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Solutions to exercise set 9

Below follows one possible solution to the exercise set.

1 Given normed spaces X and Y , and a bounded linear operator A : X ! Y , show
that ker(A) is a closed subspace of X.

Let us first see that ker(A) is a subspace of X. This follows from the fact that A

is linear. Namely, take x, y 2 ker(A) and a, b 2 F. Since x, y 2 ker(A), we have
A(x) = A(y) = 0, and it follows that

A(ax+ by) = aA(x) + bA(y) = 0,

so ax+ by 2 ker(A). Moreover, we have 0 2 ker(A). This follows from

A(0) = A(0 + 0) = A(0) +A(0),

which can only hold if A(0) = 0. This shows that ker(A) is a subspace.

To show that ker(A) is closed, we consider a sequence {xn}n2N ⇢ ker(A) such that
xn ! x 2 X, and show that this necessarily implies x 2 ker(A).

Recall that kAk < 1, and moreover assume that kAk > 0 (otherwise, A is just the
zero operator). We have xn ! x 2 X, so for every " > 0 we can find N 2 N such
that

kx� xnkX <
"

kAk ,

whenever n > N . It follows that

kAxkY = kAx�AxnkY = kA(x� xn)kY  kAkkx� xnkX < "

for every n > N . Note that we have used that xn 2 ker(A), as well as the linearity
of A and the definition of the operator norm. Since we can choose " > 0 arbitrarily
small, we conclude that kAxkY = 0 and thus Ax = 0. This shows that x 2 ker(A),
so ker(A) is closed.

2 Let T be the integral operator

Tf(x) =

Z 1

0
k(x, y)f(y)dy,

defined by a kernel k 2 C([0, 1] ⇥ [0, 1]) such that k(x, y) � 0 for any (x, y) 2
[0, 1]⇥ [0, 1]. Show that the operator norm of T as a mapping on C[0, 1] with respect
to the k · k1-norm is

kTk = max
x2[0,1]

Z 1

0
|k(x, y)|dy.
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Let us start by showing that the right-hand side is an upper bound for the operator
norm. Recall that the operator norm is defined as

kTk = sup
kfk1=1

kTfk1.

Thus, let f 2 C([0, 1]) such that kfk1 = 1. Then, by the triangle inequality for
integrals,
����
Z 1

0
k(x, y)f(y)dy

���� 
Z 1

0
|k(x, y)f(y)|dy  kfk1

Z 1

0
|k(x, y)|dy =

Z 1

0
|k(x, y)|dy.

In particular this means that

kTfk1 = max
x2[0,1]

����
Z 1

0
k(x, y)f(y)dy

����  max
x2[0,1]

Z 1

0
|k(x, y)|dy,

and so we have an upper bound for kTfk1, when kfk1 = 1. Since the supremum
is the least upper bound, it follows that

kTk = sup
kfk1=1

kTfk1  max
x2[0,1]

Z 1

0
|k(x, y)|dy.

To show the other inequality, consider the function f(x) = 1 for all x 2 [0, 1]. This
function satisfies kfk1 = 1, and

Tf(x) =

Z 1

0
k(x, y)dy =

Z 1

0
|k(x, y)|dy,

as k(x, y) � 0 for all (x, y) 2 [0, 1]⇥ [0, 1]. In particular, we have

max
x2[0,1]

Z 1

0
|k(x, y)|dy = kTfk1  kTk.

This proves that

kTk = max
x2[0,1]

Z 1

0
|k(x, y)|dy.

3 Let M be a closed subspace of a Hilbert space H, and let P be the orthogonal
projection of H onto M . Prove that P is bounded and linear, and find kPk. Is P

isometric?

As M is a closed subspace, we can decompose H = M
L

M
?. This means that

every x 2 H can be written as x = p+ e, where p 2 M and e 2 M
?. The orthogonal

projection is the unique operator P : H ! M , which maps x 7! p = P (x). Moreover,
P = P

2 = P
⇤.

To show linearity, we let x, y 2 H, and a, b 2 F. By the decomposition of H, we
have x = px + ex, and y = py + ey. Since M is a closed subspace, it follows that
apx + bpy 2 M , while aex + bey 2 M

?. Thus it follows that

P (ax+ by) = P (a(px + ex) + b(pyey)) = apx + bpy = aP (x) + bP (y),
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which shows that P is linear.

To prove that P is bounded, we will use that P = P
2 = P

⇤. Thus we have

kPxk2 = hPx, Pxi = hP ⇤
Px, xi = hP 2

x, xi = hPx, xi  kPxkkxk,

where we used Cauchy-Schwarz’ inequality at the end. This shows that

kPxk  kxk.

