Norwegian University of Science and Technology
Department of Mathematical
Sciences

Below follows one possible solution to the exercise set.

1 Given normed spaces X and Y, and a bounded linear operator $A: X \rightarrow Y$, show that $\operatorname{ker}(A)$ is a closed subspace of X.

Let us first see that $\operatorname{ker}(A)$ is a subspace of X. This follows from the fact that A is linear. Namely, take $x, y \in \operatorname{ker}(A)$ and $a, b \in \mathbf{F}$. Since $x, y \in \operatorname{ker}(A)$, we have $A(x)=A(y)=0$, and it follows that

$$
A(a x+b y)=a A(x)+b A(y)=0
$$

so $a x+b y \in \operatorname{ker}(A)$. Moreover, we have $0 \in \operatorname{ker}(A)$. This follows from

$$
A(0)=A(0+0)=A(0)+A(0)
$$

which can only hold if $A(0)=0$. This shows that $\operatorname{ker}(A)$ is a subspace.
To show that $\operatorname{ker}(A)$ is closed, we consider a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \operatorname{ker}(A)$ such that $x_{n} \rightarrow x \in X$, and show that this necessarily implies $x \in \operatorname{ker}(A)$.

Recall that $\|A\|<\infty$, and moreover assume that $\|A\|>0$ (otherwise, A is just the zero operator). We have $x_{n} \rightarrow x \in X$, so for every $\varepsilon>0$ we can find $N \in \mathbb{N}$ such that

$$
\left\|x-x_{n}\right\|_{X}<\frac{\varepsilon}{\|A\|}
$$

whenever $n>N$. It follows that

$$
\|A x\|_{Y}=\left\|A x-A x_{n}\right\|_{Y}=\left\|A\left(x-x_{n}\right)\right\|_{Y} \leq\|A\|\left\|x-x_{n}\right\|_{X}<\varepsilon
$$

for every $n>N$. Note that we have used that $x_{n} \in \operatorname{ker}(A)$, as well as the linearity of A and the definition of the operator norm. Since we can choose $\varepsilon>0$ arbitrarily small, we conclude that $\|A x\|_{Y}=0$ and thus $A x=0$. This shows that $x \in \operatorname{ker}(A)$, so $\operatorname{ker}(A)$ is closed.

2 Let T be the integral operator

$$
T f(x)=\int_{0}^{1} k(x, y) f(y) d y
$$

defined by a kernel $k \in C([0,1] \times[0,1])$ such that $k(x, y) \geq 0$ for any $(x, y) \in$ $[0,1] \times[0,1]$. Show that the operator norm of T as a mapping on $C[0,1]$ with respect to the $\|\cdot\|_{\infty}$-norm is

$$
\|T\|=\max _{x \in[0,1]} \int_{0}^{1}|k(x, y)| d y
$$

Let us start by showing that the right-hand side is an upper bound for the operator norm. Recall that the operator norm is defined as

$$
\|T\|=\sup _{\|f\|_{\infty}=1}\|T f\|_{\infty}
$$

Thus, let $f \in C([0,1])$ such that $\|f\|_{\infty}=1$. Then, by the triangle inequality for integrals,

$$
\left|\int_{0}^{1} k(x, y) f(y) d y\right| \leq \int_{0}^{1}|k(x, y) f(y)| d y \leq\|f\|_{\infty} \int_{0}^{1}|k(x, y)| d y=\int_{0}^{1}|k(x, y)| d y
$$

In particular this means that

$$
\|T f\|_{\infty}=\max _{x \in[0,1]}\left|\int_{0}^{1} k(x, y) f(y) d y\right| \leq \max _{x \in[0,1]} \int_{0}^{1}|k(x, y)| d y
$$

and so we have an upper bound for $\|T f\|_{\infty}$, when $\|f\|_{\infty}=1$. Since the supremum is the least upper bound, it follows that

$$
\|T\|=\sup _{\|f\|_{\infty}=1}\|T f\|_{\infty} \leq \max _{x \in[0,1]} \int_{0}^{1}|k(x, y)| d y
$$

