Department of Mathematical
Sciences

Below follows one possible solution to the exercise set.

1 Let X be a vector space of dimension n, and $\mathcal{L}(X)$ be the spaces of linear mappings on X. We want to show that $\mathcal{L}(X)$ is isomorphic to \mathcal{M}_{n}, the space of $n \times n$ matrices.
Let $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{n}$ be a basis on X. From here we can define a linear map $\varphi: X \rightarrow \mathbb{F}^{n}$ by

$$
\varphi\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right)=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right) .
$$

In particular, φ maps the basis of X to the standard basis on \mathbb{F}^{n}. The linearity of φ follows from the linearity of vector addition on \mathbb{F}^{n}. Note that φ is an isomorphism from X to \mathbb{F}^{n}. To see this, note that if $\varphi(x)=\varphi(y)$, where

$$
x=\sum_{i=1}^{n} x_{i} e_{i}, \quad y=\sum_{i=1}^{n} y_{i} .
$$

Then $x_{i}=y_{i}$ for all i, and thus $x=y$, and φ is injective. Moreover, for each $\xi \in \mathbb{F}^{n}$, where

$$
\xi=\left(\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right),
$$

we can define the vector $v \in X$ given by

$$
v=\sum_{i=1}^{n} \xi_{i} e_{i} .
$$

Then $\varphi(v)=\xi$, and so φ is also surjective. This shows that φ is an isomorphism, and moreover it has a well-defined inverse given by

$$
\varphi\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\sum_{i=1}^{n} \alpha_{i} e_{i} .
$$

Note that any linear transformation on X is uniquely determined by how it acts on the basis vectors. Namely, for any $T \in \mathcal{L}(X)$, and any $x \in X$, we have

$$
T(x)=T\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right)=\sum_{i=1}^{n} \alpha_{i} T\left(e_{i}\right) .
$$

We therefore define the map from $\Phi: \mathcal{L}(X) \rightarrow \mathcal{M}_{n}$ given by

$$
T \mapsto \Phi(T)=M_{T}=\left(\varphi\left(T\left(e_{1}\right)\right) \quad \ldots \quad \varphi\left(T\left(e_{n}\right)\right)\right)
$$

That is, the j column of the matrix M_{T} is given by the vector $T\left(e_{j}\right)$.
We claim that this map is a bijection, and hence an isomorphism.
First of, for any matrix $M \in \mathcal{M}_{n}$ we can define the linear transformation T_{M} by defining it on each of the basis vectors given by

$$
T\left(e_{j}\right)=\varphi^{-1}\left(M_{j}\right)
$$

where M_{j} is the $j^{\text {th }}$ column of the matrix M. Then

$$
\varphi\left(T_{M}\right)=\left(\begin{array}{lll}
M_{1} & \ldots & M_{n}
\end{array}\right)=M
$$

which shows that the map Φ is surjective. Moreover, assume that for some $S, T \in$ $\mathcal{L}(X)$ we have

$$
\Phi(S)=\Phi(T)
$$

Then we have

$$
\varphi\left(S\left(e_{j}\right)\right)=\varphi\left(T\left(e_{j}\right)\right)
$$

for each j. Since we showed that φ is injective it follows that $S\left(e_{j}\right)=T\left(e_{j}\right)$. Moreover, as S and T coincide on each basis vector they have to be the same. That is, $S=T$ and so Φ is injective. This shows that Φ is an isomorphism.

2 Let $p_{0}=1$, and define the polynomials p_{j} for $1 \leq j \leq n$ by

$$
p_{j}(x)=\prod_{i=1}^{j}(x-i+1)
$$

Moreover, define the map $D p(x)=p(x+1)-p(x)$
a) Find the matrix representation of D with respect to the basis $\mathcal{B}=\left\{p_{0}, \ldots, p_{n}\right\}$ and the basis $\mathcal{M}=\left\{1, x, \ldots x^{n}\right\}$.
Let us start with the basis \mathcal{M}. Note that $D 1=0$. By the binomial formula, we know that for $j>1$

$$
(x+1)^{j}=\sum_{i=0}^{j}\binom{j}{i} x^{j-i}
$$

From here we have

$$
D x^{j}=(x+1)^{j}-x^{j}=(x+1)^{j}=\sum_{i=1}^{j}\binom{j}{i} x^{j-i}=\sum_{i=0}^{j-1}\binom{j}{j-i} x^{i}
$$

