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Below follows one possible solution to the exercise set.

Let X be a vector space of dimension n, and £(X) be the spaces of linear mappings
on X. We want to show that £(X) is isomorphic to M,,, the space of n x n matrices.

Let B = {e;}7_; be a basis on X. From here we can define a linear map ¢ : X — F"

by
o
n
(€3]
¥ (Z Oéi€¢> =1 -
i=1 :
(679

In particular, ¢ maps the basis of X to the standard basis on F”. The linearity of ¢
follows from the linearity of vector addition on F". Note that ¢ is an isomorphism
from X to F™. To see this, note that if p(x) = ¢(y), where

n n
r = E ZTi€q, Yy = E Yi-
i=1 =1

Then x; = y; for all 4, and thus = = y, and ¢ is injective. Moreover, for each £ € F™,
where
&
§= )
gn
we can define the vector v € X given by

n
v=" e
i=1
Then p(v) = &, and so ¢ is also surjective. This shows that ¢ is an isomorphism,

and moreover it has a well-defined inverse given by

an

n
© : = E ;€;.
i=1

Qn

Note that any linear transformation on X is uniquely determined by how it acts on
the basis vectors. Namely, for any 7' € £(X), and any x € X, we have

T(x)=T <Z oziei> = Z a;T(e;).
i=1 i=1
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We therefore define the map from @ : £(X) — M,, given by
T ®(T)=Mp = (o(T(e1)) ... o(T(en))).

That is, the j column of the matrix My is given by the vector T'(e;).
We claim that this map is a bijection, and hence an isomorphism.

First of, for any matrix M € M, we can define the linear transformation 7T3; by
defining it on each of the basis vectors given by

T(ej) = ¢~ (Mj),
where M; is the j'' column of the matrix M. Then
o(Ty) = (My ... M) =M,

which shows that the map ® is surjective. Moreover, assume that for some S,T €
L(X) we have

Then we have
©(S(ej)) = o(T'(e;)),

for each j. Since we showed that ¢ is injective it follows that S(e;) = T'(e;). More-
over, as S and T coincide on each basis vector they have to be the same. That is,
S =T and so ® is injective. This shows that ® is an isomorphism.

Let pg = 1, and define the polynomials p; for 1 < j < n by

pi(x) =[] —i+1).

i=1
Moreover, define the map Dp(z) = p(z + 1) — p(z)

a) Find the matrix representation of D with respect to the basis B = {po,...,pn}
and the basis M = {1,z,...2"}.
Let us start with the basis M. Note that D1 = 0. By the binomial formula, we

know that for 7 > 1
J .
1) = E I

1=0

From here we have
Dol = (2 4+ 1) — 2/ = (x + 1) —i <j>a;ji —ji ( J )aﬁl
o\ iz N T .
Thus the matrix components of [D]a is given by

i—1 . .
Dij — {(éz) J > (2

0 j<i.
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For n = 3, the matrix looks like

[Dlm =

o O O O
SO O
S O N
S W W =

For the basis B we first note a few nice properties. Firstly, note that

pj(z) = (x — j + Dpj—1(z).

Secondly, we note that

pj(x—i-l):H((az—l—l)—i—i—l):n(x—(j—1)+1)

=(z+1) H:EfjJr]_
=1

=(z + 1)1%1(!6)-
Thus, the difference operator D is given by
Dpj(x) = pj(z +1) —pj(2) = (z + Vpj-1(2) — ( — j + Vpj-1(x) = jpj-1(2),

for 7 > 1. We still have D1 = 0. This gives the matrix components

j—1 i=j—1
D;ilp =
Dijls {0, else.

For n = 3, the matrix looks like

[D]s =

o O O O
o O O
O O N O
O W o o

b) It was shown in a) that Dp;(z) = jp;—1(z).

c) It is enough to consider the action on the basis elements as D is a linear trans-
formation. You should convince yourself about this fact. We choose to work
with the basis B.

