

Below follows *one* possible solution to the exercise set.

1 Let X be a vector space of dimension n, and $\mathcal{L}(X)$ be the spaces of linear mappings on X. We want to show that $\mathcal{L}(X)$ is isomorphic to \mathcal{M}_n , the space of $n \times n$ matrices. Let $\mathcal{B} = \{e_j\}_{j=1}^n$ be a basis on X. From here we can define a linear map $\varphi : X \to \mathbb{F}^n$ by

$$\varphi\left(\sum_{i=1}^{n} \alpha_i e_i\right) = \begin{pmatrix} \alpha_1\\ \alpha_2\\ \vdots\\ \alpha_n \end{pmatrix}$$

In particular, φ maps the basis of X to the standard basis on \mathbb{F}^n . The linearity of φ follows from the linearity of vector addition on \mathbb{F}^n . Note that φ is an isomorphism from X to \mathbb{F}^n . To see this, note that if $\varphi(x) = \varphi(y)$, where

$$x = \sum_{i=1}^{n} x_i e_i, \quad y = \sum_{i=1}^{n} y_i.$$

Then $x_i = y_i$ for all i, and thus x = y, and φ is injective. Moreover, for each $\xi \in \mathbb{F}^n$, where

$$\xi = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix},$$

we can define the vector $v \in X$ given by

$$v = \sum_{i=1}^{n} \xi_i e_i.$$

Then $\varphi(v) = \xi$, and so φ is also surjective. This shows that φ is an isomorphism, and moreover it has a well-defined inverse given by

$$\varphi \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \sum_{i=1}^n \alpha_i e_i.$$

Note that any linear transformation on X is uniquely determined by how it acts on the basis vectors. Namely, for any $T \in \mathcal{L}(X)$, and any $x \in X$, we have

$$T(x) = T\left(\sum_{i=1}^{n} \alpha_i e_i\right) = \sum_{i=1}^{n} \alpha_i T(e_i).$$

We therefore define the map from $\Phi : \mathcal{L}(X) \to \mathcal{M}_n$ given by

$$T \mapsto \Phi(T) = M_T = (\varphi(T(e_1)) \dots \varphi(T(e_n))).$$

That is, the j column of the matrix M_T is given by the vector $T(e_j)$.

We claim that this map is a bijection, and hence an isomorphism.

First of, for any matrix $M \in \mathcal{M}_n$ we can define the linear transformation T_M by defining it on each of the basis vectors given by

$$T(e_j) = \varphi^{-1}(M_j),$$

where M_j is the j^{th} column of the matrix M. Then

$$\varphi(T_M) = \begin{pmatrix} M_1 & \dots & M_n \end{pmatrix} = M,$$

which shows that the map Φ is surjective. Moreover, assume that for some $S, T \in \mathcal{L}(X)$ we have

$$\Phi(S) = \Phi(T).$$

Then we have

$$\varphi(S(e_j)) = \varphi(T(e_j)),$$

for each j. Since we showed that φ is injective it follows that $S(e_j) = T(e_j)$. Moreover, as S and T coincide on each basis vector they have to be the same. That is, S = T and so Φ is injective. This shows that Φ is an isomorphism.

2 Let $p_0 = 1$, and define the polynomials p_j for $1 \le j \le n$ by

$$p_j(x) = \prod_{i=1}^j (x - i + 1).$$

Moreover, define the map Dp(x) = p(x+1) - p(x)

a) Find the matrix representation of D with respect to the basis $\mathcal{B} = \{p_0, \ldots, p_n\}$ and the basis $\mathcal{M} = \{1, x, \ldots, x^n\}$.