In particular,
kPk = sup

x2H:kxk=1
kPxk  kxk = 1.

This shows that P is bounded, and the operator norm is bounded by 1. On the other
hand, note that for any x 2 M , we have Px = x, and so

kPxk = kxk,

which shows that kPk = 1.

The orthogonal projection on a closed proper subspace of H is not isometric. Take
any x 2 M

? \ {0}. We then have Px = 0 (since x 2 M
?), and

kxk 6= 0 = kPxk,

so P is not isometric.

4 Define an operator B : `1 ! `
1 by

Bx =
⇣
xk

k

⌘

k2N
=

⇣
x1,

x2

2
,
x3

3
, . . .

⌘
, x = (xk)k2N 2 `

1
.

a) Show that B linear, bounded, and kBk = 1.

Let us start by showing that B is linear. Consider two sequence x, y 2 `
1, and

a, b 2 F. Then

B(ax+ by) =

✓
ax1 + by1,

ax2 + by2

2
,
ax3 + by3

3
, . . .

◆

=a

⇣
x1,

x2

2
,
x3

3
, . . .

⌘
+ b

⇣
y1,

y2

2
,
y3

3
, . . .

⌘

=aBx+ bBy,

which shows that B is linear. Moreover, note that for any x 2 `
1, we have

kBxk1 =
1X

k=1

|xk|
k


1X

k=1

|xk| = kxk1,

so B is bounded, with operator norm kBk  1.

Now, consider �1 = (1, 0, 0, . . .) 2 `
1. Then B�1 = (1, 0, 0, . . .) = �1, and

kB�1k1 = k�1k1 = 1.

This shows that kBk = 1.
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b) Show that B is injective, but not surjective.

To show that B is injective, we need to show that if there exists x, y 2 `
1, such

that Bx = By, then x = y.

Let us therefore assume that there are two sequences x, y 2 `
1 such that Bx =

By. Then

(0, 0, 0, . . .) = Bx�By =

✓
x1 � y1,

x2 � y2

2
,
x3 � y3

3
, . . .

◆
=

✓
xk � yk

k

◆

k2N
,

which shows that xk = yk for all k 2 N. We conclude that x = y, which shows
that B is injective.

An operator T : X ! Y is surjective if for each y 2 Y , there exists x 2 X such
that Tx = y. For our case, this means that if B is surjective, then for each
y 2 `

1, there exists x 2 `
1 such that Bx = y. In particular
⇣
xk

k

⌘

k2N
= Bx = y = (yk)k2N ,

which implies that xk = kyk, for all k 2 N. Now, consider the series y =
(yk)k2N = (k�2)k2N 2 `

1. Then x = (kyk)k2N = (k�1)k2N /2 `
1. This shows

that B is not surjective, as there is no element x 2 `
1 which maps to y =

(yk)k2N = (k�2)k2N 2 `
1.

c) Prove that range(B) is a proper dense subspace of `1, but it is not closed.

It follows from the linearity of B that range(B) is a subspace of `1. That it is
a proper subspace follows from b), as y = (yk)k2N = (k�2)k2N /2 range(B).

It remains to show that range(B) is a dense subspace, and that it is not closed.
Note, however, that if we can prove that range(B) is dense we also know that
range(B) is not closed; if range(B) is dense, then range(B) = `

1. Thus, for
every x 2 `

1 there exists a sequence {xn}n2N ⇢ range(B) such that xn ! x.
However, we know that range(B) is proper, so there exists x 2 `

1 such that
x /2 range(B), and thus range(B) cannot be closed.

To prove that range(B) is dense, we note that c00 ✓ range(B), where c00 is the
set of sequences with only finitely many non-zero terms,

c00 := {(xk)k2N : 9N 2 N such that xn = 0, 8n > N} .

To see this, simply observe that for any x = (xk)k2N 2 c00, we can construct
the sequence z = (kxk)k2N, and Bz = x. The sequence z is clearly an element
of `1, since

kzk1 =
1X

k=1

k|xk| =
NX

k=1

k|xk|  N
2 max
1kN

|xk| < 1.

Now let us show that c00 is dense in `
1. Take any x = (xk)k2N 2 `

1, and consider
the truncated sequence {xn}n2N = {(xn

k
)k2N}n2N ⇢ c00, given by

x
n = (x1, . . . , xn, 0, 0, . . .).
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We claim that x
n ! x. To see this, note that

kx� x
nk1 =

1X

k=1

|xk � x
n

k
| =

1X

k=n+1

|xk|,

and since x 2 `
1, we know that

1X

k=n+1

|xk| ! 0 as n ! 1.