To show the other inequality, consider the function $f(x)=1$ for all $x \in[0,1]$. This function satisfies $\|f\|_{\infty}=1$, and

$$
T f(x)=\int_{0}^{1} k(x, y) d y=\int_{0}^{1}|k(x, y)| d y
$$

as $k(x, y) \geq 0$ for all $(x, y) \in[0,1] \times[0,1]$. In particular, we have

$$
\max _{x \in[0,1]} \int_{0}^{1}|k(x, y)| d y=\|T f\|_{\infty} \leq\|T\|
$$

This proves that

$$
\|T\|=\max _{x \in[0,1]} \int_{0}^{1}|k(x, y)| d y
$$

3 Let M be a closed subspace of a Hilbert space H, and let P be the orthogonal projection of H onto M. Prove that P is bounded and linear, and find $\|P\|$. Is P isometric?

As M is a closed subspace, we can decompose $H=M \bigoplus M^{\perp}$. This means that every $x \in H$ can be written as $x=p+e$, where $p \in M$ and $e \in M^{\perp}$. The orthogonal projection is the unique operator $P: H \rightarrow M$, which maps $x \mapsto p=P(x)$. Moreover, $P=P^{2}=P^{*}$.

To show linearity, we let $x, y \in H$, and $a, b \in \mathbb{F}$. By the decomposition of H, we have $x=p_{x}+e_{x}$, and $y=p_{y}+e_{y}$. Since M is a closed subspace, it follows that $a p_{x}+b p_{y} \in M$, while $a e_{x}+b e_{y} \in M^{\perp}$. Thus it follows that

$$
P(a x+b y)=P\left(a\left(p_{x}+e_{x}\right)+b\left(p_{y} e_{y}\right)\right)=a p_{x}+b p_{y}=a P(x)+b P(y)
$$

which shows that P is linear.
To prove that P is bounded, we will use that $P=P^{2}=P^{*}$. Thus we have

$$
\|P x\|^{2}=\langle P x, P x\rangle=\left\langle P^{*} P x, x\right\rangle=\left\langle P^{2} x, x\right\rangle=\langle P x, x\rangle \leq\|P x\|\|x\|,
$$

where we used Cauchy-Schwarz' inequality at the end. This shows that

$$
\|P x\| \leq\|x\| .
$$

In particular,

$$
\|P\|=\sup _{x \in H:\|x\|=1}\|P x\| \leq\|x\|=1
$$

This shows that P is bounded, and the operator norm is bounded by 1 . On the other hand, note that for any $x \in M$, we have $P x=x$, and so

$$
\|P x\|=\|x\|,
$$

which shows that $\|P\|=1$.
The orthogonal projection on a closed proper subspace of H is not isometric. Take any $x \in M^{\perp} \backslash\{0\}$. We then have $P x=0$ (since $x \in M^{\perp}$), and

$$
\|x\| \neq 0=\|P x\|,
$$

so P is not isometric.

4 Define an operator $B: \ell^{1} \rightarrow \ell^{1}$ by

$$
B x=\left(\frac{x_{k}}{k}\right)_{k \in \mathbb{N}}=\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right), \quad x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{1} .
$$

a) Show that B linear, bounded, and $\|B\|=1$.

