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Solutions to exercise set 2

Below follows one possible solution to the exercise set.

1 Let X be a vector space of dimension n, and L(X) be the spaces of linear mappings
on X. We want to show that L(X) is isomorphic to Mn, the space of n×n matrices.

Let B = {ej}nj=1 be a basis on X. From here we can define a linear map φ : X → Fn

by

φ

(
n∑

i=1

αiei

)
=


α1

α2
...
αn

 .

In particular, φ maps the basis of X to the standard basis on Fn. The linearity of φ
follows from the linearity of vector addition on Fn. Note that φ is an isomorphism
from X to Fn. To see this, note that if φ(x) = φ(y), where

x =
n∑

i=1

xiei, y =
n∑

i=1

yi.

Then xi = yi for all i, and thus x = y, and φ is injective. Moreover, for each ξ ∈ Fn,
where

ξ =

ξ1
...
ξn

 ,

we can define the vector v ∈ X given by

v =
n∑

i=1

ξiei.

Then φ(v) = ξ, and so φ is also surjective. This shows that φ is an isomorphism,
and moreover it has a well-defined inverse given by

φ

α1
...
αn

 =
n∑

i=1

αiei.

Note that any linear transformation on X is uniquely determined by how it acts on
the basis vectors. Namely, for any T ∈ L(X), and any x ∈ X, we have

T (x) = T

(
n∑

i=1

αiei

)
=

n∑
i=1

αiT (ei).
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We therefore define the map from Φ : L(X) → Mn given by

T 7→ Φ(T ) = MT =
(
φ(T (e1)) . . . φ(T (en))

)
.

That is, the j column of the matrix MT is given by the vector T (ej).

We claim that this map is a bijection, and hence an isomorphism.

First of, for any matrix M ∈ Mn we can define the linear transformation TM by
defining it on each of the basis vectors given by

T (ej) = φ−1(Mj),

where Mj is the jth column of the matrix M . Then

φ(TM ) =
(
M1 . . . Mn

)
= M,

which shows that the map Φ is surjective. Moreover, assume that for some S, T ∈
L(X) we have

Φ(S) = Φ(T ).

Then we have
φ(S(ej)) = φ(T (ej)),

for each j. Since we showed that φ is injective it follows that S(ej) = T (ej). More-
over, as S and T coincide on each basis vector they have to be the same. That is,
S = T and so Φ is injective. This shows that Φ is an isomorphism.

2 Let p0 = 1, and define the polynomials pj for 1 ≤ j ≤ n by

pj(x) =

j∏
i=1

(x− i+ 1).

Moreover, define the map Dp(x) = p(x+ 1)− p(x)

a) Find the matrix representation of D with respect to the basis B = {p0, . . . , pn}
and the basis M = {1, x, . . . xn}.
Let us start with the basis M. Note that D1 = 0. By the binomial formula, we
know that for j > 1

(x+ 1)j =

j∑
i=0

(
j

i

)
xj−i.

From here we have

Dxj = (x+ 1)j − xj = (x+ 1)j =

j∑
i=1

(
j

i

)
xj−i =

j−1∑
i=0

(
j

j − i

)
xi.

Thus the matrix components of [D]M is given by

Dij =

{(
j−1
j−i

)
j > i,

0 j ≤ i.
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For n = 3, the matrix looks like

[D]M =


0 1 1 1
0 0 2 3
0 0 0 3
0 0 0 0

 .

For the basis B we first note a few nice properties. Firstly, note that

pj(x) = (x− j + 1)pj−1(x).

Secondly, we note that

pj(x+ 1) =

j∏
i=1

((x+ 1)− i+ 1) =

j∏
i=1

(x− (j − 1) + 1)

=(x+ 1)

j−1∏
i=1

(x− j + 1)

=(x+ 1)pj−1(x).

Thus, the difference operator D is given by

Dpj(x) = pj(x+ 1)− pj(x) = (x+ 1)pj−1(x)− (x− j + 1)pj−1(x) = jpj−1(x),

for j ≥ 1. We still have D1 = 0. This gives the matrix components

[Dij ]B =

{
j − 1 i = j − 1

0, else.

For n = 3, the matrix looks like

[D]B =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

b) It was shown in a) that Dpj(x) = jpj−1(x).

c) It is enough to consider the action on the basis elements as D is a linear trans-
formation. You should convince yourself about this fact. We choose to work
with the basis B.
Since we have Dpj(x) = jpj−1(x), it follows that for 1 ≤ i ≤ j

Dipj(x) =
j!

(j − i)!
pj−i(x).

