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Solutions to exercise set 11

Below follows one possible solution to the exercise set.

1 Let M be a subspace of an inner product space X. Show that the orthogonal com-
plement M⊥ is closed.

Let us start by showing that M⊥ is a subspace of H. This follows from the linearity
of the inner product, and the fact that 0 ⊥ H. Namely, for any x, y ∈ M⊥ and
z ∈ M , and c ∈ C, we have

⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩ = 0,

⟨cx, z⟩ = c⟨x, z⟩ = 0,

⟨0, z⟩ = 0,

which shows that M⊥ is closed under vector addition, scalar multiplication and
contains the zero-element. As such, M⊥ is a subspace of H.

To show that M⊥ is a closed, we need to show that if a sequence {xn}n∈N ⊂ M⊥

converges to some x ∈ H, then x ∈ A⊥. Let us therefore consider a sequence
{xn}n∈N ⊂ M⊥, such that xn → x as n → ∞. Note that for each y ∈ M , and each
n ∈ N,

|⟨x, y⟩| = |⟨x, y⟩ − ⟨xn, y⟩| = |⟨x− xn, y⟩| ≤ ∥x− xn∥∥y∥,

by the Cauchy-Schwarz’ inequality and the fact that xn ∈ M⊥ for all n ∈ N. Since
xn → x in (H, ⟨·, ·⟩), we can for every ε > 0, and each y ∈ M find N ∈ N such that

∥x− xn∥ <
ε

∥y∥
,

whenever n > N . It therefore follows that

|⟨x, y⟩| ≤ ∥x− xn∥∥y∥ < ε,

by choosing n sufficiently large. This shows that

⟨x, y⟩ = 0,

and so x ∈ M⊥, which confirms that M⊥ is closed.

2 Let M be the plane of R3 given by x1 + x2 + x3 = 0. Find the linear mapping that
is the orthogonal projection of R3 onto this plane.
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In order to find the orthogonal projection, we need an orthonormal basis of the
plane as the orthogonal projection is given by projecting onto the orthonormal basis
elements. Let us therefore start by finding a basis for the plane M . Rewriting the
equation, it follows that x3 = −x1 − x2, and so every element in x ∈ M can be
written on the form

x =

 s
t

−s− t

 = s

 1
0
−1

+ t

 0
1
−1

 , s, t ∈ R.

We have therefore a basis for the plane given by

E1 =

 1
0
−1

 , E2 =

 0
1
−1

 .

Unfortunately, these basis vectors are not orthogonal, as

⟨E1, E2⟩ = 1.

However, we can utilize the Gram–Schmidt procedure to produce an orthonormal
basis. Let us start by defining e1 = E1/∥E1∥, namely

e1 =
1√
2

 1
0
−1

 .

Now, we can define the vector

u2 = E2 − ⟨E2, e1⟩e1 =

 0
1
−1

− 1

2

 1
0
−1

 =

−1
2
1
−1

2

 .

Note that ⟨e1, u2⟩ = 0, and that e1 and u2 is a basis for M . We can therefore define
e2 = u2/∥u2∥,

e2 =
1√
6

−1
2
−1

 ,

and then {e1, e2} is an orthonormal basis of M .

The projection of an element x ∈ R3 onto the plane M is now given by

Px = ⟨x, e1⟩e1 + ⟨x, e2⟩e2 =
1

6

 4x1 − 2x2 − 2x3
−2x1 + 4x2 − 2x3
−2x1 − 2x2 + 4x3

 .

For a more explicit form, we note that the projection can be written quite nicely in
matrix form by using outer products of vectors. We define the outer product u ⊗ v
by

(u⊗ v)(x) = ⟨v, x⟩u.
In the case of R3, the outer product is simply given by u ⊗ v = uvT . This means
that the Projection matrix is given by

P = e1e
T
1 + e2e

T
2 =

1

2

 1 0 −1
0 0 0
−1 0 1

+
1

6

 1 −2 1
−2 4 −2
1 −2 1

 =
1

6

 4 −2 −2
−2 4 −2
−2 −2 4

 .
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3 Let T : X → X be a bounded linear operator on a Hilbert space X. Show that

∥TT ∗∥ = ∥T ∗T∥ = ∥T∥2.

Let us start by showing that ∥T ∗T∥ = ∥T∥2. By the definition of the operator norm,
it follows that, for each x ∈ X

∥T ∗Tx∥ = ∥T ∗(Tx)∥ ≤ ∥T ∗∥∥Tx∥ ≤ ∥T ∗∥∥T∥∥x∥ = ∥T∥2∥x∥,

where we have used the fact that ∥T∥ = ∥T ∗∥. Taking the supremum of all x ∈ X,
with ∥x∥ = 1, yields

∥T ∗T∥ ≤ ∥T∥2.

For the reverse inequality, we note that for any x ∈ X

0 ≤ ∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨x, T ∗Tx⟩ = |⟨x, T ∗Tx⟩| ≤ ∥T ∗Tx∥∥x∥ ≤ ∥T ∗T∥∥x∥2,

where we have used Cauchy-Schwarz’ inequality. In particular, this means that

∥Tx∥
∥x∥

≤ ∥T ∗T∥
1
2 .

Taking the supremum over all non-zero elements of X yields ∥T∥ ≤
√
∥T ∗T∥, or

equivalently
∥T∥2 ≤ ∥T ∗T∥.

Thus, we must have ∥T ∗T∥ = ∥T∥2.
Finally, we show that ∥T ∗T∥ = ∥TT ∗∥. Let A = T ∗, and note that by the argument
above, and using that T ∗∗ = T , we get

∥TT ∗∥ = ∥A∗A∥ = ∥A∥2 = ∥T ∗∥2 = ∥T∥2 = ∥T ∗T∥,

which concludes the proof.

4 Let M be a closed subspace of a Hilbert space X, which by the projection theorem
is given by the direct sum X = M ⊕ M⊥. Show that the projection onto M is
self-adjoint.

By the projection theorem, we can write any element in x ∈ H as x = p+e where p ∈
M and e ∈ M⊥. Moreover, denote the projection onto M by PM (x) = PM (p+e) = p.
Now, for any x, y ∈ H, let x = px + ex and y = py + ey where px, py ∈ M and
ex, ey ∈ M⊥. Then

⟨PM (x), y⟩ =⟨px, py + ey⟩
=⟨px, py⟩+ ⟨px, ey⟩
=⟨px, py⟩
=⟨px, py⟩+ ⟨ex, py⟩
=⟨px + ex, py⟩
=⟨x, PM (y)⟩.

Here we used the fact that M ⊥ M⊥. This shows that the projection on M is
self-adjoint.
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5 Show that {e2πint}n∈Z is orthonormal with respect to the inner product

⟨f, g⟩ =
∫ 1

0
f(t)g(t) dt.

For any n ∈ Z, define the function

en(t) := e2πint.

Then for any n,m ∈ Z, the inner product becomes

⟨en, em⟩ =
∫ 1

0
e2πinte−2πimt dt =

∫ 1

0
e2πi(n−m)t dt.

So if n = m, then n−m = 0 and so,

⟨en, en⟩ =
∫ 1

0
1 dt = 1,

while for n ̸= m,

⟨en, en⟩ =
∫ 1

0
e2πi(n−m)t dt =

e2πi(n−m) − 1

2πi(n−m)
= 0,

as n−m ∈ Z, and the complex exponential is 2π periodic. Combining both equations
gives,

⟨en, em⟩ =

{
1, if n = m,

0, if n ̸= m.

This shows that {en}n∈Z is orthonormal with given inner product.
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