Since we have Dp;(z) = jpj—1(z), it follows that for 1 <i < j
!
D'pj(z) = mpj—i(x)

In particular, D7p;(x) = jlpo(z) = j!, and so DI !p;(z) = 0 for any 1 < j < n.
but this means that for any p € P,,, we have

n
n (Z ocm%l‘)) = nlagpo(z) = nlay,
=0

D" =nla, Dpo(x) = 0.
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This proves the claim. Note that the way the problem is stated is not completely
correct as there exists polynomials p € P, such that D"p(x) = 0. Namely all
the polynomials of degree strictly less than n, that is «,, = 0. However, D"
does not vanish on P,,, while D™ does.

For n = 3 we have.

01 00 00 2 0
{0 0 2 0 2 |10 0 0 6
00 0O 00 0O
0 0 0 6 00 0O
00 0 0 00 0 O

3 _ 4
[D]B_oooo’[D]B 0000
00 0 0 00 0 O

Let consider the matrix

15 -6 2

A=135 —-14 5

7T -3 2

Find the eigenvalues and the generalized eigenspaces.

We start by finding the eigenvalues.
det(A— M) = -2 +3)\ =3\ +1=(1-))>

The matrix has eigenvalues \; = 1 for ¢ € {1,2,3}. From here we want to find the

eigenvectors.
14 -6 2 7T -3 1
A-I=1|3 —-15 5] ~10 0 O
7T =3 1 0 0 O

We can therefore conclude that the eigenvectors are given by

0 1
vp=11], wvo=120
3 -7

The generalized eigenspace is defined as
E) = {v € R? : There exists m € N such that (4 — \XI)™v =0, (A — XI)™ v #£ 0}.
To find a generalized eigenvector, we want to see if we can find a vector z such that
(A-D)z#0, (A-1)?z=0.
Note that (A — I)? = 0. In particular we can choose
-7

z=vi Xvy=| 3
-1

September 12, 2022 Page 4 of 5



Solutions to exercise set 2

Then
14 -6 2 -7 —118
(A-I)z= 1|35 —15 5 31 =1-29]| #0
7T =3 1 -1 —59

while (A —I)%2z = 0. We therefore have the generalized eigenspace for the eigenvalue
A =1 given by
Ey = spanf{vy, ve, 2} = R3.

Let X be a finite dimensional vector space, and T': X — X be a linear transforma-
tion. Prove that
X 2im(T) 2im(T?) D ...,
and that there exist an integer k such that im(7%) = im(T**1).
Recall that the image is defined by

im(T) ={zx € X : 2 =T(y) for some y € X}.

We can prove the first part by a simple induction argument. The base case it follows
from the definition of the image of 7. That is im(7") C X.

Assume that we have X D im(T) D ... D im(77~!). Then by definition of the image
of T7 we know that if = € im(77) then there exists some y € X such that

e=T(y)=T""YTy) = T""1(2) € im(T7 7).

For the second part we note that the image of 77 is a subspace. This follows from
the fact that T is a linear transformation. By the first part we have for each integer

J
im(7971) D im(77).
In particular, this implies that dim(im(77)) < dim(im(77~1)).
Let n = dim(X). Then for every integer 0 < k < n we have that either dim(im(7%)) =
dim(im(7*71)) or dim(im(7%)) < dim(im(7*~1)). Consider first the case that for
some integer k& we have dim(im(7%)) = dim(im(7%~1)) = m. Then there exists m
linear independent vectors vy, ... vy, € im(T*) such that span{vy, ... v} = im(T*).
Moreover, by the first part im(7T%) C im(T%~1), and so vy, ... v, are m linearly in-
dependent vectors in im(7%71). Since dim(im(7T*~1)) = m, it follows from lemma
1.6 in the notes, {v1,... vy} is a basis for im(T*~!). Thus for any z € im(T*~1) we
have
m
xr = Z ov; € span{vy, ..., vy} = im(T%).
i=1
This shows that im(7%~1) C im(T*), and thus we have equality.
Assume on the other hand that dim(im(7%)) < dim(im(7%71)). Since X is finite
dimensional, there exists an integer k& < n such that dim(im(7%)) = 0. Otherwise we
would have had an equality of the dimensions. Since im(T*¥) is a vector space, and
the only zero dimensional vector space is {0}, it follows that im(7*) = {0}. However,
as T is a linear transformation, we know that 7'(0) = 0. Thus, for any = € im(7**!)

x =T (2) =T(T*(2)) = T(0) = 0.

This shows that
im(T*1) = {0} = im(T").
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