Let us start with the basis \mathcal{M} . Note that D1 = 0. By the binomial formula, we know that for j > 1

$$(x+1)^j = \sum_{i=0}^j \binom{j}{i} x^{j-i}.$$

From here we have

$$Dx^{j} = (x+1)^{j} - x^{j} = (x+1)^{j} = \sum_{i=1}^{j} {j \choose i} x^{j-i} = \sum_{i=0}^{j-1} {j \choose j-i} x^{i}.$$

Thus the matrix components of $[D]_{\mathcal{M}}$ is given by

$$D_{ij} = \begin{cases} \binom{j-1}{j-i} & \quad j > i \\ 0 & \quad j \leq i \end{cases}$$

For n = 3, the matrix looks like

$$[D]_{\mathcal{M}} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

For the basis \mathcal{B} we first note a few nice properties. Firstly, note that

$$p_j(x) = (x - j + 1)p_{j-1}(x).$$

Secondly, we note that

$$p_j(x+1) = \prod_{i=1}^j ((x+1) - i + 1) = \prod_{i=1}^j (x - (j-1) + 1)$$
$$= (x+1) \prod_{i=1}^{j-1} (x - j + 1)$$
$$= (x+1)p_{j-1}(x).$$

Thus, the difference operator D is given by

$$Dp_j(x) = p_j(x+1) - p_j(x) = (x+1)p_{j-1}(x) - (x-j+1)p_{j-1}(x) = jp_{j-1}(x),$$

for $j \ge 1$. We still have D1 = 0. This gives the matrix components

$$[D_{ij}]_{\mathcal{B}} = \begin{cases} j-1 & i=j-1\\ 0, & \text{else.} \end{cases}$$

For n = 3, the matrix looks like

$$[D]_{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- **b)** It was shown in **a**) that $Dp_j(x) = jp_{j-1}(x)$.
- c) It is enough to consider the action on the basis elements as D is a linear transformation. You should convince yourself about this fact. We choose to work with the basis \mathcal{B} .

Since we have $Dp_j(x) = jp_{j-1}(x)$, it follows that for $1 \le i \le j$

$$D^{i}p_{j}(x) = \frac{j!}{(j-i)!}p_{j-i}(x).$$

In particular, $D^j p_j(x) = j! p_0(x) = j!$, and so $D^{j+1} p_j(x) = 0$ for any $1 \le j \le n$. but this means that for any $p \in \mathcal{P}_n$, we have

$$D^n p(x) = D^n \left(\sum_{i=0}^n \alpha_i p_i(x) \right) = n! \alpha_n p_0(x) = n! \alpha_n,$$

$$D^{n+1} = n! \alpha_n D p_0(x) = 0.$$

This proves the claim. Note that the way the problem is stated is not completely correct as there exists polynomials $p \in \mathcal{P}_n$ such that $D^n p(x) = 0$. Namely all the polynomials of degree strictly less than n, that is $\alpha_n = 0$. However, D^n does not vanish on \mathcal{P}_n , while D^{n+1} does. For n = 3 we have.

3 Let consider the matrix

$$A = \begin{pmatrix} 15 & -6 & 2\\ 35 & -14 & 5\\ 7 & -3 & 2 \end{pmatrix}.$$

Find the eigenvalues and the generalized eigenspaces. We start by finding the eigenvalues.

$$\det(A - \lambda I) = -\lambda^3 + 3\lambda^2 - 3\lambda + 1 = (1 - \lambda)^3.$$

The matrix has eigenvalues $\lambda_i = 1$ for $i \in \{1, 2, 3\}$. From here we want to find the eigenvectors.

$$A - I = \begin{pmatrix} 14 & -6 & 2\\ 35 & -15 & 5\\ 7 & -3 & 1 \end{pmatrix} \sim \begin{pmatrix} 7 & -3 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

We can therefore conclude that the eigenvectors are given by

$$v_1 = \begin{pmatrix} 0\\1\\3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1\\0\\-7 \end{pmatrix}.$$

The generalized eigenspace is defined as

 $E_{\lambda} = \{ v \in \mathbb{R}^3 : \text{There exists } m \in \mathbb{N} \text{ such that } (A - \lambda I)^m v = 0, \ (A - \lambda I)^{m-1} v \neq 0 \}.$

