Department of Mathematical
Sciences

Below follows one possible solution to the exercise set.

1 The matrix $A=\left(\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right)$ is upper-triangular, and so the eigenvalues are given by the diagonal elements. Namely, $\lambda_{1}=1$ and $\lambda_{2}=2$. Since A has two distinct eigenvalues it is diaognalizable.
A real matrix is called normal if $A A^{T}=A^{T} A$. By direct computation we have

$$
\begin{aligned}
A A^{T} & =\left(\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right)=\left(\begin{array}{cc}
10 & 6 \\
6 & 4
\end{array}\right), \\
A^{T} A & =\left(\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 3 \\
3 & 13
\end{array}\right) .
\end{aligned}
$$

This shows that $A^{T} A \neq A A^{T}$, and so A is not normal.

2 Consider the matrix

$$
A=\left(\begin{array}{ccc}
-1.8 & 0 & -1.4 \\
-5.6 & 1 & -2.8 \\
2.8 & 0 & 2.4
\end{array}\right)
$$

We want to diagonalize it, and find A^{m} for $m \in \mathbb{N}$. Let us therefore start by finding the eigenvalues of A, by solving

$$
\operatorname{det}(\lambda I-A)=(\lambda-1)(\lambda-1)(\lambda+0.4)=0
$$

in order to see that the eigenvalues are $\lambda_{1}=\lambda_{2}=1$, and $\lambda_{3}=-0.4$. For the eigenvectors, we find that

$$
v_{1}=\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right)
$$

Let V and Σ be the matrices

$$
V=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & -2 \\
2 & 0 & 1
\end{array}\right) \quad \text { and } \quad \Sigma=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -\frac{2}{5}
\end{array}\right) .
$$

then the inverse matrix is given by

$$
V^{-1}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-4 & 1 & -2 \\
-2 & 0 & -1
\end{array}\right)
$$

and so the diagonalization of A is given by

$$
A=V \Sigma V^{-1}=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & -2 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -\frac{2}{5}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
-4 & 1 & -2 \\
-2 & 0 & -1
\end{array}\right)
$$

To calculate A^{m}, for $m \in \mathbb{N}$, we note that

$$
A^{2}=V \Sigma V^{-1} V \Sigma V^{-1}=V \Sigma^{2} V^{-1}
$$

Thus, a simple induction argument shows that

$$
A^{m}=V \Sigma^{m} V^{-1}=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & -2 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \left(-\frac{2}{5}\right)^{m}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
-4 & 1 & -2 \\
-2 & 0 & -1
\end{array}\right)
$$

Moreover, the entry-wise limit $\lim _{m \rightarrow \infty} A^{m}$ does exists, and is given by

$$
\lim _{m \rightarrow \infty} A^{m}=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & -2 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
-4 & 1 & -2 \\
-2 & 0 & -1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
-4 & 1 & -2 \\
2 & 0 & 2
\end{array}\right) .
$$

3 Let $A \in \mathcal{M}_{m \times n}(\mathbb{C})$. Let us define $A^{*} \in \mathcal{M}_{n \times m}(\mathbb{C})$ such that

$$
\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle
$$

for all column vectors $x \in \mathbb{C}^{n}, y \in \mathbb{C}^{m}$, where $\langle\cdot, \cdot\rangle$ denotes the standard Hermitian inner product. We want to show that $A^{*}=\bar{A}^{T}$.

Recall that the standard Hermitian inner product on \mathbb{C}^{n} is defined by

$$
\langle x, y\rangle=\bar{y}^{T} x
$$

for all $x, y \in \mathbb{C}^{n}$, and similarly on \mathbb{C}^{m}. For $A \in \mathcal{M}_{m \times n}(\mathbb{C})$ we have

$$
\left\langle x, A^{*} y\right\rangle=\langle A x, y\rangle=\bar{y}^{T} A x=\left(A^{T} \bar{y}\right)^{T} x=\left(\overline{\bar{A}^{T} y}\right)^{T} x=\left\langle x, \bar{A}^{T} y\right\rangle
$$

This shows that $A^{*}=\bar{A}^{T}$.

4 Let $A \in \mathcal{M}_{n}(\mathbb{C})$ be a self-adjoint matrix, that is $A=A^{*}$. We want to show that eigenvectors corresponding to different eigenvalues are orthogonal.
We claim that any eigenvalue of A is necessarily real. Let λ be an eigenvalue of A with the corresponding eigenvector v. Then

$$
\lambda\langle v, v\rangle=\langle A v, v\rangle=\left\langle v, A^{*} v\right\rangle=\langle v, A v\rangle=\bar{\lambda}\langle v, v\rangle .
$$

Thus $\lambda=\bar{\lambda}$, which means that the eigenvalue is real.
Consider any two distinct eigenvalues $\lambda \neq \mu$ with the corresponding eigenvectors v and u, respectively. Then

$$
\lambda\langle v, u\rangle=\langle A v, u\rangle=\langle v, A u\rangle=\bar{\mu}\langle v, u\rangle=\mu\langle v, u\rangle .
$$

The last inequality follows from the fact that the eigenvalues are real. Since $\lambda \neq \mu$, the equality can only hold if $\langle v, u\rangle=0$, which means that the eigenvectors v and u are orthogonal.

