Below follows one possible solution to the exercise set.

11 Let $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ be the standard basis in the sequence space ℓ^{∞}. Show that the series $\sum_{n=1}^{\infty} a_{n} e_{n}$ converges in ℓ^{∞} if and only if $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ converges to zero.
We start by assuming that $a_{n} \rightarrow 0$. To show that $\sum_{n=1}^{\infty} a_{n} e_{n}$ converges in ℓ^{∞}, we will assume that the partial sums $s_{N}=\sum_{n=1}^{N} a_{n} e_{n}$ converges to a. Clearly,

$$
a-s_{N}=\left(0, \ldots, 0, a_{N+1}, a_{N+2}, \ldots\right)
$$

and thus we note that,

$$
\left\|a-s_{N}\right\|_{\infty}=\sup _{l \geq N+1}\left|a_{l}\right| .
$$

By the assumption that $a_{N} \rightarrow 0$ as $N \rightarrow \infty$, it follows that

$$
\left\|a-s_{N}\right\|_{\infty}=\sup _{l \geq N+1}\left|a_{l}\right| \xrightarrow{N \rightarrow \infty} 0
$$

and so the series converges in ℓ^{∞}.
Conversely, assume that $\sum_{n=1}^{\infty} a_{n} e_{n}$ converges in ℓ^{∞}. This means that the partial sums $s_{N}=\sum_{n=1}^{N} a_{n} e_{n}$ converge to some element $x=\left(x_{1}, x_{2}, \ldots\right) \in \ell^{\infty}$. It necessarily follows that $x_{i}=a_{i}$ for each $i \in \mathbb{N}$, since for any $N>i$,

$$
x-s_{N}=\left(x_{1}-a_{1}, \ldots, x_{i}-a_{i}, \ldots, x_{N}-a_{N}, x_{N+1}, x_{N+2}, \ldots\right)
$$

In particular,

$$
\left|x_{i}-a_{i}\right| \leq \sup _{j \in \mathbb{N}}\left|x_{j}-\left(s_{N}\right)_{j}\right|=\left\|x-s_{N}\right\|_{\infty} \xrightarrow{N \rightarrow \infty} 0 .
$$

By the assumption that $s_{N} \rightarrow x$ in ℓ^{∞}, it follows that $s_{N} \rightarrow a=\left(a_{1}, a_{2}, \ldots\right)$ by the fact that $x_{i}=a_{i}$ for each i. However, this implies that

$$
\left|a_{N+1}\right| \leq \sup _{l \geq N+1}\left|a_{i}\right|=\left\|a-s_{N}\right\|_{\infty} \xrightarrow{N \rightarrow \infty} 0
$$

which shows that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.

2 Show that if a normed space $(X,\|\cdot\|)$ has a Schauder basis, then it is separable.
Recall that X is separable if there exists a countable dense subset of X. We claim that such a subset is given all finite linear combinations of basis elements with rational coefficients,

$$
Y=\left\{q \in X: q=\sum_{i=1}^{N} q_{i} e_{n}, q_{i} \in \mathbb{Q}+i \mathbb{Q}, N \in \mathbb{N}\right\} .
$$

Here $\mathbb{Q}+i \mathbb{Q}:=\{z \in \mathbb{C}: z=p+i q, p, q \in \mathbb{Q}\} \subset \mathbb{C}$, which is a dense countable subset of \mathbb{C}. Moreover, for each fixed N we can define the subset,

$$
Y_{N}=\left\{q \in X: q=\sum_{i=1}^{N} q_{i} e_{n}, q_{i} \in \mathbb{Q}+i \mathbb{Q}\right\},
$$

and note that there exists a bijection $\varphi: Y_{N} \rightarrow(\mathbb{Q}+i \mathbb{Q})^{N}$ given by

$$
\sum_{i=1}^{N} q_{i} e_{i} \mapsto\left(q_{1}, \ldots, q_{N}\right)
$$

Since any finite Cartesian product of countable sets are countable, it follows that $(\mathbb{Q}+i \mathbb{Q})^{N}$ is countable, and so is Y_{N} as there is a bijection between them. This implies that the set Y is countable, as

$$
Y=\bigcup_{N \in \mathbb{N}} Y_{N}
$$

and any countable union of countable sets are countable.
It only remains to show that Y is dense in X. Since $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is a Schauder basis, then for every $\varepsilon>0$ there exists $N \in \mathbb{N}$, and thus a finite combination, such that

$$
\left\|x-\sum_{i=1}^{N} x_{i} e_{i}\right\|<\frac{\varepsilon}{2} .
$$

Since $\mathbb{Q}+i \mathbb{Q}$ is dense in \mathbb{C}, there exists a sequence $\left(q_{1}, \ldots, q_{N}\right) \in(\mathbb{Q}+i \mathbb{Q})^{N}$ such that for each $1 \leq i \leq N$,

$$
\left|x_{i}-q_{i}\right|<\frac{\varepsilon}{2 N \max _{1 \leq l \leq N}\left\|e_{l}\right\|}
$$