Let us start by showing that B is linear. Consider two sequence $x, y \in \ell^{1}$, and $a, b \in \mathbb{F}$. Then

$$
\begin{aligned}
B(a x+b y) & =\left(a x_{1}+b y_{1}, \frac{a x_{2}+b y_{2}}{2}, \frac{a x_{3}+b y_{3}}{3}, \ldots\right) \\
& =a\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right)+b\left(y_{1}, \frac{y_{2}}{2}, \frac{y_{3}}{3}, \ldots\right) \\
& =a B x+b B y,
\end{aligned}
$$

which shows that B is linear. Moreover, note that for any $x \in \ell^{1}$, we have

$$
\|B x\|_{1}=\sum_{k=1}^{\infty} \frac{\left|x_{k}\right|}{k} \leq \sum_{k=1}^{\infty}\left|x_{k}\right|=\|x\|_{1},
$$

so B is bounded, with operator norm $\|B\| \leq 1$.
Now, consider $\delta_{1}=(1,0,0, \ldots) \in \ell^{1}$. Then $B \delta_{1}=(1,0,0, \ldots)=\delta_{1}$, and

$$
\left\|B \delta_{1}\right\|_{1}=\left\|\delta_{1}\right\|_{1}=1
$$

This shows that $\|B\|=1$.
b) Show that B is injective, but not surjective.

To show that B is injective, we need to show that if there exists $x, y \in \ell^{1}$, such that $B x=B y$, then $x=y$.

Let us therefore assume that there are two sequences $x, y \in \ell^{1}$ such that $B x=$ $B y$. Then

$$
(0,0,0, \ldots)=B x-B y=\left(x_{1}-y_{1}, \frac{x_{2}-y_{2}}{2}, \frac{x_{3}-y_{3}}{3}, \ldots\right)=\left(\frac{x_{k}-y_{k}}{k}\right)_{k \in \mathbb{N}}
$$

which shows that $x_{k}=y_{k}$ for all $k \in \mathbb{N}$. We conclude that $x=y$, which shows that B is injective.

An operator $T: X \rightarrow Y$ is surjective if for each $y \in Y$, there exists $x \in X$ such that $T x=y$. For our case, this means that if B is surjective, then for each $y \in \ell^{1}$, there exists $x \in \ell^{1}$ such that $B x=y$. In particular

$$
\left(\frac{x_{k}}{k}\right)_{k \in \mathbb{N}}=B x=y=\left(y_{k}\right)_{k \in \mathbb{N}}
$$

which implies that $x_{k}=k y_{k}$, for all $k \in \mathbb{N}$. Now, consider the series $y=$ $\left(y_{k}\right)_{k \in \mathbb{N}}=\left(k^{-2}\right)_{k \in \mathbb{N}} \in \ell^{1}$. Then $x=\left(k y_{k}\right)_{k \in \mathbb{N}}=\left(k^{-1}\right)_{k \in \mathbb{N}} \notin \ell^{1}$. This shows that B is not surjective, as there is no element $x \in \ell^{1}$ which maps to $y=$ $\left(y_{k}\right)_{k \in \mathbb{N}}=\left(k^{-2}\right)_{k \in \mathbb{N}} \in \ell^{1}$.
c) Prove that range (B) is a proper dense subspace of ℓ^{1}, but it is not closed.

It follows from the linearity of B that range (B) is a subspace of ℓ^{1}. That it is a proper subspace follows from \mathbf{b}), as $y=\left(y_{k}\right)_{k \in \mathbb{N}}=\left(k^{-2}\right)_{k \in \mathbb{N}} \notin \operatorname{range}(B)$.

It remains to show that range (B) is a dense subspace, and that it is not closed. Note, however, that if we can prove that $\operatorname{range}(B)$ is dense we also know that range (B) is not closed; if range (B) is dense, then $\overline{\text { range }(B)}=\ell^{1}$. Thus, for every $x \in \ell^{1}$ there exists a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset$ range (B) such that $x_{n} \rightarrow x$. However, we know that $\operatorname{range}(B)$ is proper, so there exists $x \in \ell^{1}$ such that $x \notin \operatorname{range}(B)$, and thus range (B) cannot be closed.