Thus the matrix components of $[D]_{\mathcal{M}}$ is given by

$$
D_{i j}= \begin{cases}\binom{j-1}{j-i} & j>i \\ 0 & j \leq i\end{cases}
$$

For $n=3$, the matrix looks like

$$
[D]_{\mathcal{M}}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

For the basis \mathcal{B} we first note a few nice properties. Firstly, note that

$$
p_{j}(x)=(x-j+1) p_{j-1}(x) .
$$

Secondly, we note that

$$
\begin{aligned}
p_{j}(x+1)=\prod_{i=1}^{j}((x+1)-i+1) & =\prod_{i=1}^{j}(x-(j-1)+1) \\
& =(x+1) \prod_{i=1}^{j-1}(x-j+1) \\
& =(x+1) p_{j-1}(x) .
\end{aligned}
$$

Thus, the difference operator D is given by
$D p_{j}(x)=p_{j}(x+1)-p_{j}(x)=(x+1) p_{j-1}(x)-(x-j+1) p_{j-1}(x)=j p_{j-1}(x)$,
for $j \geq 1$. We still have $D 1=0$. This gives the matrix components

$$
\left[D_{i j}\right]_{\mathcal{B}}= \begin{cases}j-1 & i=j-1 \\ 0, & \text { else } .\end{cases}
$$

For $n=3$, the matrix looks like

$$
[D]_{\mathcal{B}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

b) It was shown in a) that $D p_{j}(x)=j p_{j-1}(x)$.
c) It is enough to consider the action on the basis elements as D is a linear transformation. You should convince yourself about this fact. We choose to work with the basis \mathcal{B}.
Since we have $D p_{j}(x)=j p_{j-1}(x)$, it follows that for $1 \leq i \leq j$

$$
D^{i} p_{j}(x)=\frac{j!}{(j-i)!} p_{j-i}(x) .
$$

In particular, $D^{j} p_{j}(x)=j!p_{0}(x)=j!$, and so $D^{j+1} p_{j}(x)=0$ for any $1 \leq j \leq n$. but this means that for any $p \in \mathcal{P}_{n}$, we have

$$
\begin{aligned}
D^{n} p(x) & =D^{n}\left(\sum_{i=0}^{n} \alpha_{i} p_{i}(x)\right)=n!\alpha_{n} p_{0}(x)=n!\alpha_{n} \\
D^{n+1} & =n!\alpha_{n} D p_{0}(x)=0 .
\end{aligned}
$$

This proves the claim. Note that the way the problem is stated is not completely correct as there exists polynomials $p \in \mathcal{P}_{n}$ such that $D^{n} p(x)=0$. Namely all the polynomials of degree strictly less than n, that is $\alpha_{n}=0$. However, D^{n} does not vanish on \mathcal{P}_{n}, while D^{n+1} does.
For $n=3$ we have.

$$
\begin{array}{ll}
{[D]_{\mathcal{B}}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right),} & {[D]_{\mathcal{B}}^{2}=\left(\begin{array}{cccc}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),} \\
{[D]_{\mathcal{B}}^{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),} & {[D]_{\mathcal{B}}^{4}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .}
\end{array}
$$

3 Let consider the matrix

$$
A=\left(\begin{array}{ccc}
15 & -6 & 2 \\
35 & -14 & 5 \\
7 & -3 & 2
\end{array}\right)
$$

Find the eigenvalues and the generalized eigenspaces.
We start by finding the eigenvalues.

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}+3 \lambda^{2}-3 \lambda+1=(1-\lambda)^{3}
$$

The matrix has eigenvalues $\lambda_{i}=1$ for $i \in\{1,2,3\}$. From here we want to find the eigenvectors.

$$
A-I=\left(\begin{array}{ccc}
14 & -6 & 2 \\
35 & -15 & 5 \\
7 & -3 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
7 & -3 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We can therefore conclude that the eigenvectors are given by

$$
v_{1}=\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
1 \\
0 \\
-7
\end{array}\right)
$$

The generalized eigenspace is defined as
$E_{\lambda}=\left\{v \in \mathbb{R}^{3}:\right.$ There exists $m \in \mathbb{N}$ such that $\left.(A-\lambda I)^{m} v=0,(A-\lambda I)^{m-1} v \neq 0\right\}$.
To find a generalized eigenvector, we want to see if we can find a vector z such that

$$
(A-I) z \neq 0, \quad(A-I)^{2} z=0
$$

Note that $(A-I)^{2}=0$. In particular we can choose

$$
z=v_{1} \times v_{2}=\left(\begin{array}{c}
-7 \\
3 \\
-1
\end{array}\right)
$$