This verifies that xn ! x in `
1. Since x 2 `

1 was arbitrary, it follows that c00 is
dense in `

1. However, we also have that c00 ✓ range(B), and so it follows that

c00 = range(B) = `
1
.

This shows that range(B) is a proper dense subspace of `1 which is not closed.

5 Let X,Y, Z be vector spaces and T : X ! Y and S : Y ! Z be linear transforma-
tions. Which of the following statements are true?

1. This is false. Counterexample: Let T : R ! R2 be defined as T (x) = (x, x)
and S : R2 ! R as S(x, y) = x+ y. Then S � T (x) = 2x, which is onto, but T

is not onto.

2. S �T is surjective implies that S is surjective: This is true. If S �T is surjective,
then for each z 2 Z, there exists x 2 X such that

S � T (x) = z.

However, as T : X ! Y , we note that T (x) = y 2 Y . This means that for each
z 2 Z we can find y 2 Y such that S(y) = z (specifically, y = T (x)). Thus, S
is surjective.

3. S � T is injective implies that T is injective: This is true. Consider x1, x2 2 X

such that T (x1) = T (x2) 2 Y . Then

S � T (x1) = S � T (x2),

and since S � T is injective, this implies x1 = x2. Thus, T is injective.

4. This is false, by the same counterexample as in 1.

Another counterexample that disproves 1. and 4. is the following: consider the trans-
formations T : R2 ! R3, and S : R3 ! R2, given by

T (x1, x2) = (x1, x2, 0) S(x1, x2, x3) = (x1, x2).

It is clear that T is injective, but not surjective, while S is surjective, but not injective.
On the other hand S � T = I2 is the identity on R2, which is bijective.

6 Let X be a Banach space, and let A 2 B(X) be given. Let A
0 = I be the identity

map on X, and denote by A
n the composition A

n = A � . . . �A n-times.
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a) Prove that the series

e
A :=

1X

k=0

A
k

k!

converges absolutely in operator norm, and keAk  e
kAk.

The series converges absolutely if

lim
N!1

NX

k=0

kAkk
k!

< 1.

We first show that kAkk  kAkk for every k 2 N using induction. This is clearly
true for k = 2, as for any x 2 X, we have

kA2
xkX  kAkkAxkX  kAk2kxkX =) kA2k  kAk2,

by the definition of the operator norm. Assume now that it holds for the case
k � 1. We observe that

kAk
xkX = kA(Ak�1

x)kX  kAkkAk�1
xkX  kAkkkxkX ,

and thus kAkk  kAkk. If we use this fact, we see that

lim
N!1

NX

k=0

kAkk
k!

 lim
N!1

NX

k=0

kAkk

k!
= e

kAk
< 1,

and so the series converges absolutely with respect to the operator norm.

Additionally: Note that the argument above implies that the partial sums are
Cauchy in B(X), as for n > m we have

�����

nX

k=0

A
k

k!
�

mX

k=0

A
k

k!

����� =

�����

nX

k=m+1

A
k

k!

����� 
nX

k=m+1

kAkk

k!
.

Since the last sum converges in R, it follows by Cauchy’s convergence criterion
that for each " > 0, the exists N 2 N such that

nX

k=m+1

kAkk

k!
< ",

whenever n > m > N . This implies that the partial sums are Cauchy in B(X),
so the partial sums converge to a unique element in B(X) (since B(X) is com-
plete).

To show that keAk  e
kAk, note that by continuity of the norm, we get

��eA
�� =

����� lim
N!1

NX

k=0

A
k

k!

����� = lim
N!1

�����

NX

k=0

A
k

k!

�����  lim
N!1

NX

k=0

kAkk

k!
= e

kAk
.

b) Prove that for each x 2 X, we have

e
A
x =

1X

k=0

A
k
x

k!
,
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where the series converges absolutely with respect to the norm on X.

We use a similar argument as above. Namely, we have

NX

k=0

kAk
xkX
k!


NX

k=0

kAkk

k!
kxkX ,

and taking the limit on both sides as N ! 1, we get

1X

k=0

kAk
xkX
k!

 e
kAkkxkX < 1.

This shows that the series converges absolutely. By the same argument as above,
the partial sums give rise to a Cauchy sequence in X, and so the series converges
to a unique element in X.
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