To prove that range (B) is dense, we note that $c_{00} \subseteq \operatorname{range}(B)$, where c_{00} is the set of sequences with only finitely many non-zero terms,

$$
c_{00}:=\left\{\left(x_{k}\right)_{k \in \mathbb{N}}: \exists N \in \mathbb{N} \text { such that } x_{n}=0, \forall n>N\right\}
$$

To see this, simply observe that for any $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in c_{00}$, we can construct the sequence $z=\left(k x_{k}\right)_{k \in \mathbb{N}}$, and $B z=x$. The sequence z is clearly an element of ℓ^{1}, since

$$
\|z\|_{1}=\sum_{k=1}^{\infty} k\left|x_{k}\right|=\sum_{k=1}^{N} k\left|x_{k}\right| \leq N^{2} \max _{1 \leq k \leq N}\left|x_{k}\right|<\infty
$$

Now let us show that c_{00} is dense in ℓ^{1}. Take any $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{1}$, and consider the truncated sequence $\left\{x^{n}\right\}_{n \in \mathbb{N}}=\left\{\left(x_{k}^{n}\right)_{k \in \mathbb{N}}\right\}_{n \in \mathbb{N}} \subset c_{00}$, given by

$$
x^{n}=\left(x_{1}, \ldots, x_{n}, 0,0, \ldots\right)
$$

We claim that $x^{n} \rightarrow x$. To see this, note that

$$
\left\|x-x^{n}\right\|_{1}=\sum_{k=1}^{\infty}\left|x_{k}-x_{k}^{n}\right|=\sum_{k=n+1}^{\infty}\left|x_{k}\right|
$$

and since $x \in \ell^{1}$, we know that

$$
\sum_{k=n+1}^{\infty}\left|x_{k}\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

This verifies that $x^{n} \rightarrow x$ in ℓ^{1}. Since $x \in \ell^{1}$ was arbitrary, it follows that c_{00} is dense in ℓ^{1}. However, we also have that $c_{00} \subseteq \operatorname{range}(B)$, and so it follows that

$$
\overline{c_{00}}=\overline{\operatorname{range}(B)}=\ell^{1}
$$

This shows that range (B) is a proper dense subspace of ℓ^{1} which is not closed.

5 Let X, Y, Z be vector spaces and $T: X \rightarrow Y$ and $S: Y \rightarrow Z$ be linear transformations. Which of the following statements are true?

1. This is false. Counterexample: Let $T: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined as $T(x)=(x, x)$ and $S: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as $S(x, y)=x+y$. Then $S \circ T(x)=2 x$, which is onto, but T is not onto.
2. $S \circ T$ is surjective implies that S is surjective: This is true. If $S \circ T$ is surjective, then for each $z \in Z$, there exists $x \in X$ such that

$$
S \circ T(x)=z
$$

However, as $T: X \rightarrow Y$, we note that $T(x)=y \in Y$. This means that for each $z \in Z$ we can find $y \in Y$ such that $S(y)=z$ (specifically, $y=T(x)$). Thus, S is surjective.
3. $S \circ T$ is injective implies that T is injective: This is true. Consider $x_{1}, x_{2} \in X$ such that $T\left(x_{1}\right)=T\left(x_{2}\right) \in Y$. Then

$$
S \circ T\left(x_{1}\right)=S \circ T\left(x_{2}\right),
$$

and since $S \circ T$ is injective, this implies $x_{1}=x_{2}$. Thus, T is injective.
4. This is false, by the same counterexample as in 1.

Another counterexample that disproves 1. and 4. is the following: consider the transformations $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, and $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, given by

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, 0\right) \quad S\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}\right)
$$

It is clear that T is injective, but not surjective, while S is surjective, but not injective. On the other hand $S \circ T=I_{2}$ is the identity on \mathbb{R}^{2}, which is bijective.

