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Solutions to exercise set 12

Below follows one possible solution to the exercise set.

1 Let {en}n∈N be the standard basis in the sequence space ℓ∞. Show that the series∑∞
n=1 anen converges in ℓ∞ if and only if {an}n∈N converges to zero.

We start by assuming that an → 0. To show that
∑∞

n=1 anen converges in ℓ∞, we
will assume that the partial sums sN =

∑N
n=1 anen converges to a. Clearly,

a− sN = (0, . . . , 0, aN+1, aN+2, . . .),

and thus we note that,
∥a− sN∥∞ = sup

l≥N+1
|al|.

By the assumption that aN → 0 as N → ∞, it follows that

∥a− sN∥∞ = sup
l≥N+1

|al|
N→∞−−−−→ 0,

and so the series converges in ℓ∞.

Conversely, assume that
∑∞

n=1 anen converges in ℓ∞. This means that the partial
sums sN =

∑N
n=1 anen converge to some element x = (x1, x2, . . .) ∈ ℓ∞. It necessarily

follows that xi = ai for each i ∈ N, since for any N > i,

x− sN = (x1 − a1, . . . , xi − ai, . . . , xN − aN , xN+1, xN+2, . . .).

In particular,

|xi − ai| ≤ sup
j∈N

|xj − (sN )j | = ∥x− sN∥∞
N→∞−−−−→ 0.

By the assumption that sN → x in ℓ∞, it follows that sN → a = (a1, a2, . . .) by the
fact that xi = ai for each i. However, this implies that

|aN+1| ≤ sup
l≥N+1

|ai| = ∥a− sN∥∞
N→∞−−−−→ 0,

which shows that an → 0 as n → ∞.
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2 Show that if a normed space (X, || · ||) has a Schauder basis, then it is separable.

Recall that X is separable if there exists a countable dense subset of X. We claim that
such a subset is given all finite linear combinations of basis elements with rational
coefficients,

Y =

{
q ∈ X : q =

N∑
i=1

qien, qi ∈ Q+ iQ, N ∈ N

}
.

Here Q+ iQ := {z ∈ C : z = p+ iq, p, q ∈ Q} ⊂ C, which is a dense countable subset
of C. Moreover, for each fixed N we can define the subset,

YN =

{
q ∈ X : q =

N∑
i=1

qien, qi ∈ Q+ iQ

}
,

and note that there exists a bijection φ : YN → (Q+ iQ)N given by

N∑
i=1

qiei 7→ (q1, . . . , qN ).

Since any finite Cartesian product of countable sets are countable, it follows that
(Q + iQ)N is countable, and so is YN as there is a bijection between them. This
implies that the set Y is countable, as

Y =
⋃
N∈N

YN ,

and any countable union of countable sets are countable.

It only remains to show that Y is dense in X. Since {en}n∈N is a Schauder basis,
then for every ε > 0 there exists N ∈ N, and thus a finite combination, such that∥∥∥∥∥x−

N∑
i=1

xiei

∥∥∥∥∥ <
ε

2
.

Since Q + iQ is dense in C, there exists a sequence (q1, . . . , qN ) ∈ (Q + iQ)N such
that for each 1 ≤ i ≤ N ,

|xi − qi| <
ε

2N max1≤l≤N ∥el∥
.

It therefore follows by the triangle inequality that,∥∥∥∥∥x−
N∑
i=1

qiei

∥∥∥∥∥ ≤

∥∥∥∥∥x−
N∑
i=1

xiei

∥∥∥∥∥+

∥∥∥∥∥
N∑
i=1

qiei −
N∑
i=1

xiei

∥∥∥∥∥
<
ε

2
+ max

1≤j≤N
∥ej∥

N∑
i=1

|xi − qi|

<
ε

2
+ max

1≤j≤N
∥ej∥

Nε

2N max1≤l≤N ∥el∥
=ε,

which shows that Y is a countable dense subset in X, and so X is separable.
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3 Let L2[−1, 1] be equipped with the inner product

⟨f, g⟩ =
∫ 1

−1
f(t)g(t) dt.

Apply Gram-Schmidt’s orthogonalization algorithm to the monomial basis {1, x, x2, · · · }
up to degree 2.

We begin with the basis elements {1, x, x2}, and let ẽj denote the j orthogonal
element from the Gram-Schmidt procedure, and ej = ẽj/∥ẽj∥ is the orthonomal
element.

For ẽ1 = 1, we simply have

e1 =
1

∥1∥
=

1√∫ −1
−1 12dt

=
1√
2
.

Applying Gram-Schmidt to the vector x gives,

ẽ2 = x− ⟨x, e1⟩e1 = x− 1

2

∫ 1

−1
tdt = x.

Thus, the nomralized element is given by,

e2 =
x√∫ 1

−1 t
2dt

=
x√
2
3

.

For the third and final element, Gram-Schmidt yields

ẽ3 = x2 − 1

2

∫ 1

−1
t2dt− 3

2

∫ 1

−1
t3dtx = x2 − 1

3
.

The normalized element is therefore given as

e3 =
x2 − 3−1√∫ 1

−1(t
2 − 3−1)2dt

=
x2 − 1

3√
8
45

.

The orthonormal elements up to degree 2 from the Gram-Schmidt procedure are
given by

{e1, e2, e3} =

 1√
2
,

x√
2
3

,
x2 − 1

3√
8
45

 .
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4 Let || · ||a and || · ||b be equivalent norms on a vector space X. Show that a sequence
{xn} in X is Cauchy with respect to the norm || · ||a if and only if it is Cauchy with
respect to the norm || · ||b.
Recall that two norms are equivalent if and only if there exists C1, C2 > 0 such that

C1∥x∥a ≤ ∥x∥b ≤ C2∥x∥a,

for every x ∈ X.

Assume first that {xn} is a Cauchy sequence in (X, ∥ · ∥a). This means that for every
ε > 0 there exists N ∈ N such that

∥xn − xm∥a <
ε

C2
,

for every m,n > N . However, by the equivalence of the norms, it immediately follows
that

∥xn − xm∥b ≤ C2∥xn − xm∥a < ε,

and so {xn} is also a Cauchy sequence in (X, ∥ · ∥b).
Similarly, assume that {xn} is a Cauchy sequence in (X, ∥ · ∥b). This means that for
every ε > 0 there exists N ∈ N such that

∥xn − xm∥a < C1ε,

for every m,n > N . However, by the equivalence of the norms, it immediately follows
that

∥xn − xm∥a ≤ 1

C1
∥xn − xm∥b < ε,

and so {xn} is also a Cauchy sequence in (X, ∥ · ∥a).
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