Then

$$
(A-I) z=\left(\begin{array}{ccc}
14 & -6 & 2 \\
35 & -15 & 5 \\
7 & -3 & 1
\end{array}\right)\left(\begin{array}{c}
-7 \\
3 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-118 \\
-295 \\
-59
\end{array}\right) \neq 0
$$

while $(A-I)^{2} z=0$. We therefore have the generalized eigenspace for the eigenvalue $\lambda=1$ given by

$$
E_{1}=\operatorname{span}\left\{v_{1}, v_{2}, z\right\}=\mathbb{R}^{3}
$$

4 Let X be a finite dimensional vector space, and $T: X \rightarrow X$ be a linear transformation. Prove that

$$
X \supseteq \operatorname{im}(T) \supseteq \operatorname{im}\left(T^{2}\right) \supseteq \ldots
$$

and that there exist an integer k such that $\operatorname{im}\left(T^{k}\right)=\operatorname{im}\left(T^{k+1}\right)$.
Recall that the image is defined by

$$
\operatorname{im}(T)=\{x \in X: x=T(y) \text { for some } y \in X\}
$$

We can prove the first part by a simple induction argument. The base case it follows from the definition of the image of T. That is $\operatorname{im}(T) \subseteq X$.
Assume that we have $X \supseteq \operatorname{im}(T) \supseteq \ldots \supseteq \operatorname{im}\left(T^{j-1}\right)$. Then by definition of the image of T^{j} we know that if $x \in \operatorname{im}\left(T^{j}\right)$ then there exists some $y \in X$ such that

$$
x=T^{j}(y)=T^{j-1}(T y)=T^{j-1}(z) \in \operatorname{im}\left(T^{j-1}\right)
$$

For the second part we note that the image of T^{j} is a subspace. This follows from the fact that T is a linear transformation. By the first part we have for each integer j

$$
\operatorname{im}\left(T^{j-1}\right) \supseteq \operatorname{im}\left(T^{j}\right)
$$

In particular, this implies that $\operatorname{dim}\left(\operatorname{im}\left(T^{j}\right)\right) \leq \operatorname{dim}\left(\operatorname{im}\left(T^{j-1}\right)\right)$.
Let $n=\operatorname{dim}(X)$. Then for every integer $0 \leq k \leq n$ we have that either $\operatorname{dim}\left(\operatorname{im}\left(T^{k}\right)\right)=$ $\operatorname{dim}\left(\operatorname{im}\left(T^{k-1}\right)\right)$ or $\operatorname{dim}\left(\operatorname{im}\left(T^{k}\right)\right)<\operatorname{dim}\left(\operatorname{im}\left(T^{k-1}\right)\right)$. Consider first the case that for some integer k we have $\operatorname{dim}\left(\operatorname{im}\left(T^{k}\right)\right)=\operatorname{dim}\left(\operatorname{im}\left(T^{k-1}\right)\right)=m$. Then there exists m linear independent vectors $v_{1}, \ldots v_{m} \in \operatorname{im}\left(T^{k}\right)$ such that $\operatorname{span}\left\{v_{1}, \ldots v_{m}\right\}=\operatorname{im}\left(T^{k}\right)$. Moreover, by the first part $\operatorname{im}\left(T^{k}\right) \subseteq \operatorname{im}\left(T^{k-1}\right)$, and so $v_{1}, \ldots v_{m}$ are m linearly independent vectors in $\operatorname{im}\left(T^{k-1}\right)$. Since $\operatorname{dim}\left(\operatorname{im}\left(T^{k-1}\right)\right)=m$, it follows from lemma 1.6 in the notes, $\left\{v_{1}, \ldots v_{m}\right\}$ is a basis for $\operatorname{im}\left(T^{k-1}\right)$. Thus for any $x \in \operatorname{im}\left(T^{k-1}\right)$ we have

$$
x=\sum_{i=1}^{m} \alpha_{i} v_{i} \in \operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}=\operatorname{im}\left(T^{k}\right)
$$

This shows that $\operatorname{im}\left(T^{k-1}\right) \subseteq \operatorname{im}\left(T^{k}\right)$, and thus we have equality.
Assume on the other hand that $\operatorname{dim}\left(\operatorname{im}\left(T^{k}\right)\right)<\operatorname{dim}\left(\operatorname{im}\left(T^{k-1}\right)\right)$. Since X is finite dimensional, there exists an integer $k \leq n$ such that $\operatorname{dim}\left(\operatorname{im}\left(T^{k}\right)\right)=0$. Otherwise we would have had an equality of the dimensions. Since $\operatorname{im}\left(T^{k}\right)$ is a vector space, and the only zero dimensional vector space is $\{0\}$, it follows that $\operatorname{im}\left(T^{k}\right)=\{0\}$. However, as T is a linear transformation, we know that $T(0)=0$. Thus, for any $x \in \operatorname{im}\left(T^{k+1}\right)$

$$
x=T^{k+1}(z)=T\left(T^{k}(z)\right)=T(0)=0
$$

This shows that

$$
\operatorname{im}\left(T^{k+1}\right)=\{0\}=\operatorname{im}\left(T^{k}\right)
$$

