U∗x⟩ = ⟨UBU∗x, x⟩ = ⟨Ax, x⟩,

as A = UBU∗. This shows that A is positive definite. The argument for semi-
positiveness is the same

3 Let us compute the singular values of A. Recall that these are the square roots of
the non-zero eigenvalues of the self-adjoint matrix

AA∗ =

(
3 3
3 3

)
or A∗A =

 2 2 −2
2 2 −2
−2 −2 2

 .

In the first case we get a 2×2-matrix and in the second case we get a 3×3-matrix, so
for simplicity we use AA∗ for the computation. The eigenvalues of AA∗ are 6 and 0
(for those, who have decided to use A∗A, the eigenvalues are 6, 0, 0). Hence σ1 =

√
6

is the only singular value of A, which fits well with the fact that A has rank one.
Consequently, Σ is given by

Σ =

(√
6 0 0
0 0 0

)
.

Let us look at the eigenvectors of A∗A. A bit of computation yields

v1 =
1√
3

 1
1
−1

 , v2 =
1√
2

 1
−1
0

 , v3 =
1√
6

1
1
2

 .

The vectors v1, v2, v3 form an orthonormal basis for R3, and serve as the columns of
V :

V =


1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

−1√
3

0 2√
6

 .

Finally we find the columns of U . The first column is given by

u1 =
1

σ1
Av1 =

1√
2

(
1
1

)
.

Since we only had one singular value σ1, the second column of U is obtained by
completing {u1} to an orthonormal basis for R2. This is achieved by choosing u2

orthogonal to u1, and by inspection we see that we can choose u2 =
1√
2

(
1
−1

)
. Thus

U =

(
1√
2

1√
2

1√
2

− 1√
2

)
.
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Hence

A = UΣV ∗ =

(
1√
2

1√
2

1√
2

− 1√
2

)(√
6 0 0
0 0 0

)
1√
3

1√
3

−1√
3

1√
2

−1√
2

0
1√
6

1√
6

2√
6

 .

4 For A ∈ Mn×n(C) we want to show that AA∗ and A∗A have the same positive
eigenvalues. Moreover, the λ-eigenspaces of AA∗ and A∗A have the same dimension
over C.

First, note that any eigenvalues of A∗A and AA∗ are necessarily positive. Let λ be
an eigenvalue of A∗A with the corresponding eigenvector v. Then

λ⟨v, v⟩ = ⟨A∗Av, v⟩ = ⟨Av,Av⟩ ≥ 0,

and similarly for AA∗.

Now, let λ > 0 be a positive eigenvalue of A∗A, with the corresponding eigenvector
v. Then, we claim that Av is an eigenvector of AA∗ with eigenvalue λ.

AA∗(Av) = A(A∗A)v = A(λv) = λAv.

Note that Av is necessarily not 0, as v is an eigenvalue of A∗A. If Av was zero, then
A∗Av = A∗0 = 0, which contradicts the fact that A∗Av = λv for λ > 0. This shows
that any eigenvalue of A∗A is also an eigenvalue of AA∗.

Similarly, if λ is an eigenvalue of AA∗ with eigenvector u, then A∗u is an eigenvalue
of A∗A with eigenvalue λ. Namely,

A∗A(A∗v) = A∗(AA∗)v = A∗(λv) = λA∗v.

This shows that A∗A and AA∗ has the same eigenvalues.

Now, assume that for an eigenvalue λ > 0 the λ-eigenspace of A∗A is k-dimensional.
Then there exists k linearly independent vectors v1, . . . vk such that

c1v1 + . . .+ ckvk = 0, if and only if cj = 0, for 1 ≤ j ≤ k.

From here, consider the vectors Av1, . . . , Avk which lies in the λ-eigenspace of AA∗,
and assume that

0 =

k∑
j=1

cjAvj

for some choice of cj . Then, as A and A∗ are linear transformation, it follows that

0 = A∗(0) = A∗

 k∑
j=1

cjAvj

 =

k∑
j=1

cjA
∗Avj = λ

k∑
j=1

cjvj .

From the linearly independence of vj we can conclude that the eigenvectors Av1, . . . Avk
must be linearly independent. Thus, the dimension of the λ-eigenspace of AA∗ must
be at least the same as that of A∗A. Namely,

dim(λ-eigenspace of AA∗) ≥ dim(λ-eigenspace of A∗A).
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However, by running the same argument again, but starting with the λ-eigenspace
of AA∗ we get that

dim(λ-eigenspace of AA∗) ≤ dim(λ-eigenspace of A∗A),

as A∗vj is a λ eigenvector of A∗A for each λ-eigenvector vj of AA∗. This implies that
the dimension is the same.

Note that this also implies that the dimension of the 0-eigenspace is the same for both
matrices. Since the λ-eigenspaces only intersect trivially for different eigenvalues
λ > 0, it follows that the sum of all dimension of the eigenspaces gives the full
dimension n. Thus

dim(0-eigenspace of AA∗) =n−
∑
λ>0

dim(λ-eigenspace of AA∗)

=n−
∑
λ>0

dim(λ-eigenspace of A∗A)

=dim(0-eigenspace of A∗A).
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