In particular, Djpj(x) = j!p0(x) = j!, and so Dj+1pj(x) = 0 for any 1 ≤ j ≤ n.
but this means that for any p ∈ Pn, we have

Dnp(x) =Dn

(
n∑

i=0

αipi(x)

)
= n!αnp0(x) = n!αn,

Dn+1 =n!αnDp0(x) = 0.
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This proves the claim. Note that the way the problem is stated is not completely
correct as there exists polynomials p ∈ Pn such that Dnp(x) = 0. Namely all
the polynomials of degree strictly less than n, that is αn = 0. However, Dn

does not vanish on Pn, while Dn+1 does.
For n = 3 we have.

[D]B =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 , [D]2B =


0 0 2 0
0 0 0 6
0 0 0 0
0 0 0 0

 ,

[D]3B =


0 0 0 6
0 0 0 0
0 0 0 0
0 0 0 0

 , [D]4B =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

3 Let consider the matrix

A =

15 −6 2
35 −14 5
7 −3 2

 .

Find the eigenvalues and the generalized eigenspaces.

We start by finding the eigenvalues.

det(A− λI) = −λ3 + 3λ2 − 3λ+ 1 = (1− λ)3.

The matrix has eigenvalues λi = 1 for i ∈ {1, 2, 3}. From here we want to find the
eigenvectors.

A− I =

14 −6 2
35 −15 5
7 −3 1

 ∼

7 −3 1
0 0 0
0 0 0

 .

We can therefore conclude that the eigenvectors are given by

v1 =

0
1
3

 , v2 =

 1
0
−7

 .

The generalized eigenspace is defined as

Eλ = {v ∈ R3 : There exists m ∈ N such that (A− λI)mv = 0, (A− λI)m−1v ̸= 0}.

To find a generalized eigenvector, we want to see if we can find a vector z such that

(A− I)z ̸= 0, (A− I)2z = 0.

Note that (A− I)2 = 0. In particular we can choose

z = v1 × v2 =

−7
3
−1

 .

September 12, 2022 Page 4 of 5



Solutions to exercise set 2

Then

(A− I)z =

14 −6 2
35 −15 5
7 −3 1

−7
3
−1

 =

−118
−295
−59

 ̸= 0

while (A− I)2z = 0. We therefore have the generalized eigenspace for the eigenvalue
λ = 1 given by

E1 = span{v1, v2, z} = R3.

4 Let X be a finite dimensional vector space, and T : X → X be a linear transforma-
tion. Prove that

X ⊇ im(T ) ⊇ im(T 2) ⊇ . . . ,

and that there exist an integer k such that im(T k) = im(T k+1).

Recall that the image is defined by

im(T ) = {x ∈ X : x = T (y) for some y ∈ X}.

We can prove the first part by a simple induction argument. The base case it follows
from the definition of the image of T . That is im(T ) ⊆ X.

Assume that we have X ⊇ im(T ) ⊇ . . . ⊇ im(T j−1). Then by definition of the image
of T j we know that if x ∈ im(T j) then there exists some y ∈ X such that

x = T j(y) = T j−1(Ty) = T j−1(z) ∈ im(T j−1).

For the second part we note that the image of T j is a subspace. This follows from
the fact that T is a linear transformation. By the first part we have for each integer
j

im(T j−1) ⊇ im(T j).

In particular, this implies that dim(im(T j)) ≤ dim(im(T j−1)).

Let n = dim(X). Then for every integer 0 ≤ k ≤ n we have that either dim(im(T k)) =
dim(im(T k−1)) or dim(im(T k)) < dim(im(T k−1)). Consider first the case that for
some integer k we have dim(im(T k)) = dim(im(T k−1)) = m. Then there exists m
linear independent vectors v1, . . . vm ∈ im(T k) such that span{v1, . . . vm} = im(T k).
Moreover, by the first part im(T k) ⊆ im(T k−1), and so v1, . . . vm are m linearly in-
dependent vectors in im(T k−1). Since dim(im(T k−1)) = m, it follows from lemma
1.6 in the notes, {v1, . . . vm} is a basis for im(T k−1). Thus for any x ∈ im(T k−1) we
have

x =
m∑
i=1

αivi ∈ span{v1, . . . , vm} = im(T k).

This shows that im(T k−1) ⊆ im(T k), and thus we have equality.

Assume on the other hand that dim(im(T k)) < dim(im(T k−1)). Since X is finite
dimensional, there exists an integer k ≤ n such that dim(im(T k)) = 0. Otherwise we
would have had an equality of the dimensions. Since im(T k) is a vector space, and
the only zero dimensional vector space is {0}, it follows that im(T k) = {0}. However,
as T is a linear transformation, we know that T (0) = 0. Thus, for any x ∈ im(T k+1)

x = T k+1(z) = T (T k(z)) = T (0) = 0.

This shows that
im(T k+1) = {0} = im(T k).

September 12, 2022 Page 5 of 5