6 Let X be a Banach space, and let $A \in \mathcal{B}(X)$ be given. Let $A^{0}=I$ be the identity map on X, and denote by A^{n} the composition $A^{n}=A \circ \ldots \circ A n$-times.
a) Prove that the series

$$
e^{A}:=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

converges absolutely in operator norm, and $\left\|e^{A}\right\| \leq e^{\|A\|}$.
The series converges absolutely if

$$
\lim _{N \rightarrow \infty} \sum_{k=0}^{N} \frac{\left\|A^{k}\right\|}{k!}<\infty
$$

We first show that $\left\|A^{k}\right\| \leq\|A\|^{k}$ for every $k \in \mathbb{N}$ using induction. This is clearly true for $k=2$, as for any $x \in X$, we have

$$
\left\|A^{2} x\right\|_{X} \leq\|A\|\|A x\|_{X} \leq\|A\|^{2}\|x\|_{X} \quad \Longrightarrow \quad\left\|A^{2}\right\| \leq\|A\|^{2}
$$

by the definition of the operator norm. Assume now that it holds for the case $k-1$. We observe that

$$
\left\|A^{k} x\right\|_{X}=\left\|A\left(A^{k-1} x\right)\right\|_{X} \leq\|A\|\left\|A^{k-1} x\right\|_{X} \leq\|A\|^{k}\|x\|_{X}
$$

and thus $\left\|A^{k}\right\| \leq\|A\|^{k}$. If we use this fact, we see that

$$
\lim _{N \rightarrow \infty} \sum_{k=0}^{N} \frac{\left\|A^{k}\right\|}{k!} \leq \lim _{N \rightarrow \infty} \sum_{k=0}^{N} \frac{\|A\|^{k}}{k!}=e^{\|A\|}<\infty
$$

and so the series converges absolutely with respect to the operator norm.
Additionally: Note that the argument above implies that the partial sums are Cauchy in $\mathcal{B}(X)$, as for $n>m$ we have

$$
\left\|\sum_{k=0}^{n} \frac{A^{k}}{k!}-\sum_{k=0}^{m} \frac{A^{k}}{k!}\right\|=\left\|\sum_{k=m+1}^{n} \frac{A^{k}}{k!}\right\| \leq \sum_{k=m+1}^{n} \frac{\|A\|^{k}}{k!}
$$

Since the last sum converges in \mathbb{R}, it follows by Cauchy's convergence criterion that for each $\varepsilon>0$, the exists $N \in \mathbb{N}$ such that

$$
\sum_{k=m+1}^{n} \frac{\|A\|^{k}}{k!}<\varepsilon
$$

whenever $n>m>N$. This implies that the partial sums are Cauchy in $\mathcal{B}(X)$, so the partial sums converge to a unique element in $\mathcal{B}(X)$ (since $\mathcal{B}(X)$ is complete).
To show that $\left\|e^{A}\right\| \leq e^{\|A\|}$, note that by continuity of the norm, we get

$$
\left\|e^{A}\right\|=\left\|\lim _{N \rightarrow \infty} \sum_{k=0}^{N} \frac{A^{k}}{k!}\right\|=\lim _{N \rightarrow \infty}\left\|\sum_{k=0}^{N} \frac{A^{k}}{k!}\right\| \leq \lim _{N \rightarrow \infty} \sum_{k=0}^{N} \frac{\|A\|^{k}}{k!}=e^{\|A\|}
$$

b) Prove that for each $x \in X$, we have

$$
e^{A} x=\sum_{k=0}^{\infty} \frac{A^{k} x}{k!}
$$

where the series converges absolutely with respect to the norm on X.
We use a similar argument as above. Namely, we have

$$
\sum_{k=0}^{N} \frac{\left\|A^{k} x\right\|_{X}}{k!} \leq \sum_{k=0}^{N} \frac{\|A\|^{k}}{k!}\|x\|_{X}
$$

and taking the limit on both sides as $N \rightarrow \infty$, we get

$$
\sum_{k=0}^{\infty} \frac{\left\|A^{k} x\right\|_{X}}{k!} \leq e^{\|A\|}\|x\|_{X}<\infty
$$

This shows that the series converges absolutely. By the same argument as above, the partial sums give rise to a Cauchy sequence in X, and so the series converges to a unique element in X.