To find a generalized eigenvector, we want to see if we can find a vector z such that

$$(A - I)z \neq 0, \quad (A - I)^2 z = 0.$$

Note that $(A - I)^2 = 0$. In particular we can choose

$$z = v_1 \times v_2 = \begin{pmatrix} -7\\ 3\\ -1 \end{pmatrix}.$$

Then

$$(A-I)z = \begin{pmatrix} 14 & -6 & 2\\ 35 & -15 & 5\\ 7 & -3 & 1 \end{pmatrix} \begin{pmatrix} -7\\ 3\\ -1 \end{pmatrix} = \begin{pmatrix} -118\\ -295\\ -59 \end{pmatrix} \neq 0$$

while $(A - I)^2 z = 0$. We therefore have the generalized eigenspace for the eigenvalue $\lambda = 1$ given by

$$E_1 = \operatorname{span}\{v_1, v_2, z\} = \mathbb{R}^3.$$

<u>4</u> Let X be a finite dimensional vector space, and $T: X \to X$ be a linear transformation. Prove that

$$X \supseteq \operatorname{im}(T) \supseteq \operatorname{im}(T^2) \supseteq \dots,$$

and that there exist an integer k such that $im(T^k) = im(T^{k+1})$. Recall that the image is defined by

$$\operatorname{im}(T) = \{ x \in X : x = T(y) \text{ for some } y \in X \}.$$

We can prove the first part by a simple induction argument. The base case it follows from the definition of the image of T. That is $im(T) \subseteq X$.

Assume that we have $X \supseteq \operatorname{im}(T) \supseteq \ldots \supseteq \operatorname{im}(T^{j-1})$. Then by definition of the image of T^j we know that if $x \in \operatorname{im}(T^j)$ then there exists some $y \in X$ such that

$$x = T^{j}(y) = T^{j-1}(Ty) = T^{j-1}(z) \in \operatorname{im}(T^{j-1}).$$

For the second part we note that the image of T^{j} is a subspace. This follows from the fact that T is a linear transformation. By the first part we have for each integer j

$$\operatorname{im}(T^{j-1}) \supseteq \operatorname{im}(T^j).$$

In particular, this implies that $\dim(\operatorname{im}(T^j)) \leq \dim(\operatorname{im}(T^{j-1}))$.

Let $n = \dim(X)$. Then for every integer $0 \le k \le n$ we have that either $\dim(\operatorname{im}(T^k)) = \dim(\operatorname{im}(T^{k-1}))$ or $\dim(\operatorname{im}(T^k)) < \dim(\operatorname{im}(T^{k-1}))$. Consider first the case that for some integer k we have $\dim(\operatorname{im}(T^k)) = \dim(\operatorname{im}(T^{k-1})) = m$. Then there exists m linear independent vectors $v_1, \ldots v_m \in \operatorname{im}(T^k)$ such that $\operatorname{span}\{v_1, \ldots v_m\} = \operatorname{im}(T^k)$. Moreover, by the first part $\operatorname{im}(T^k) \subseteq \operatorname{im}(T^{k-1})$, and so $v_1, \ldots v_m$ are m linearly independent vectors in $\operatorname{im}(T^{k-1})$. Since $\dim(\operatorname{im}(T^{k-1})) = m$, it follows from lemma 1.6 in the notes, $\{v_1, \ldots v_m\}$ is a basis for $\operatorname{im}(T^{k-1})$. Thus for any $x \in \operatorname{im}(T^{k-1})$ we have

$$x = \sum_{i=1}^{m} \alpha_i v_i \in \operatorname{span}\{v_1, \dots, v_m\} = \operatorname{im}(T^k).$$

This shows that $\operatorname{im}(T^{k-1}) \subseteq \operatorname{im}(T^k)$, and thus we have equality.

Assume on the other hand that $\dim(\operatorname{im}(T^k)) < \dim(\operatorname{im}(T^{k-1}))$. Since X is finite dimensional, there exists an integer $k \leq n$ such that $\dim(\operatorname{im}(T^k)) = 0$. Otherwise we would have had an equality of the dimensions. Since $\operatorname{im}(T^k)$ is a vector space, and the only zero dimensional vector space is $\{0\}$, it follows that $\operatorname{im}(T^k) = \{0\}$. However, as T is a linear transformation, we know that T(0) = 0. Thus, for any $x \in \operatorname{im}(T^{k+1})$

$$x = T^{k+1}(z) = T(T^k(z)) = T(0) = 0.$$

This shows that

$$\operatorname{im}(T^{k+1}) = \{0\} = \operatorname{im}(T^k)$$