It therefore follows by the triangle inequality that,

$$
\begin{aligned}
\left\|x-\sum_{i=1}^{N} q_{i} e_{i}\right\| & \leq\left\|x-\sum_{i=1}^{N} x_{i} e_{i}\right\|+\left\|\sum_{i=1}^{N} q_{i} e_{i}-\sum_{i=1}^{N} x_{i} e_{i}\right\| \\
& <\frac{\varepsilon}{2}+\max _{1 \leq j \leq N}\left\|e_{j}\right\| \sum_{i=1}^{N}\left|x_{i}-q_{i}\right| \\
& <\frac{\varepsilon}{2}+\max _{1 \leq j \leq N}\left\|e_{j}\right\| \frac{N \varepsilon}{2 N \max _{1 \leq l \leq N}\left\|e_{l}\right\|} \\
& =\varepsilon,
\end{aligned}
$$

which shows that Y is a countable dense subset in X, and so X is separable.

3 Let $L^{2}[-1,1]$ be equipped with the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(t) \overline{g(t)} d t .
$$

Apply Gram-Schmidt's orthogonalization algorithm to the monomial basis $\left\{1, x, x^{2}, \cdots\right\}$ up to degree 2 .
We begin with the basis elements $\left\{1, x, x^{2}\right\}$, and let \tilde{e}_{j} denote the j orthogonal element from the Gram-Schmidt procedure, and $e_{j}=\tilde{e}_{j} /\left\|\tilde{e}_{j}\right\|$ is the orthonomal element.
For $\tilde{e}_{1}=1$, we simply have

$$
e_{1}=\frac{1}{\|1\|}=\frac{1}{\sqrt{\int_{-1}^{-1} 1^{2} d t}}=\frac{1}{\sqrt{2}}
$$

Applying Gram-Schmidt to the vector x gives,

$$
\tilde{e}_{2}=x-\left\langle x, e_{1}\right\rangle e_{1}=x-\frac{1}{2} \int_{-1}^{1} t d t=x .
$$

Thus, the nomralized element is given by,

$$
e_{2}=\frac{x}{\sqrt{\int_{-1}^{1} t^{2} d t}}=\frac{x}{\sqrt{\frac{2}{3}}} .
$$

For the third and final element, Gram-Schmidt yields

$$
\tilde{e}_{3}=x^{2}-\frac{1}{2} \int_{-1}^{1} t^{2} d t-\frac{3}{2} \int_{-1}^{1} t^{3} d t x=x^{2}-\frac{1}{3} .
$$

The normalized element is therefore given as

$$
e_{3}=\frac{x^{2}-3^{-1}}{\sqrt{\int_{-1}^{1}\left(t^{2}-3^{-1}\right)^{2} d t}}=\frac{x^{2}-\frac{1}{3}}{\sqrt{\frac{8}{45}}} .
$$

The orthonormal elements up to degree 2 from the Gram-Schmidt procedure are given by

$$
\left\{e_{1}, e_{2}, e_{3}\right\}=\left\{\frac{1}{\sqrt{2}}, \frac{x}{\sqrt{\frac{2}{3}}}, \frac{x^{2}-\frac{1}{3}}{\sqrt{\frac{8}{45}}}\right\} .
$$

4 Let $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ be equivalent norms on a vector space X. Show that a sequence $\left\{x_{n}\right\}$ in X is Cauchy with respect to the norm $\|\cdot\|_{a}$ if and only if it is Cauchy with respect to the norm $\|\cdot\|_{b}$.
Recall that two norms are equivalent if and only if there exists $C_{1}, C_{2}>0$ such that

$$
C_{1}\|x\|_{a} \leq\|x\|_{b} \leq C_{2}\|x\|_{a},
$$

for every $x \in X$.
Assume first that $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(X,\|\cdot\|_{a}\right)$. This means that for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\left\|x_{n}-x_{m}\right\|_{a}<\frac{\varepsilon}{C_{2}},
$$

for every $m, n>N$. However, by the equivalence of the norms, it immediately follows that

$$
\left\|x_{n}-x_{m}\right\|_{b} \leq C_{2}\left\|x_{n}-x_{m}\right\|_{a}<\varepsilon
$$

and so $\left\{x_{n}\right\}$ is also a Cauchy sequence in $\left(X,\|\cdot\|_{b}\right)$.
Similarly, assume that $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(X,\|\cdot\|_{b}\right)$. This means that for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\left\|x_{n}-x_{m}\right\|_{a}<C_{1} \varepsilon
$$

for every $m, n>N$. However, by the equivalence of the norms, it immediately follows that

$$
\left\|x_{n}-x_{m}\right\|_{a} \leq \frac{1}{C_{1}}\left\|x_{n}-x_{m}\right\|_{b}<\varepsilon,
$$

and so $\left\{x_{n}\right\}$ is also a Cauchy sequence in $\left(X,\|\cdot\|_{a}\right)$.

